Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Phytomedicine ; 129: 155593, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38621329

ABSTRACT

BACKGROUND: Preventing joint edema is crucial in halting osteoarthritis (OA) progression. Growing clinical evidence indicate that Jianpi-Tongluo Formula (JTF) may have a promising anti-edema effect. However, the therapeutic properties of JTF and the underlying mechanisms remains unclear. MATERIALS AND METHODS: An OA rat model was established and employed to evaluate pharmacological effects of JTF in vivo based on dynamic histopathologic assessments and micro-CT observations. Then, OA-related genes and potential targets of JTF were identified through clinical transcriptomic data analysis and "disease gene-drug target" network analysis, which were verified by a series of in vivo experiments. RESULTS: JTF administration effectively reduced pain and joint edema, inhibited matrix degradation, chondrocyte apoptosis, and aquaporin expression in OA rats. Notably, JTF dose-dependently reversed damage-associated molecular patterns and inflammatory factor upregulation. Mechanically, our "disease gene-drug target" network analysis indicated that the NCOA4-HMGB1-GSK3B-AQPs axis, implicated in ferroptosis and aquaporin dysregulation, may be potentially served as a target of JTF against OA. Accordingly, JTF mitigated NCOA4, HMGB1, and GSK3B expression, oxidative stress, and iron metabolism aberrations in OA rats. Furthermore, JTF treatment significantly attenuated the aberrant upregulation of AQP1, AQP3, and AQP4 proteins observed in cartilage tissues of OA rats. CONCLUSION: Our data reveal for the first time that JTF may exert cartilage protective and anti-edema effects in osteoarthritis therapy by inhibiting NCOA4-HMGB1-driven ferroptosis and aquaporin dysregulation.


Subject(s)
Ferroptosis , HMGB1 Protein , Osteoarthritis , Rats, Sprague-Dawley , Animals , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Ferroptosis/drug effects , Rats , Male , HMGB1 Protein/metabolism , Drugs, Chinese Herbal/pharmacology , Edema/drug therapy , Aquaporins/metabolism , Nuclear Receptor Coactivators/metabolism , Disease Models, Animal , Aquaporin 3/metabolism , Aquaporin 1/metabolism
2.
Dig Dis Sci ; 69(4): 1143-1155, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421507

ABSTRACT

BACKGROUND: Intestinal mucosal barrier dysfunction plays a crucial role in the pathogenesis of irritable bowel syndrome with diarrhea (IBS-D). In order to explore the mechanism of electroacupuncture (EA) treatment on intestinal mucosal barrier, this study observed the effect of EA on aquaporins (AQPs), tight junctions (TJs), NF-κB pathway and the gut microbiota in IBS-D rats. METHODS: The IBS-D model was established by acetic acid enema combined with chronic restraint method. The effects of EA on the treatment of IBS-D were examined by the abdominal withdrawal reflex score, Bristol's fecal character score, fecal water content, small intestine propulsion rate and HE staining. AQPs, TJs and inflammation-related molecular mechanisms were explored. The fecal samples were applied for 16S rRNA sequencing to assess the effect of EA intervention to the intestinal bacterial abundance. RESULTS: EA reduced intestinal sensitization, restored intestinal motility and improved inflammatory cell infiltration. Furthermore, EA improved intestinal inflammation and flora environment significantly, inhibited NF-κB signaling and inflammatory factors (IL-1ß and TNF-α). It can also increase the gene and protein expression of AQPs (AQP1, AQP3, and AQP8) and the gene levels of TJs (ZO-1 and Occludin). CONCLUSION: EA has an inhibitory effect on the NF-κB signaling pathway, and regulates the proteins of AQP1, AQP3, AQP8, and TJs to restore the balance of water metabolism and intestinal permeability in IBS-D, which also restored the function of the intestinal mucosa by regulating the intestinal flora.


Subject(s)
Aquaporins , Electroacupuncture , Irritable Bowel Syndrome , Rats , Animals , Irritable Bowel Syndrome/metabolism , NF-kappa B/metabolism , Intestinal Barrier Function , RNA, Ribosomal, 16S , Diarrhea , Aquaporins/metabolism , Inflammation , Water
3.
J Nutr Biochem ; 124: 109514, 2024 02.
Article in English | MEDLINE | ID: mdl-37918450

ABSTRACT

Aquaporin 9 (AQP9) is an integral membrane protein that facilitates glycerol transport in hepatocytes and adipocytes. Glycerol is necessary as a substrate for gluconeogenesis in the physiological fasted state, suggesting that inhibiting AQP9 function may be beneficial for treating type 2 diabetes associated with fasting hyperglycemia. The n-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are rich in fish oil and lower the risk of metabolic syndrome; however, the effects of EPA and DHA on AQP9 expression in obese and type 2 diabetes are unclear. The KK mouse is an animal model of obesity and type 2 diabetes because of the polymorphisms on leptin receptor gene, which results in a part of cause for obese and diabetic conditions. In this study, we determined the effect of fish oil-derived n-3 PUFA on AQP9 protein expression in the liver and white adipose tissue (WAT) of KK mice and mouse 3T3-L1 adipocytes. The expression of AQP9 protein in the liver, epididymal WAT, and inguinal WAT were markedly decreased following fish oil administration. We also demonstrated that n-3 PUFAs, such as DHA, and to a lesser extent EPA, downregulated AQP9 protein expression in 3T3-L1 adipocytes. Our results suggest that fish oil-derived n-3 PUFAs may regulate the protein expressions of AQP9 in glycerol metabolism-related organs in KK mice and 3T3-L1 adipocytes.


Subject(s)
Aquaporins , Diabetes Mellitus, Type 2 , Fatty Acids, Omega-3 , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , 3T3-L1 Cells , Glycerol , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Fish Oils/pharmacology , Fish Oils/metabolism , Adipocytes , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/metabolism , Liver/metabolism , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/metabolism , Obesity/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Aquaporins/pharmacology , Fatty Acids, Unsaturated/pharmacology , Adipose Tissue, White/metabolism
4.
J Tradit Chin Med ; 43(6): 1160-1167, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37946478

ABSTRACT

OBJECTIVE: To investigate whether Hetong decoction (, HTT) alleviates constipation via regulating AQPs expression. METHODS: Constipation in rats was induced by loperamide, and rats were randomly assigned into model (saline), HHT-low (95 g/kg), HTT-medium (190 g/kg), HTT-high (380 g/kg) and positive control (mosapride) groups. Then the defecation function, the concentration of serum arginine vasopressin (AVP) and cyclic adenosine monophosphate (cAMP), and the expression of AQP3 and AQP8 in colon tissues were assessed. NCM460 colon cells with AQP3 and AQP8 knockdown or overexpression were exposed to serum from rats that received low or high dose of HTT, followed by detection of AQP3 and AQP8 expression. RESULTS: The model group showed lower fecal weight and water content, weaker intestinal transit, higher serum concentration of AVP and cAMP, increased proximal and distal AQP8 expression, increased proximal but decreased distal AQP3 expression. However, these trends were reversed in both the HTT group (low, medium and high dose) and the positive control group. In NCM460 cells, HTT dose-dependently stabilized AQP3 and AQP8 expression under AQP3/8 plasmid interference or overexpression. CONCLUSIONS: HTT relieves constipation in rats through regulating AQP3 and AQP8 expression.


Subject(s)
Aquaporins , Loperamide , Rats , Animals , Loperamide/adverse effects , Loperamide/metabolism , Constipation/chemically induced , Constipation/drug therapy , Constipation/genetics , Aquaporins/genetics , Aquaporins/metabolism , Colon/metabolism , Intestines , Cyclic AMP/genetics , Cyclic AMP/metabolism
5.
Environ Monit Assess ; 195(12): 1550, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030894

ABSTRACT

Reservoir cascade systems have attracted the attention of scientists worldwide. The present study investigates the cascade of five reservoirs (R1, R2, R3, R4, and R5) along a 192-km water channel system located in the state of Ceará, in the Brazilian semiarid region. This cascade system was implemented in 2012 to promote water availability and security to the capital of Ceará and the strategic industry and port complex of the region. However, these reservoirs have faced a progressive degradation of water quality, which has resulted in intense eutrophication and high-water treatment costs. The study evaluates the dynamics of water quality from 2013 to 2021 along this reservoir cascade (from R1 to R5). The results revealed that water quality did not improve along the cascade system, differently from previous studies on reservoirs interconnected by natural rivers. This was attributed to the low water residence time and low capacity of pollutant removal along the man-made water channel system, as well as to the high internal phosphorus loads of the reservoirs. Multiple regression models involving the explanatory variables of total phosphorus, total nitrogen, chlorophyll-a, cyanobacteria, transparency, rainfall, and volume from upstream reservoirs were obtained to determine total phosphorus concentration in downstream reservoirs, considering different combinations of reservoir pairs in the cascade and different time delays. A clear trend of R2 decline with the distance between the upstream and downstream reservoirs was observed. For example, the R2 values for the correlations adjusted between R1 and R2 (48 km), R1 and R3 (172 km), R1 and R4 (178 km), and R1 and R5 (192 km) were 0.66, 0.32, 0.22, and 0.12, respectively. On the other hand, the adoption of time delays of the order of the cumulative residence times of the reservoirs promoted a significant improvement in the R2 values. For instance, the best correlation adjusted between R1 and R5 improved from R2 = 0.12 to 0.69 by considering a time delay of 21 months. This suggests that previous data from upstream reservoirs can be used to predict current and future total phosphorus concentration in downstream reservoirs. The results from this study are important to better understand the spatiotemporal dynamics of water quality in reservoir cascade systems and thus improve water resources management, especially in drylands.


Subject(s)
Aquaporins , Environmental Monitoring , China , Chlorophyll A , Environmental Monitoring/methods , Eutrophication , Nitrogen/analysis , Phosphorus/analysis , Water Quality
6.
Nutrients ; 15(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37630841

ABSTRACT

Milk is an important source of nutrients and energy, but there are still many uncertainties regarding the health effects of milk and dairy products consumption. Milk from different species varies in physicochemical and nutritional properties. We previously showed that dietary supplements with different milks in rats trigger significant differences in metabolic and inflammatory states, modulating mitochondrial functions in metabolically active organs such as the liver and skeletal muscle. Here, we have deepened the effects of isoenergetic supplementation of milk (82 kJ) from cow (CM), donkey (DM) or human (HM) on hepatic metabolism to understand the interlink between mitochondrial metabolic flexibility, lipid storage and redox state and to highlight the possible role of two hepatocyte aquaporins (AQPs) of metabolic relevance, AQP8 and AQP9, in this crosstalk. Compared with rats with no milk supplementation, DM- and HM-fed rats had reduced hepatic lipid content with enhanced mitochondrial function and decreased oxidative stress. A marked reduction in AQP8, a hydrogen peroxide channel, was seen in the liver mitochondria of DM-fed rats compared with HM-fed, CM-fed and control animals. DM-fed or HM-fed rats also showed reduced hepatic inflammatory markers and less collagen and Kupffer cells. CM-fed rats showed higher hepatic fat content and increased AQP9 and glycerol permeability. A role of liver AQP8 and AQP9 is suggested in the different metabolic profiles resulting from milk supplementation.


Subject(s)
Aquaporins , Liver , Cattle , Female , Humans , Animals , Rats , Hepatocytes , Oxidation-Reduction , Dietary Supplements , Glucose , Lipids
7.
J Integr Plant Biol ; 65(10): 2349-2367, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37548108

ABSTRACT

Aquaporins are important transmembrane water transport proteins which transport water and several neutral molecules. However, how aquaporins are involved in the synergistic transport of Mg2+ and water remains poorly understood. Here, we found that the cassava aquaporin MePIP2;7 was involved in Mg2+ transport through interaction with MeMGT9, a lower affinity magnesium transporter protein. Knockdown of MePIP2;7 in cassava led to magnesium deficiency in basal mature leaves with chlorosis and necrotic spots on their edges and starch over-accumulation. Mg2+ content was significantly decreased in leaves and roots of MePIP2;7-RNA interference (PIP-Ri) plants grown in both field and Mg2+ -free hydroponic solution. Xenopus oocyte injection analysis verified that MePIP2;7 possessed the ability to transport water only and MeMGT9 was responsible for Mg2+ efflux. More importantly, MePIP2;7 improved the transportability of Mg2+ via MeMGT9 as verified using the CM66 mutant complementation assay and Xenopus oocytes expressing system. Yeast two-hybrid, bimolecular fluorescence complementation, co-localization, and co-immunoprecipitation assays demonstrated the direct protein-protein interaction between MePIP2;7 and MeMGT9 in vivo. Mg2+ flux was significantly elevated in MePIP2;7-overexpressing lines in hydroponic solution through non-invasive micro-test technique analysis. Under Mg2+ -free condition, the retarded growth of PIP-Ri transgenic plants could be recovered with Mg2+ supplementation. Taken together, our results demonstrated the synergistic effect of the MePIP2;7 and MeMGT9 interaction in regulating water and Mg2+ absorption and transport in cassava.


Subject(s)
Aquaporins , Manihot , Manihot/genetics , Aquaporins/genetics , Aquaporins/metabolism , Biological Transport , Water/metabolism , Membrane Transport Proteins/metabolism , Plant Roots/metabolism
8.
Front Biosci (Landmark Ed) ; 28(6): 126, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37395039

ABSTRACT

BACKGROUND: Lipopolysaccharide (LPS), an effective stimulator of the immune system, has been widely applied in an experimental pig model for human sepsis. Aquaporins (AQPs), a family of small integral membrane proteins responsible for facilitating water fluxes through the cell membrane, offer potential promising drug targets for sepsis treatment due to their role in water balance and inflammation. METHODS: In order to investigate the potential effect of a dietary amino acid mixture supplementation on LPS-challenged weaned piglets, a total of 30, 28-day-old, males were randomly allocated to 1 of 3 dietary treatments for a 5-week period, with 10 animals in each: diet 1 was a control (CTL) treatment; diet 2 was LPS treatment, where the piglets were intraperitoneally administered LPS (at 25 µg/kg body weight); diet 3 was LPS + cocktail treatment, where the piglets were intraperitoneally administered LPS and fed a diet supplemented with a mixture of arginine, branched-chain amino acids (BCAA, leucine, valine, and isoleucine), and cystine. Key organs that control sepsis were collected and processed by real time quantitative PCR (RT-qPCR) for the AQPs and cytokines transcriptional profiles. RESULTS: Minor variations were detected for AQPs and inflammatory markers mRNA levels, upon the dependence of LPS or the amino acid cocktail suggesting the piglets' immune recovery. Using a discriminant analysis tool, we report for the first time, a tissue-specific variation in AQPs and cytokines transcriptional profiles that clearly distinguish the small intestine and the kidney from the liver and the spleen. CONCLUSIONS: This study provides a novel insight into the gene expression signature of AQPs and cytokines in the functional physiology of each organ in piglets.


Subject(s)
Aquaporins , Lipopolysaccharides , Male , Swine , Animals , Humans , Lipopolysaccharides/pharmacology , Dietary Supplements/analysis , Amino Acids , Cytokines/genetics , Cytokines/metabolism , Aquaporins/genetics , Water/metabolism
9.
J Ethnopharmacol ; 311: 116431, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37003403

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sennoside A is a natural anthraquinone component mainly derived from rhubarb and has been routinely used as a clinical stimulant laxative. However, long-term application of sennoside A may lead to drug resistance and even adverse reactions, thus limiting its clinical use. Therefore, to reveal the time-dependent laxative effect and potential mechanism of sennoside A is of critical importance. AIM OF THE STUDY: This study was conducted to investigate the time-dependent laxative effect of sennoside A and unveil its underlying mechanism from the perspective of gut microbiota and aquaporins (AQPs). MATERIALS AND METHODS: Based on a mouse constipation model, 2.6 mg/kg sennoside A was administered orally for 1, 3, 7, 14 and 21 days, respectively. The laxative effect was assessed by the fecal index and fecal water content, the histopathology of the small intestine and colon was evaluated by hematoxylin-eosin staining. Gut microbiota changes was observed by 16S rDNA sequencing, and colonic AQPs expression was analyzed by quantitative real-time polymerase chain reaction and western blotting. Partial least-squares regression (PLSR) was used to screen out the effective indicators contributing to the laxative effect of sennoside A. The effective indicators were then fitted to time by a drug-time curve model to analyze the trend of efficacy of sennoside A, and the optimal time of administration was derived by comprehensive analysis with a three-dimensional (3D) time-effect image. RESULTS: Sennoside A had a significant laxative effect at 7 days of administration with no pathological changes in the small intestine or colon; however, at 14 or 21 days of administration, the laxative effect diminished and slight damage to the colon was observed. Sennoside A affects the structure and function of gut microbes. The alpha diversity showed that the abundance and diversity of gut microorganisms reached the highest value after 7 days of administration. Partial least squares discriminant analysis showed that the composition of the flora was close to normal when administered for less than 7 days, but was closest to the composition of constipation over 7 days. The expression of aquaporin 3 (AQP3) and aquaporin 7 (AQP7) decreased gradually after the administration of sennoside A, with the lowest expression at 7 days, and then increased gradually afterwards, while the expression of aquaporin 1 (AQP1) was the opposite. The PLSR results showed that AQP1, AQP3, Lactobacillus, Romboutsia, Akkermansia and UCG_005 contributed more to the laxative effect of the fecal index, and after fitting with the drug-time curve model, each index showed a trend of increasing and then decreasing. The comprehensive evaluation of the 3D time-effect image concluded that the laxative effect of sennoside A reached its best after 7 days of administration. CONCLUSION: Sennoside A should be used in regular dosages for less than one week, as it provides significant relief of constipation and exhibits no colonic damage within 7 days of administration. In addition, Sennoside A exerts its laxative effect by regulating gut microbiota of Lactobacillus Romboutsia, Akkermansia and UCG_005 and water channels of AQP1 and AQP3.


Subject(s)
Aquaporins , Gastrointestinal Microbiome , Rheum , Mice , Animals , Laxatives/pharmacology , Laxatives/chemistry , Sennosides/pharmacology , Aquaporins/genetics , Aquaporins/metabolism , Constipation/chemically induced , Constipation/drug therapy , Aquaporin 3/metabolism
10.
J Agric Food Chem ; 71(8): 3862-3875, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36802556

ABSTRACT

This study aimed to investigate the amendatory effects of Fu brick tea aqueous extract (FTE) on constipation and its underlying molecular mechanism. The administration of FTE by oral gavage (100 and 400 mg/kg·bw) for 5 weeks significantly increased fecal water content, improved difficult defecation, and enhanced intestinal propulsion in loperamide (LOP)-induced constipated mice. FTE also reduced colonic inflammatory factors, maintained the intestinal tight junction structure, and inhibited colonic Aquaporins (AQPs) expression, thus normalizing the intestinal barrier and colonic water transport system of constipated mice. 16S rRNA gene sequence analysis results indicated that two doses of FTE increased the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and increased the relative abundance of Lactobacillus from 5.6 ± 1.3 to 21.5 ± 3.4% and 28.5 ± 4.3% at the genus level, subsequently resulting in a significant elevation of colonic contents short-chain fatty acids levels. The metabolomic analysis demonstrated that FTE improved levels of 25 metabolites associated with constipation. These findings suggest that Fu brick tea has the potential to alleviate constipation by regulating gut microbiota and its metabolites, thereby improving the intestinal barrier and AQPs-mediated water transport system in mice.


Subject(s)
Aquaporins , Gastrointestinal Microbiome , Mice , Animals , RNA, Ribosomal, 16S/genetics , Constipation/drug therapy , Constipation/metabolism , Aquaporins/genetics , Tea
11.
J Biosci Bioeng ; 135(5): 375-381, 2023 May.
Article in English | MEDLINE | ID: mdl-36841726

ABSTRACT

In this study, glycerate was produced from glucose using engineered Escherichia coli BW25113. Plasmid pSR3 carrying gpd1 and gpp2 encoding two isoforms of glycerol-3-phosphate dehydrogenase from Saccharomyces cerevisiae and plasmid pLB2 carrying aldO encoding alditol oxidase from Streptomyces violaceoruber were introduced into E. coli to enable the production of glycerate from glucose via glycerol. Disruptions of garK and glxK genes in the E. coli genome were performed to minimize the consumption of glycerate produced. As a result, E. coli carrying these plasmids could produce nearly three times higher concentration of glycerate (0.50 ± 0.01 g/L) from 10 g/L glucose compared to E. coli EG_2 (0.14 ± 0.02 g/L). In M9 medium, disruption of garK and glxK resulted in an impaired growth rate with low production of glycerate, while supplementation of 0.5 g/L casamino acids and 0.5 g/L manganese sulfate to the medium replenished the growth rate and elevated the glycerate titer. Further disruption of glpF, encoding a glycerol transporter, increased the glycerate production to 0.80 ± 0.00 g/L. MR2 medium improved the glycerate production titers and specific productivities of E. coli EG_4, EG_5, and EG_6. Upscale production of glycerate was carried out in a jar fermentor with MR2 medium using E. coli EG_6, resulting in an improvement in glycerate production up to 2.37 ± 0.46 g/L with specific productivity at 0.34 ± 0.11 g-glycerate/g-cells. These results indicate that E. coli is an appropriate host for glycerate production from glucose.


Subject(s)
Aquaporins , Escherichia coli Proteins , Escherichia coli/genetics , Glycerol , Glucose , Saccharomyces cerevisiae/genetics , Glycerolphosphate Dehydrogenase/genetics , Fermentation , Metabolic Engineering/methods , Aquaporins/genetics , Escherichia coli Proteins/genetics
12.
Biomed Pharmacother ; 155: 113702, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36115113

ABSTRACT

Herbal drugs offer an alternative approach for the treatment of diseases like asthma due to low cost and comparatively less adverse effects in contrast to synthetic drugs. Leaves of Quercus leucotrichophora are traditionally used for the treatment of asthma. The study was aimed to assess the anti-asthmatic activity of Quercus leucotrichophora (QL) methanolic (QLME) and aqueous extracts (QLAE) in ovalbumin-(OVA) induced asthma and chemical characterization of QL extract by High Performance Liquid Chromatography-Diode array detector (HPLC-DAD). Animals were inoculated with OVA (i.p) on day 1 and 14 followed by intranasal challenge on 27th and 29th day. Both extracts of QL at 600, 300 and 150 mg/kg and dexamethasone (2 mg/kg) l were administered consecutively from days 15-26 via oral gavage. The QL extracts notably reduced (p < 0.0001-p < 0.05) total and differential leukocyte counts in blood and BALF and serum IgE levels in contrast to disease control. Both extracts and Dex substantially improved activities of superoxide dismutase, catalase, and GSH, while reduced malondialdehyde level in treated mice. Treatment with extracts and Dex caused significant (p < 0.0001-p < 0.05) downregulation of tumor necrosis factor-α, interleukin-4, - 5, - 13, - 6, - 1ß, and NF-κB whereas, increased expression of Aquaporin (AQP) 1 and AQP5 in contrast to disease control. It was inferenced from findings that both extract of QL exhibited notable antiasthmatic potential might be due to presence of Daidzein-glucuronic acid, 3-Hydroxyphloretin 6'-hexoside, Catechin, Quercetin, and Kaemferol.


Subject(s)
Anti-Asthmatic Agents , Aquaporins , Asthma , Catechin , Quercus , Synthetic Drugs , Animals , Mice , Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Catalase/metabolism , Catechin/pharmacology , Chromatography, High Pressure Liquid , Dexamethasone , Disease Models, Animal , Glucuronic Acid , Immunoglobulin E/metabolism , Interleukin-4/metabolism , Lung , Malondialdehyde/metabolism , Mice, Inbred BALB C , NF-kappa B/metabolism , Ovalbumin/pharmacology , Oxidative Stress , Quercetin/pharmacology , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
Int J Mol Sci ; 23(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35955466

ABSTRACT

(1) Background: Changes in the expression of aquaporins (AQPs) in the intestine are proved to be associated with the attenuation of diarrhea. Diarrhea is a severe problem for postweaning piglets. Therefore, this study aimed to investigate whether niacin could alleviate diarrhea in weaned piglets by regulating AQPs expression and the underlying mechanisms; (2) Methods: 72 weaned piglets (Duroc × (Landrace × Yorkshire), 21 d old, 6.60 ± 0.05 kg) were randomly allotted into 3 groups for a 14-day feeding trial. Each treatment group included 6 replicate pens and each pen included 4 barrows (n = 24/treatment). Piglets were fed a basal diet (CON), a basal diet supplemented with 20.4 mg niacin/kg diet (NA) or the basal diet administered an antagonist for the GPR109A receptor (MPN). Additionally, an established porcine intestinal epithelial cell line (IPEC-J2) was used to investigate the protective effects and underlying mechanism of niacin on AQPs expression after Escherichia coli K88 (ETEC K88) treatment; (3) Results: Piglets fed niacin-supplemented diet had significantly decreased diarrhea rate, and increased mRNA and protein level of ZO-1, AQP 1 and AQP 3 in the colon compared with those administered a fed diet supplemented with an antagonist (p < 0.05). In addition, ETEC K88 treatment significantly reduced the cell viability, cell migration, and mRNA and protein expression of AQP1, AQP3, AQP7, AQP9, AQP11, and GPR109A in IPEC-J2 cells (p < 0.05). However, supplementation with niacin significantly prevented the ETEC K88-induced decline in the cell viability, cell migration, and the expression level of AQPs mRNA and protein in IPEC-J2 cells (p < 0.05). Furthermore, siRNA GPR109A knockdown significantly abrogated the protective effect of niacin on ETEC K88-induced cell damage (p < 0.05); (4) Conclusions: Niacin supplementation increased AQPs and ZO-1 expression to reduce diarrhea and intestinal damage through GPR109A pathway in weaned piglets.


Subject(s)
Aquaporins , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Niacin , Animals , Aquaporins/genetics , Diarrhea/drug therapy , Diarrhea/prevention & control , Diarrhea/veterinary , Escherichia coli Infections/prevention & control , Intestines , Niacin/pharmacology , RNA, Messenger , Swine , Up-Regulation
14.
Environ Pollut ; 310: 119815, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35926737

ABSTRACT

In recent years, much attention has been directed toward using nanoparticles (NPs) as one of the most effective strategies to improve plant growth, especially under salt stress conditions. Further research has been conducted to develop NPs using various chemical ways; accordingly, knowledge about the beneficial effect of bioSeNPs in rapeseed is obscure. Selenium (Se) is a vital micronutrient with a series of physiological and antioxidative properties. Seed priming is emerging as a low-cost, efficient, and environment-friendly seed treatment in nanotechnology. The current study was carried out to examine the promising effects of nanopriming via bioSeNPs on the expression level of aquaporin genes, seed microstructure, seed germination, growth traits, physiochemical attributes, and minerals uptake of two rapeseed cultivars under salinity stress conditions. Our investigation monitored the positive effects of bioSeNPs on the expression level of aquaporin genes (BnPIP1-1 and BnPIP2-1) and water uptake during the seed imbibition (4 and 8 h of priming), which indicated higher imbibition potential and germination promotion with bioSeNPs application (most effective at 150 µmol/L). The total performance index was significantly enhanced with nano-treatments in rapeseed seedlings. Collectively, nano-application improved seed microstructure, seed germination, and photosynthetic efficiency directly correlated with higher seedlings biomass, especially with a higher concentration of bioSeNPs. The enhancement in α-amylase and free amino acid contents in nanoprimed seeds resulted in rapid seed germination. Moreover, bioSeNPs increased the osmotic adjustment and enhanced the efficiency of the plant's defense system by improving the activity of enzymatic and non-enzymatic antioxidants, thus enhancing ROS scavenging under salt stress. The obtained results may indicate the strengthening of seed vigor, improving seedling growth and physiochemical attributes via bioSeNPs. Our findings displayed that bioSeNPs modulated the Na+ and K+ uptake, which improved the rapeseed growth and showed a close relationship with the low contents of toxic Na+ ion; thus, it prevented oxidative damage due to salt stress. This comprehensive data can add more knowledge to understand the mechanisms behind plant-bioSeNPs interaction and provide physiological evidence for the beneficial roles of nanopriming using bioSeNPs on rapeseed germination and seedling development under salinity stress conditions. Such studies can be used to develop simple prepackaged nano primer products, which can be used before sowing to boost seed germination and crop productivity under stress conditions.


Subject(s)
Aquaporins , Brassica napus , Brassica rapa , Nanoparticles , Selenium , Antioxidants , Germination , Salt Stress , Seedlings , Seeds
15.
Nano Lett ; 22(9): 3793-3800, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35499312

ABSTRACT

Probe reactivity has long been considered to play a key role in artificial nanochannel sensors, but systematic studies of membrane wettability on detection performance are currently lacking. Inspired by biological aquaporins, we developed an effective strategy to regulate the hydrophilic/hydrophobic balance by the controllable in situ assembly of coordination polymers (CPs) using BDC-NH2 on anodic aluminum oxide (AAO) nanochannels to promote HCHO detection. We found that the hydrophobic/hydrophilic balance in CP/AAO heterosomes plays significant roles in the effective detection of HCHO. The hydrophobic AAO barrier layer is necessary to support the confinement effect, while the hydrophilic CP surface is favorable for HCHO to access the channels and then condense with the responsive amine to generate a new imine. The optimized CP/AAO Janus device shows excellent performance in the quantitative analysis of HCHO over a wide range from 100 pM to 1 mM by monitoring the rectified ionic current.


Subject(s)
Aquaporins , Biosensing Techniques , Aluminum Oxide/chemistry , Electrodes , Polymers
16.
Animal Model Exp Med ; 5(2): 120-132, 2022 04.
Article in English | MEDLINE | ID: mdl-35451570

ABSTRACT

BACKGROUND: We aimed to reveal the mechanism of functional constipation in the treatment of Atractylodes macrocephala Koidz. (AMK) and Paeonia lactiflora Pall. (PLP). METHODS: The main active ingredients of AMK and PLP were screened by the Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform. A database of functional constipation targets was established by GeneCard and OMIM. An "ingredient-target" network map was constructed with Cytoscape software (version 3.7.1), and molecular docking analysis was performed on the components and genes with the highest scores. The rats in the normal group were given saline, and those in the other groups were given 10 mg/kg diphenoxylate once a day for 14 days. The serum and intestinal tissue levels of adenosine monophosphate (cAMP), protein kinase A (PKA), and adenylyl cyclase (AC) of the rats and aquaporin (AQP)1, AQP3, and AQP8 were measured. RESULTS: AMK and PLP had a significant role in the regulation of targets in the treatment of functional constipation. After treatment with AMK, PLP, or mosapride, the serum and intestinal tissue levels of AC, cAMP, and PKA were significantly downregulated. Groups receiving AMK and PLP or mosapride exhibited a reduction in the level of AQP1, AQP3, and AQP8 to varying degrees. CONCLUSION: Molecular docking analysis revealed that AMK and PLP had a significant role in the regulation of targets in the treatment of functional constipation. Studies have confirmed that AMK and PLP can also affect AC, cAMP, and PKA. AC, cAMP, and PKA in model rats were significantly downregulated. AQP expression is closely related to AC, cAMP, and PKA. AMK and PLP can reduce the expression of AQP1, AQP3, and AQP9 in the colon of constipated rats.


Subject(s)
Aquaporins , Atractylodes , Paeonia , Animals , Constipation/drug therapy , Cyclic AMP-Dependent Protein Kinases/therapeutic use , Medicine, Chinese Traditional , Molecular Docking Simulation , Rats
17.
Inflammopharmacology ; 30(2): 639-653, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35257281

ABSTRACT

Asthma is a chronic inflammation of pulmonary airways associated with bronchial hyper-responsiveness. The study was aimed to validate the folkloric use of Polystichum braunii (PB) against ovalbumin (OVA)-induced asthmatic and chemical characterization OF both extracts. Allergic asthma was developed by intraperitoneal sensitization with an OVA on days 1 and 14 followed by intranasal challenge. Mice were treated with PB methanolic (PBME) and aqueous extract (PBAE) orally at 600, 300, and 150 mg/kg and using dexamethasone (2 mg/kg) as standard from day 15 to 26. High performance liquid chromatography-diode array detector analysis revealed the presence of various bioactive compounds such as catechin, vanillic acid, and quercetin. The PBME and PBAE profoundly (p < 0.0001-0.05) declined immunoglobulin E level, lungs wet/dry weight ratio, and total and differential leukocyte count in blood and bronchial alveolar lavage fluid of treated mice in contrast to disease control. Histopathological examination showed profoundly decreased inflammatory cell infiltration and goblet cell hyperplasia in treated groups. Both extracts caused significant (p < 0.0001-0.05) diminution of IL-4, IL-5, IL-13, IL-6, IL-1ß, TNF-α, and NF-κB and upregulation of aquaporins (1 and 5), which have led to the amelioration of pulmonary inflammation and attenuation of lung edema in treated mice. Both extracts profoundly (p < 0.0001-0.05) restored the activities of SOD, CAT, GSH and reduced the level of MDA dose dependently. Both extracts possessed significant anti-asthmatic action mainly PBME 600 mg/kg might be due to phenols and flavonoids and could be used as a potential therapeutic option in the management of allergic asthma.


Subject(s)
Anti-Asthmatic Agents , Aquaporins , Asthma , Polystichum , Pulmonary Edema , Animals , Anti-Asthmatic Agents/pharmacology , Aquaporins/pharmacology , Asthma/drug therapy , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Inflammation/drug therapy , Lung/metabolism , Mice , Mice, Inbred BALB C , Ovalbumin/pharmacology , Oxidative Stress , Plant Extracts , Polystichum/metabolism , Pulmonary Edema/drug therapy
18.
Environ Sci Pollut Res Int ; 29(33): 50471-50487, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35233670

ABSTRACT

The Douhe Reservoir is an important diversion water source and drinking water resource for Tianjin and the Tangshan cities. Panjiakou, Daheiting, Qiuzhuang, and the Douhe Reservoirs located from top to bottom in the LuanHe River region forming a group of cascade reservoirs. After over 30 years of aquaculture, the concentration of nitrogen (N) and phosphorus (P) have exceeded Class III of Environmental Quality Standard for Surface Water in China. We selected the Douhe Reservoir as the study site and choose sampling points in several upstream reservoirs and main reservoir area, and we collected a total of 18 water samples. Moreover, the distribution characteristics of N and P levels in flood season and dry season were studied in the Douhe Reservoir and upstream water channel, respectively. The results indicated that there were significant spatial differences between N and P distribution in the Douhe Reservoir and the upstream sites. We observed that the distribution of N and P had seasonal characteristics, and the contents of nitrate(NO3--N), nitrogen(TN), total phosphorus(TP), and total dissolved phosphorus(TDP) in flood periods were higher than those in dry periods. The microbial community structure illustrated that the dominant phylum displayed seasonal differences between the upstream channel and the reservoir area. Among them, the abundance of some genera changed with the location of the channel, the microbial community structure, and the levels of N and P, especially in flood season. Particularly, NO3--N and TN had the most significant correlation. Hence, this study presented an important theoretical foundation for the risk prevention and the control of nutrient elements in the LuanHe River basin in the future, which would enhance the drinking water safety of Tianjin and Tangshan residents.


Subject(s)
Aquaporins , Drinking Water , Microbiota , Water Pollutants, Chemical , China , Environmental Monitoring , Nitrogen/analysis , Phosphorus/analysis , Rivers , Water Pollutants, Chemical/analysis
19.
Front Biosci (Landmark Ed) ; 27(3): 83, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35345315

ABSTRACT

BACKGROUND: Dietary supplementation with L-arginine (Arg) has been shown to increase the volume of fetal fluids in gestating swine. Aquaporins (AQPs), known as water channel proteins, are essential for embryonic growth and development. It was not known if Arg mediates water transport through AQPs in porcine conceptus trophectoderm (pTr2) cells. METHODS: pTr2 cells derived from pregnant gilts on day 12 of gestation were cultured in customized Arg-free Dulbecco's modified Eagle's Ham medium (DMEM) supplemented with either 0.00, 0.25, or 0.50 mM Arg. RESULTS: Arg treatment increased water transport and the expression of AQP3, which was abundantly expressed in pTr2 cells at both the mRNA and protein levels. Arg also increased the expression of iNOS and the synthesis of nitric oxide (NO) in pTr2 cells. The presence of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME; an inhibitor of NO synthase) significantly attenuated the Arg-induced expression of AQP3. Furthermore, 0.50 mM Arg increased the concentrations of cAMP and the abundances of phosphorylated cAMP-dependent protein kinase A (PKA), phosphorylated PKA α/ß/γ, and phosphorylated CREB. These effects of Arg were mimicked by Forskolin (a cell-permeable activator of adenylyl cyclase), but inhibited by H-89 (an inhibitor of cAMP-dependent protein kinase). CONCLUSIONS: The results of this study demonstrate that Arg regulates AQP3 expression and promotes water transport in pTr2 cells through NO- and cAMP-dependent signaling pathways.


Subject(s)
Aquaporins , Nitric Oxide , Animals , Aquaporin 3/genetics , Aquaporins/genetics , Arginine/metabolism , Arginine/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Nitric Oxide/metabolism , Pregnancy , Sus scrofa/metabolism , Swine , Water/metabolism
20.
Plant Physiol Biochem ; 174: 73-86, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35151109

ABSTRACT

Progressing climate change necessitates the search for solutions of plant protection against the effects of water deficit. One of these solutions could be silicon supplementation. The aim of the study was to verify the hypothesis that silicon changes aquaporin expression and antioxidant system activity in a direction which may alleviate the effects of drought stress in oilseed rape. The accumulation of BnPIP1, BnPIP2-1-7 and BnTIP1;1 aquaporins and the expression of their genes, the level of catalase, superoxide dismutase activities and hydrogen peroxide content as well as total non-enzymatic antioxidant activity were analyzed in leaf tissue from control and silicon-treated oilseed rape plants growing under well-watered and drought conditions. Silicon was applied in two forms - pure silicon and a silicon complex. It was shown that under drought conditions, both pure silicon and the silicon complex (with Fe) significantly increased the accumulation of aquaporins and improved the activity of enzymatic and non-enzymatic components of the antioxidant system, while under well-watered conditions, these effects were observed only in the case of the silicon complex. The presented study proves that silicon supplementation in oilseed rape improves the regulation of water management and contributes to the protection against oxidative stress caused by drought.


Subject(s)
Aquaporins , Droughts , Antioxidants/metabolism , Aquaporins/metabolism , Silicon/metabolism , Silicon/pharmacology , Stress, Physiological , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL