Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 310
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Plant Physiol Biochem ; 208: 108495, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38452451

ABSTRACT

Solanum lycopersicum (Tomato) leaves and stems are considered waste. Valorization of this waste can be achieved by for example the extraction of proteins. This prospect is promising but currently not feasible, since protein extraction yields from tomato leaves are low, amongst other due to the (physical) barrier formed by the plant cell walls. However, the molecular aspects of the relationship between cell wall properties and protein extractability from tomato leaves are currently not clear and thus objective of this study. To fill this knowledge gap the biochemical composition of plant cell walls was measured and related to protein extraction yields at different plant ages, leaf positions, and across different tomato accessions, including two Solanum lycopersicum cultivars and the wildtype species S. pimpinellifolium and S. pennellii. For all genotypes, protein extraction yields from tomato leaves were the highest in young tissues, with a decreasing trend towards older plant material. This decrease of protein extraction yield was accompanied by a significant increase of arabinose and galacturonic acid content and a decrease of galactose content in the cell walls of old-vs-young tissues. This resulted in strong negative correlations between protein extraction yield and the content of arabinose and galacturonic acid in the cell wall, and a positive correlation between the content of galactose and protein extraction yield. Overall, these results point to the importance of the pectin network on protein extractability, making pectin a potential breeding target for enhancing protein extractability from tomato leaves.


Subject(s)
Hexuronic Acids , Solanum lycopersicum , Solanum lycopersicum/genetics , Arabinose , Galactose , Plant Breeding , Cell Wall/metabolism , Plant Leaves/metabolism , Pectins/metabolism
2.
Metab Eng ; 82: 274-285, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428730

ABSTRACT

Rosavin is the characteristic component of Rhodiola rosea L., an important medicinal plant used widely in the world that has been reported to possess multiple biological activities. However, the endangered status of wild Rhodiola has limited the supply of rosavin. In this work, we successfully engineered an Escherichia coli strain to efficiently produce rosavin as an alternative production method. Firstly, cinnamate: CoA ligase from Hypericum calycinum, cinnamoyl-CoA reductase from Lolium perenne, and uridine diphosphate (UDP)-glycosyltransferase (UGT) from Bacillus subtilis (Bs-YjiC) were selected to improve the titer of rosin in E. coli. Subsequently, four UGTs from the UGT91R subfamily were identified to catalyze the formation of rosavin from rosin, with SlUGT91R1 from Solanum lycopersicum showing the highest activity level. Secondly, production of rosavin was achieved for the first time in E. coli by incorporating the SlUGT91R1 and UDP-arabinose pathway, including UDP-glucose dehydrogenase, UDP-xylose synthase, and UDP-xylose 4-epimerase, into the rosin-producing stain, and the titer reached 430.5 ± 91.4 mg/L. Thirdly, a two-step pathway derived from L-arabinose, composed of L-arabinokinase and UDP-sugar pyrophosphorylase, was developed in E. coli to further optimize the supply of the precursor UDP-arabinose. Furthermore, 1203.7 ± 32.1 mg/L of rosavin was produced from D-glucose and L-arabinose using shake-flask fermentation. Finally, the production of rosavin reached 7539.1 ± 228.7 mg/L by fed-batch fermentation in a 5-L bioreactor. Thus, the microbe-based production of rosavin shows great potential for commercialization. This work provides an effective strategy for the biosynthesis of other valuable natural products with arabinose-containing units from D-glucose and L-arabinose.


Subject(s)
Disaccharides , Glucose , Rhodiola , Glucose/genetics , Glucose/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Arabinose/metabolism , Rhodiola/genetics , Rhodiola/metabolism , Xylose/metabolism
3.
Pharmacol Res ; 202: 107136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460778

ABSTRACT

CREB-regulated transcription coactivator 1 (CRTC1), a pivotal synaptonuclear messenger, regulates synaptic plasticity and transmission to prevent depression. Despite exhaustive investigations into CRTC1 mRNA reductions in the depressed mice, the regulatory mechanisms governing its transcription remain elusive. Consequently, exploring rapid but non-toxic CRTC1 inducers at the transcriptional level is important for resisting depression. Here, we demonstrate the potential of D-arabinose, a unique monosaccharide prevalent in edible-medicinal plants, to rapidly enter the brain and induce CRTC1 expression, thereby eliciting rapid-acting and persistent antidepressant responses in chronic restrain stress (CRS)-induced depressed mice. Mechanistically, D-arabinose induces the expressions of peroxisome proliferator-activated receptor gamma (PPARγ) and transcription factor EB (TFEB), thereby activating CRTC1 transcription. Notably, we elucidate the pivotal role of the acetyl-CoA synthetase short-chain family member 2 (ACSS2) as an obligatory mediator for PPARγ and TFEB to potentiate CRTC1 transcription. Furthermore, D-arabinose augments ACSS2-dependent CRTC1 transcription by activating AMPK through lysosomal AXIN-LKB1 pathway. Correspondingly, the hippocampal down-regulations of ACSS2, PPARγ or TFEB alone failed to reverse CRTC1 reductions in CRS-exposure mice, ultimately abolishing the anti-depressant efficacy of D-arabinose. In summary, our study unveils a previously unexplored role of D-arabinose in activating the ACSS2-PPARγ/TFEB-CRTC1 axis, presenting it as a promising avenue for the prevention and treatment of depression.


Subject(s)
Arabinose , PPAR gamma , Mice , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Arabinose/pharmacology , Arabinose/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain/metabolism
4.
Carbohydr Polym ; 326: 121611, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142095

ABSTRACT

Hemicellulose and pectin are noteworthy components of historical European rag papers, and have not been studied in detail so far. Rag papers were made from used textiles, and fiber-based utilities, such as ropes and bags. These had been prepared until the mid-19th century from plant-based fibers. Their polysaccharide composition could relate to their condition and history. This information can be expected to hold importance for the preservation and conservation of historical objects. We investigated a collection of rag papers of different age for their composition of non-cellulosic polysaccharides, and compared the findings with modern rag papers and wood pulps. Furthermore, a non-destructive determination of the hemicellulose and pectin content by near-infrared spectroscopy was developed. Historical rag papers had a lower hemicellulose/pectin content than pulps; the fractions of rhamnose, galactose, and arabinose were higher, while xylose was lower. In modern rag papers, xylose tended to be at the higher end of the range, which suggests a degradation of hemicelluloses/pectin over time or a change in raw materials and manufacturing. Rag papers also showed higher crystallinity than wood pulp papers. These findings provide insights into rag paper characteristics and offer potential classification methods.


Subject(s)
Polysaccharides , Xylose , Xylose/metabolism , Polysaccharides/chemistry , Pectins/metabolism , Wood/chemistry , Arabinose/analysis
5.
J Food Sci ; 88(12): 4962-4973, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37960937

ABSTRACT

This study aimed to investigate the physicochemical attributes of soluble dietary fibers (SDFs) of grape, which were isolated after enzymatic (using cellulase [0.1 MPa/60°C/30 min]), high-pressure (HP) (100 MPa/60°C/30 min), or HP-assisted enzymatic treatment (using cellulase [100 MPa/60°C/30 min]), then to evaluate textural properties, color, and microbiological load of jelly prepared using grape waste extract and either pectin or SDF types. HP-assisted enzymatic treatment increased glucose adsorption capacity by more than 50%, and the water-holding capacity of SDF more than twofold as compared to the levels measured in untreated-SDF. After treatments, glucose and galactose contents decreased, whereas fructose, mannose, xylose, arabinose, and rhamnose ratios increased. The arabinose ratio increased more than twice by the effect of HP, whereas the xylose content increased almost fivefold with HP-assisted enzymatic treatment. For the textural properties of jelly, HP-assisted enzymatic treated-SDF provided almost double values in gel strength and adhesiveness than those contributed by untreated-SDF. It was followed by HP-treated SDF jelly. The results showed that HP-assisted enzymatic treatment developed more similar outcomes with enzymatic treatment, rather than HP treatment alone. HP-assisted enzymatic hydrolysis is recommended for treating SDF for use in jelly due to its synergistic effect. PRACTICAL APPLICATION: High-pressure-assisted cellulase treatment provided the best properties to SDF for jelly. In combined treatment, impacts of cellulase treatment were more prominent than HP effects. Therefore, the use of HP assistance for enzymatic hydrolysis shortens the processing time. Moreover, the technological and functional properties (water holding, glucose adsorption capacity, and monosaccharide composition) of the combined treated-fiber can improve. In addition, the color and textural properties of the jelly prepared with this treated-fiber can be enhanced. In this way, it may be possible to obtain a good thickening agent. This material can also be an alternative to pectin.


Subject(s)
Cellulases , Vitis , Xylose , Arabinose , Dietary Fiber , Glucose , Pectins , Water
6.
Int J Biol Macromol ; 248: 125785, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37451376

ABSTRACT

Achyranthes bidentata (A. bidentata) is a famous traditional Chinese medicine (TGM) for treatment osteoporosis. Polysaccharides, a major factor for shaping the gut microbiota, are the primary ingredients of A. bidentata. However, bioactivity of A. bidentata polysaccharide on human gut microbiota (HGM) remains unknown. Here, a homogeneous pectic polysaccharide A23-1 with average molecular weight of 93.085 kDa was extracted and purified from A. bidentata. And A23-1 was compsed of rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose in a molar ratio of 7.26: 0.76: 5.12: 2.54: 23.51: 60.81. GC-MS, partial acid hydrolysis and NMR results indicated the backbone of A23-1 was composed of 1, 2, 4-Rhap and 1, 4-GlapA, while the branches were composed of galactose, arabinose, glucose and glucuronic acid. Further, A23-1 was found to be degraded into monosaccharides and fragments. Taking Bacteroides thetaiotaomicron (BT) as a model, we suggested three polysaccharide utilization loci (PULs) might be involved in the A23-1 degradation. Degraded products generated by BO might not support the growth of probiotics. Besides, acetate and propionate as the main end products were generated by Bacteroides spp. and probiotics utilizing A23-1. These findings suggested A23-1 was possible one of food sources of human gut Bacteroides spp.


Subject(s)
Achyranthes , Bacteroides thetaiotaomicron , Humans , Pectins , Achyranthes/chemistry , Galactose , Arabinose/metabolism , Polysaccharides/chemistry , Bacteroides thetaiotaomicron/metabolism , Glucose , Glucuronic Acid
7.
Curr Microbiol ; 80(8): 266, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400738

ABSTRACT

A study was undertaken to determine the effects of a strain of Arthrobacter sp., a Plant Growth-Promoting Bacteria (PGPB), on plant phenology and qualitative composition of Opuntia ficus-indica (L.) Mill. fruits and cladodes. The strain was inoculated in soil, and its effects on cactus pear plants were detected and compared to nontreated plants. Compared to the latter, the treatment with bacteria promoted an earlier plant sprouting (2 months before the control) and fruitification, ameliorating fruit quality (i.e., improved fresh and dry weight: + 24% and + 26%, respectively, increased total solid content by 30% and polyphenols concentrations by 22%). The quality and quantity of monosaccharides of cladodes were also increased by Arthrobacter sp. with a positive effect on their nutraceutical value. In summer, the mean values of xylose, arabinose, and mannose were significantly higher in treated compared to not treated plants (+ 3.54; + 7.04; + 4.76 mg/kg d.w. respectively). A similar trend was observed in autumn, when the cladodes of inoculated plants had higher contents, i.e., 33% xylose, 65% arabinose, and 40% mannose, respect to the controls. In conclusion, Arthrobacter sp. plays a role in the improvement of nutritional and nutraceutical properties of cactus pear plants due to its capabilities to promote plant growth. Therefore, these results open new perspectives in PGPB application in the agro-farming system as alternative strategy to improve cactus pear growth, yield, and cladodes quality, being the latter the main by-product to be utilized for additional industrial uses.


Subject(s)
Arthrobacter , Opuntia , Fruit , Mannose , Arabinose , Xylose , Dietary Supplements
8.
Mol Nutr Food Res ; 67(15): e2200713, 2023 08.
Article in English | MEDLINE | ID: mdl-37143438

ABSTRACT

SCOPE: Notopterygium incisum is a traditional Chinese medicine that is commonly used to treat rheumatoid arthritis. Polysaccharides from N. incisum can be one of its main active components. However, there have been little investigations on N. incisum polysaccharides. METHODS AND RESULTS: A novel polysaccharide named NIP is extracted from N. incisum with a molecular weight of 2.34 × 106  Da. NIP, composed of arabinose, galactose, glucose, and galacturonic acid, is linked by methyl esterified 1,4-linked α-galacturonic acid, 1,6-linked ß-galactose, 1,5-linked α-arabinose, and 1,4,6-linked ß- glucose. In vitro, NIP can inhibit the NO production of LPS-stimulated RAW264.7 cells. In vivo, NIP relieves toe redness and swelling of AIA rats, reduces the release of inflammatory factors in the serum, and inhibits the activation of NF-κB and JAK/STAT3 signaling pathways. In addition, NIP can effectively decrease oxidative stress, reverse intestinal flora imbalance, and promote butyric acid-producing bacteria's proliferation to exert anti-RA activity. CONCLUSION: NIP may be recommended as a functional food that can alleviate the damage of rheumatoid arthritis.


Subject(s)
Apiaceae , Arthritis, Rheumatoid , Rats , Animals , Arabinose , Galactose , Apiaceae/chemistry , Polysaccharides/chemistry
9.
J Agric Food Chem ; 71(4): 2105-2112, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36668901

ABSTRACT

Sugar beet pectins (SBPs) are known for their emulsifying properties, but it is yet unknown which structural elements are most important for functionality. Recent results indicated that the arabinose content has a decisive influence, but the approach applied did not allow causality to be established. In this study, a mostly intact SBP was selectively modified and the obtained pectins were analyzed for their molecular structure and their emulsifying properties. De-esterification only resulted in a moderate increase in droplet size. The length of the pectin backbone only influenced the emulsifying properties when the homogalacturonan backbone was cleaved to a higher extent. By using different arabinan-modifying enzymes, it was demonstrated that both higher portions and chain lengths of arabinans positively influence the emulsifying properties of SBPs. Therefore, we were able to refine the structure-function relationships for acid-extracted SBPs, which can be used to optimize extraction conditions.


Subject(s)
Beta vulgaris , Esterification , Beta vulgaris/chemistry , Pectins/chemistry , Arabinose
10.
Food Chem ; 401: 134156, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36099826

ABSTRACT

Influences of conventional thermal and innovative non-thermal extraction methods on the physicochemical characteristics and properties of pectic polysaccharides from Choerospondias axillaris peels were investigated. Results showed that ultrasound-assisted extracted polysaccharides (UP) had a heterogeneous nature with lower molecular weight (127.7 kDa) and lower neutral sugar content (35.1%) but higher contents of protein (4.8%) and phenolic compounds (5.1%) than those of polysaccharides extracted by hot water (HP). Additionally, the monosaccharide composition results showed that glucose (77.8%) was the most abundant monosaccharide in HP, while arabinose (67.1%) was the most abundant monosaccharide in UP. The ultrasound significantly induced the degradation of polysaccharide chains but reduced the thermal degradation of phenolics. Finally, we found that UP had higher apparent viscosity, interfacial, emulsifying and antioxidant activity but lower α-glucosidase inhibition activity than those of HP. The results indicated that we could obtain polysaccharides with different functional and biological properties by using different extraction methods.


Subject(s)
Anacardiaceae , Pectins , Pectins/chemistry , Antioxidants/chemistry , alpha-Glucosidases/metabolism , Arabinose , Anacardiaceae/chemistry , Polysaccharides/chemistry , Monosaccharides , Water/chemistry , Phenols , Glucose
11.
Food Chem ; 409: 135264, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36571899

ABSTRACT

A novel bioactive polysaccharopeptide (C1) and polysaccharide (C2) with an average molecular weight of 180 kDa and 70 kDa were isolated from R. rugosa pseudofruit. The composition of the macromolecules was established using 1H NMR, FT-IR, GC-MS, SDS-PAGE coupled with enzymatic cleavage, and proteomic analyses (LC-MS). C1 was found to contain 60.56 ± 1.82 % of sugars and 21.17 ± 0.47 % of uronic acids. Its main neutral monosaccharides were arabinose, rhamnose, galactose, glucose, fucose, and mannose. C1 was found to be a polysaccharopeptide containing pectinesterase-like protein. C2 was composed of 32.85 ± 0.97 % of sugars and 48.77 ± 1.15 % of uronic acids. Its main neutral monosaccharides were galactose, glucose, rhamnose, arabinose, and mannose. A promising nutraceutical value of the polysaccharides was revealed. Assays showed strong α-glucosidase inhibitory activity of both macromolecules and considerable antiradical potential and moderate lipoxygenase inhibitory activity of the crude polysaccharide. Moreover, antiproliferative activity of C2 was observed.


Subject(s)
Galactose , Rosa , Rhamnose , Rosa/chemistry , Mannose , Arabinose , Spectroscopy, Fourier Transform Infrared , Proteomics , Monosaccharides/chemistry , Glucose , Polysaccharides/chemistry , Dietary Supplements , Uronic Acids/chemistry , Peptides/pharmacology
12.
Biomolecules ; 12(10)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36291700

ABSTRACT

Ophiopogon japonicus is widely used as a tonic herb in China. According to the origins, MaiDong of Chinese materia medica can be classified as Zhe MaiDong (Ophiopogon japonicus in Zhejiang), Chuan MaiDong (Ophiopogon japonicus in Sichuan), Duanting Shan MaiDong (Liriope muscari), and Hubei MaiDong (Liriope spicata). In terms of quality control, polysaccharides-based evaluations have not yet been conducted. In this study, microwave-assisted extraction (MAE) was used for the preparation of polysaccharides from 29 batches of MaiDong. HPSEC-MALLS-RID and HPAEC-PAD were employed to investigate their molecular parameters and compositional monosaccharides, respectively. The ability to scavenge ABTS radicals and immune promotion abilities, in terms of nitric oxide releasing and phagocytosis on RAW 264.7 macrophages, were also compared. The results showed that polysaccharides in different MaiDong varied in molecular parameters. All polysaccharides mainly contained fructose and glucose with small amounts of arabinose, mannose, galactose, and xylose. For polysaccharides of Zhe MaiDong and Chuan MaiDong, the molar ratio of Fru to Glc was roughly 15:1 and 14:1, respectively. Zhe MaiDong exhibited better antioxidant and immune promotion activity, and so did that of fibrous roots. The pharmacological activity, however, did not account for the variation in growth years. Finally, indicators for quality control based on multivariate statistical analysis included: yield, antioxidant activity, the content of fructose, and RI signal. It was concluded that MaiDong's fibrous roots had similar components to the root, and their quality was not significantly affected by growth age. This may provide some guidance for the cultivation and use of MaiDong.


Subject(s)
Materia Medica , Ophiopogon , Ophiopogon/chemistry , Antioxidants/pharmacology , Mannose , Galactose , Arabinose , Xylose , Nitric Oxide , Polysaccharides/pharmacology , Polysaccharides/analysis , Monosaccharides , Fructose , Glucose
13.
J Agric Food Chem ; 70(39): 12565-12576, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36154025

ABSTRACT

A novel homogeneous polysaccharide (LYP-S3) that promotes the M2 polarization of macrophages was obtained from large yellow tea by a bioactivity-guided sequential isolation procedure and activity evaluation in the present study. Structural characterization revealed that LYP-S3 has an average molecular weight of 28.6 kDa and is composed of rhamnose, arabinose, galactose, glucose, and galacturonic acid at the molar ratio of 8.08:11.66:11.77:3.96:58.02. The main backbone of LYP-S3 consists of →4)-α-d-GalpA-6-OMe-(1→, ß-d-GalpA-(1→, →4)-ß-d-Galp-(→1, and →ß-d-Galp-(1→, and the branches are composed of α-l-Araf-(→1, →5)-α-l-Araf-(1→, →2,4)-ß-l-Rhap-(1→, →2)-ß-l-Rhap-(1→, and →4)-ß-d-Glcp-(1→. An in vitro bioactivity evaluation assay showed that LYP-S3 remarkably reduced the expression of M1 macrophage markers and increased the expression of M2 macrophage markers. In addition, LYP-S3 inhibited adipocyte differentiation and adipogenesis in 3T3-L1 adipocytes and blocked macrophage migration toward 3T3-L1 adipocytes in the cocultures of bone-marrow-derived monocytes and 3T3-L1 adipocytes. Furthermore, LYP-S3 promoted the M2 polarization of macrophages in cocultures. These findings suggested that LYP-S3 has a potential function in preventing inflammation and obesity.


Subject(s)
Galactose , Rhamnose , Arabinose , Glucose , Macrophages , Polysaccharides/chemistry , Tea
14.
J Food Biochem ; 46(10): e14362, 2022 10.
Article in English | MEDLINE | ID: mdl-35933698

ABSTRACT

In this study, a turmeric polysaccharide (TP-0) was isolated through hot water extraction and ethanol precipitation to produce a novel active polysaccharide from turmeric other than curcuminoids. TP-0 was found to be primarily composed of eight different monosaccharides, such as galactose (15.9%), galacturonic acid (15.2%), arabinose (11.4%), and rhamnose (9.7%), which are typical rhamnogalacturonan (RG)-I sugars. When stimulated with TP-0, peritoneal macrophages secreted a variety of immunostimulatory cytokines. In addition, intravenous and oral administration of TP-0 significantly enhanced the natural killer (NK) cells and cytotoxic T lymphocyte (CTL)-mediated cytotoxicity against tumor cells. In an assay for lung cancer induced by Colon26-M3.1 carcinoma, prophylactic intravenous and oral administration of TP-0 effectively inhibited lung cancer. These findings reveal that TP-0, a typical RG-I-type polysaccharide that is isolated from turmeric, has potent anti-metastatic activities, and these activities are linked to various immunological factors such as macrophages, NK cells, and CTL. PRACTICAL APPLICATIONS: Many studies related with turmeric have only focused that a curcuminoid of turmeric has beneficial effects on human health system. Nevertheless, in this study, it was confirmed that polysaccharide isolated from turmeric showed potent anti-cancer effects via activities of various immunological factors such as macrophages, NK cells, and CTL. These results suggest the high potential for development value of turmeric as a new candidate for immunostimulating-related health functional food ingredients.


Subject(s)
Food Ingredients , Lung Neoplasms , Arabinose , Curcuma , Cytokines , Diarylheptanoids , Ethanol , Galactose , Humans , Immunologic Factors/pharmacology , Polysaccharides/pharmacology , Rhamnogalacturonans , Rhamnose , Water
15.
J Agric Food Chem ; 70(32): 9908-9918, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35924862

ABSTRACT

The fruit of Fructus Mori is food and medicine, which has been demonstrated to have a significant neuroprotective effect. However, the effective constituent remains unknown. We speculate that the glycopeptide in the extract of the fruit has similar activity. To address this hypothesis, we isolated a novel pectin-like glycopeptide (FMP-6-S4) with a molecular weight of 11.23 kDa from the fruit. It contains about 20% of peptide comprising 17 amino acids and 80% glycan consisting of L-rhamnose (L-Rha), D-galactose (D-Gal), D-galacturonic acid (D-GalA), L-arabinose (L-Ara) and d-glucose (D-Glc) in molar ratios of 7.25:4.62:77.66:5.62:4.85. The backbone of the glycan part consisted of 1,4-linked α-D-GalpA and 1, 2-linked α-L-Rhap, while the branches were composed of hexenuronic acid (HexA) substituted at the C-3 position of partial galacturonic acid, and traces of galactose, glucose, and arabinose were substituted at the C-4 position of rhamnose. The in vitro experiments revealed that FMP-6-S4 might inhibit Aß42 (ß-amyloid peptides 42) aggregation and decrease Aß42 production by modulating APP (amyloid precursor protein) processing.


Subject(s)
Fruit , Pectins , Arabinose/chemistry , Fruit/chemistry , Galactose/chemistry , Glycopeptides , Pectins/chemistry , Polysaccharides/chemistry , Rhamnose
16.
Protoplasma ; 259(5): 1205-1217, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34985723

ABSTRACT

In this study, we aimed to elucidate the effect of pulp cell wall structure on fruit hardness and crispness in apples. To this end, we studied the cell wall polysaccharides in two apple varieties, "Hanfu" and "Honeycrisp," during fruit development. Compared with Hanfu, the crispness of Honeycrisp was higher, whereas its harness was lower. The intensity and distribution of immunofluorescence signals indicated that galactose and arabinose contributed to the higher hardness of Hanfu, whereas arabinose, egg-box structure, and fucosylated xyloglucans, distributed in the corners of tricellular junctions, enhanced the cell-cell adhesion and improved the crispness of Honeycrisp. Besides, fucosylated xyloglucan played an important role in promoting the formation and maintaining the strength of the cell wall skeleton and, consequently, retaining the fruit crispness. The esterification state of pectin had little effect on the fruit hardness and crispness in both varieties. Collectively, our findings provided information on the underlying mechanism of fruit texture formation in apples.


Subject(s)
Malus , Arabinose/analysis , Arabinose/metabolism , Cell Wall/metabolism , Fruit , Malus/chemistry , Malus/metabolism , Pectins/metabolism
17.
Int J Biol Macromol ; 195: 12-21, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34890634

ABSTRACT

In order to better utilize the citrus pectin (CP) resource, the crude citrus pectin (CCP), obtained from the citrus fruit canning processing waste water, was purified by cellulose DEAE-52 column, providing neutral polysaccharide CP0 and two acidic polysaccharides (CP1 and CP3). CP1 had the highest yield among the three fractions, being 44.29%. The chemical composition, structure and morphology of these pectin components were analyzed. Monosaccharide composition analysis revealed that arabinose was the most abundant composition in these pectin samples. CCP, CP1 and CP3 were mainly composed of rhamnogalacturonan-I (RG-I) regions. Compared with CP3, CCP and CP1 had longer side chains, which are mainly consisted of arabinose. FT-IR and NMR analysis indicated that α-type glycosidic bonds are the main linkage in the four pectin components. These CP samples were found to possess different conformation, but no triple-helical conformation was observed in all these CP fractions. Scanning electron microscopy revealed that CCP, CP1 and CP3 all had irregular sheet-like structures and partly porous structures. The four pectin components showed the characteristics of non-Newtonian fluids and possessed good viscoelasticity. Due to these properties, the pectin might have potential application in food industry as food thickening agent.


Subject(s)
Arabinose/isolation & purification , Citrus/chemistry , Glycosides/isolation & purification , Pectins/chemistry , Pectins/isolation & purification , Carbohydrate Sequence , Chromatography, DEAE-Cellulose , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
18.
Br Poult Sci ; 63(3): 340-350, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34781802

ABSTRACT

1. The objective of this study was to examine the influence of dietary soluble non-starch polysaccharide (sNSP) level and xylanase supplementation on productive performance, viscosity and pH along the gastrointestinal tract in laying hens. Excreta moisture content, ileal and caecal microbiota and short-chain fatty acid (SCFA) composition and apparent total tract nutrient utilisation were measured.2. Hyline Brown laying hens (n = 144) were housed individually at 25 weeks of age and allocated to one of the four wheat-based dietary treatments in a 2 × 2 factorial arrangement, consisting of two levels of sNSP (High 13.40 g/kg or Low 11.22 g/kg), with or without xylanase (0 or 12,000 BXU/kg). Birds were fed the dietary treatments for 56 d.3. Increasing dietary sNSP increased jejunum viscosity, degradability of total NSP, total tract flow of insoluble arabinose, and succinic acid concentration in the caeca (P < 0.05). Feeding high sNSP decreased excreta moisture content, total tract energy retention and free oligosaccharide, total tract flow of soluble and insoluble galactose and insoluble rhamnose and fucose, and ileal acetic and lactic acid concentrations (P < 0.05), and tended to reduce egg production (P = 0.058).4. Supplementation with xylanase resulted in reduced jejunum and ileum viscosity, caecal pH, excreta moisture, flow of soluble arabinose and glucose and insoluble arabinose and xylose, caecal concentration of Lactobacillus sp. and isobutyric and succinic acid, and ileal concentration of Bacillus sp. and total anaerobic bacteria (P < 0.05). Xylanase application also increased energy retention and insoluble and total NSP degradation, and caecal abundance of Bifidobacteria sp. and valeric acid (P < 0.05).5. These results reiterated the ability of xylanase to improve nutrient digestibility and reduce excreta moisture content in laying hens, and highlighted the importance of considering dietary sNSP level in laying hen diets.


Subject(s)
Animal Nutritional Physiological Phenomena , Chickens , Animal Feed/analysis , Animals , Arabinose , Diet/veterinary , Dietary Supplements , Digestion , Female , Gastrointestinal Tract , Nutrients , Polysaccharides , Succinic Acid , Triticum/chemistry
19.
Food Funct ; 12(20): 9855-9865, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34664579

ABSTRACT

Finger citron pomace is a cheap and renewable by-product of the citrus processing industry, representing up to 60% of the fruit biomass. In this study, a pectinase-based and ultrasonic-assisted method was firstly used to extract pectic oligosaccharides (POS) from finger citron pomace. Using the orthogonal experiment design (OED), the maximum conversion rate of up to 64.5% from pomace to POS was obtained under the extraction conditions of 0.25 mg mL-1 pectinase and 50 mg mL-1 pectin at 45 °C and pH 4.5 for 2 h. The extracted POS was then fractionated and purified to homogeneous oligosaccharides (FCPOS-1) with a molecular weight of 2.15 kDa, and the analyses of monosaccharide composition, FTIR, NMR and ESI-MS indicated that FCPOS-1 consisted of GalA and a small amount of mannose, galactose and arabinose. Multiple antioxidant activity assays in vitro revealed that FCPOS-1 possessed remarkable antioxidant properties, especially scavenging activity against DPPH radicals up to 94.07%. FCPOS-1 has the potential to be an effective natural antioxidant for applications in the food and pharmaceutical industries.


Subject(s)
Antioxidants/pharmacology , Citrus/chemistry , Oligosaccharides/isolation & purification , Oligosaccharides/pharmacology , Pectins/isolation & purification , Polygalacturonase/metabolism , Arabinose/analysis , Chemical Fractionation/methods , Fruit/chemistry , Galactose/analysis , Humans , Magnetic Resonance Spectroscopy/methods , Mannose/analysis , Molecular Weight , Spectroscopy, Fourier Transform Infrared/methods
20.
Carbohydr Polym ; 272: 118411, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34420705

ABSTRACT

In this work we have efficiently extracted and characterized pectin from different tissues of astringent (AS) and non-astringent (NAS) persimmon fruits (peel, pulp, whole fruit) for the first time. The highest pectin extraction (≥7.2%) was carried out at 80 °C, 120 min with 1.5% sodium citrate in peel of both AS and NAS persimmon samples. All persimmon pectins showed a molecular weight and galacturonic acid content upper than 328 kDa and 78%, respectively, indicating their suitability as food ingredient. Pectin extracted from AS pulp and peel tissues exhibited an enriched structure in rhamnose and arabinose, whereas the opposite behavior was observed in NAS persimmon whole fruit samples. Remarkably, both pulp tissues (AS and NAS) presented the highest levels of glucose and mannose, non-pectic carbohydrates. In addition, techno-functional assessment (zeta potential, particle size, apparent viscosity, gelation) showed the suitability of the persimmon pectins for a broad range of industrial applications.


Subject(s)
Diospyros/chemistry , Fruit/chemistry , Pectins/analysis , Arabinose/analysis , Glucose/analysis , Hexuronic Acids/analysis , Mannose/analysis , Molecular Weight , Particle Size , Rhamnose/analysis , Rheology/methods , Sodium Citrate/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL