Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.051
Filter
Add more filters

Publication year range
1.
PLoS One ; 19(3): e0300593, 2024.
Article in English | MEDLINE | ID: mdl-38517904

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a common condition that is characterized by metabolic impairments. Exercise therapy has proven effective in improving the physiological and psychological states of patients with T2DM; however, the influence of different exercise modalities on metabolic profiles is not fully understood. This study first aimed to investigate the metabolic changes associated with T2DM among patients and then to evaluate the potential physiological effects of different exercise modalities (Tai Chi and brisk walking) on their metabolic profiles. METHODS: This study included 20 T2DM patients and 11 healthy subjects. Patients were randomly allocated to either the Tai Chi or walking group to perform Dijia simplified 24-form Tai Chi or brisk walking (80-100 m/min), with 90 minutes each time, three times per week for 12 weeks, for a total of 36 sessions. The healthy group maintained daily living habits without intervention. Glycemic tests were conducted at the baseline and after 12 weeks. Serum and urine samples were collected for untargeted metabolomic analyses at baseline and 12 weeks to examine the differential metabolic profiles between T2DM and healthy subjects, and the metabolic alterations of T2DM patients before and after exercise therapy. RESULTS: Compared to the healthy group, T2DM patients exhibited metabolic disturbances in carbohydrates (fructose, mannose, galactose, glycolysis/gluconeogenesis), lipids (inositol phosphate), and amino acids (arginine, proline, cysteine, methionine, valine, leucine, and isoleucine) metabolism, including 20 differential metabolites in the serum and six in the urine. After exercise, the glycemic results showed insignificant changes. However, patients who practiced Tai Chi showed significant improvements in their post-treatment metabolic profiles compared to baseline, with nine serum and six urine metabolites, including branch-chained amino acids (BCAAs); while those in the walking group had significantly altered nine serum and four urine metabolites concerning steroid hormone biosynthesis and arachidonic acid metabolism compared to baseline. CONCLUSION: T2DM patients displayed impaired carbohydrate, lipid, and amino acid metabolism, and exercise therapy improved their metabolic health. Different modalities may act through different pathways. Tai Chi may improve disrupted BCAAs metabolism, whereas brisk walking mainly regulates steroid hormone biosynthesis and arachidonic acid metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Tai Ji , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Exercise Therapy/methods , Metabolomics , Tai Ji/methods , Hormones , Amino Acids , Arachidonic Acids , Steroids
2.
J Ethnopharmacol ; 324: 117784, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38253277

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Saussurea costus (Falc.) Lipschitz. is one of the most reputed medicinal plants as a traditional medicine in the Arab and Middle East regions in the treatment of thyroid disorders, however, more investigations are needed to fully understand its effectiveness and mechanism of action. AIM OF THE STUDY: The primary objective of the study was to assess the impact of Saussurea costus (COST) on the metabolic profiles of propylthiouracil (PTU)-induced hypothyroidism in rats. This involves a comprehensive examination of serum metabolites using UPLC/QqQ-MS analysis aiming to identify differential metabolites, elucidate underlying mechanisms, and evaluate the potential pharmacological effect of COST in restoring metabolic homeostasis. MATERIALS AND METHODS: Hypothyroidism was induced in female Sprague-Dawley rats by oral administration of propylthiouracil (PTU). UPLC/QqQ MS analysis of serum samples from normal, PTU, and PTU + COST rats was utilized for annotation of intrinsic metabolites with the aid of online Human metabolome database (HMDB) and extensive literature surfing. Multivariate statistical analyses, including orthogonal partial least squares discriminant analysis (OPLS-DA), discerned variations between the different groups. Serum levels of T3, T4 and TSH in addition to arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) levels in thyroid gland tissues; Phospholipase A2 group IIA (PLA2G2A), and lipoprotein lipase (LPL) in liver tissues were assessed by specific ELISA kits. Gene expression for key proteins of the primary evolved pathwayswere quantified by one-step qRT-PCR technique. Histopathological evaluation of thyroid gland tissue was performed by an investigator blinded to the experimental group using light microscope. RESULTS: Distinct clustering in multivariate statistical analysis models indicated significant variations in serum chemical profiles among normal, disease, and treated groups. VIP values guided the selection of differential metabolites, revealing significant changes in metabolite concentrations. Subsequent to COST treatment, 43 differential intrinsic metabolites exhibited a notable tendency to revert towards normal levels. Annotated metabolites, such as lysophosphatidylcholine (LPC), L-acetylcarnitine, gamma-glutamylserine, and others, showed differential regulation in response to PTU and subsequent S. costus treatment. Notably, 21 metabolites were associated with polyunsaturated fatty acids (PUFAs) biosynthesis, arachidonic acid (ARA) metabolism, and glycerophospholipid metabolism exhibited significant changes on conducting metabolic pathway analysis. CONCLUSIONS: COST improves PTU-induced hypothyroidism by regulating biosynthesis of PUFAs signified by n-3/n-6, ARA and glycerophospholipid metabolism. The study provides us a novel mechanism to explain the improvement of hypothyroidism and associated dyslipidemia by COST, depicts a metabolic profile of hypothyroidism, and gives us another point cut for further exploring the biomarkers and pathogenesis of hypothyroidism.


Subject(s)
Costus , Hypothyroidism , Saussurea , Humans , Rats , Animals , Propylthiouracil/toxicity , Rats, Sprague-Dawley , Hypothyroidism/chemically induced , Hypothyroidism/drug therapy , Plant Extracts/adverse effects , Glycerophospholipids , Arachidonic Acids/adverse effects
3.
J Nutr ; 154(2): 670-679, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092151

ABSTRACT

BACKGROUND: Folic acid (FA) is the oxidized form of folate found in supplements and FA-fortified foods. Most FA is reduced by dihydrofolate reductase to 5-methyltetrahydrofolate (5mTHF); the latter is the form of folate naturally found in foods. Ingestion of FA increases the plasma levels of both 5mTHF and unmetabolized FA (UMFA). Limited information is available on the downstream metabolic effects of FA supplementation, including potential effects associated with UMFA. OBJECTIVE: We aimed to assess the metabolic effects of FA-supplementation, and the associations of plasma 5mTHF and UMFA with the metabolome in FA-naïve Bangladeshi adults. METHODS: Sixty participants were selected from the Folic Acid and Creatine Trial; half received 800 µg FA/day for 12 weeks and half placebo. Plasma metabolome profiles were measured by high-resolution mass spectrometry, including 170 identified metabolites and 26,541 metabolic features. Penalized regression methods were used to assess the associations of targeted metabolites with FA-supplementation, plasma 5mTHF, and plasma UMFA. Pathway analyses were conducted using Mummichog. RESULTS: In penalized models of identified metabolites, FA-supplementation was associated with higher choline. Changes in 5mTHF concentrations were positively associated with metabolites involved in amino acid metabolism (5-hydroxyindoleacetic acid, acetylmethionine, creatinine, guanidinoacetate, hydroxyproline/n-acetylalanine) and 2 fatty acids (docosahexaenoic acid and linoleic acid). Changes in 5mTHF concentrations were negatively associated with acetylglutamate, acetyllysine, carnitine, propionyl carnitine, cinnamic acid, homogentisate, arachidonic acid, and nicotine. UMFA concentrations were associated with lower levels of arachidonic acid. Together, metabolites selected across all models were related to lipids, aromatic amino acid metabolism, and the urea cycle. Analyses of nontargeted metabolic features identified additional pathways associated with FA supplementation. CONCLUSION: In addition to the recapitulation of several expected metabolic changes associated with 5mTHF, we observed additional metabolites/pathways associated with FA-supplementation and UMFA. Further studies are needed to confirm these associations and assess their potential implications for human health. TRIAL REGISTRATION NUMBER: This trial was registered at https://clinicaltrials.gov as NCT01050556.


Subject(s)
Dietary Supplements , Folic Acid , Adult , Humans , Food, Fortified , Choline , Arachidonic Acids
4.
Fish Shellfish Immunol ; 145: 109302, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128680

ABSTRACT

Feeding high-fat (HF) diets has been shown to cause hepatic and intestinal impairment in fish species, but the mode of action, especially the pathways involved in the intestine, has not been determined yet. In this study, the effects of resveratrol (RES) supplementation on the intestinal structure, microbial flora, and fat metabolism in red tilapia (Oreochromis niloticus) were determined. The results showed RES maintained the structural integrity of the intestine and significantly increased the number of goblet cells in the midgut. RES significantly induced interferon (IL)-1ß, IL-6, IL-10, and tumor necrosis factor (TNF)-α, serumal and fecal trimetlylamine oxide (TMAO) and lipopolysaccharides (LPS), intestinal acetic acid levels. However, the concentrations of bound bile acids increased in HF-fed red tilapia. Atp5fa1 and Pafah1b3 significantly increased, Pmt and Acss2 significantly decreased, respectively, with RES supplementation, which was alleviated and retained at the same level in the selisistat (EX527) group. While for transcriptome and proteomics results, RES was found to promote fatty acid ß-oxidation and arachidonic acid metabolism associated with the peroxisome proliferator-activated receptor (PPAR) signaling pathway. The next validation experiment showed some genes related to apoptosis and fatty acid metabolism pathways were altered by RES supplementation. Namely, sn6, loc100702698, new_14481, and prkaa1 were upregulated, while ffrs1, ap3s1, and loc100705861 were downregulated. RES significantly increased Planctomycetes and Verrucomicrobia while decreased Moonvirus, Citrobacter, and Pseudomonas. Akkermansia and Fusobacterium significantly increased and Aeromonas significantly decreased. Thus, unsaturated fatty acid biosynthesis significantly increased and carbohydrate/energy metabolism decreased. To conclude, RES enabled the body to complete fatty acid ß-oxidation and arachidonic acid metabolism, whereas the addition of inhibitors increased the expression of the phagosome transcriptome and reduced fatty acid ß-oxidative metabolism.


Subject(s)
Cichlids , Tilapia , Animals , Tilapia/metabolism , Cichlids/metabolism , Diet, High-Fat , Resveratrol/metabolism , Lipid Metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/pharmacology , Intestines , Signal Transduction , Fatty Acids/metabolism , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Diet , Dietary Supplements , Animal Feed/analysis
5.
Biol Open ; 12(8)2023 08 15.
Article in English | MEDLINE | ID: mdl-37566396

ABSTRACT

Low colostrum intake relates to poorer health and infertility in swine. We previously connected vaginal lipid profiles at weaning to fertility of sows. We hypothesized vaginal lipidome varied with colostrum intake. Our objective was to determine whether indicators of colostrum intake, immunocrit (IM) and weight gain 24 h postnatal (PN), related to vaginal lipids at d21 PN. Gilts (n=60) were weighed and blood sampled to measure IM. On d21 PN vaginal swabs were taken and lipids measured using multiple reaction monitoring. Abundance of multiple lipids differed (P<0.05) between gilts categorized as high versus low IM and high versus low 24 h gain. The abundance of multiple lipids correlated with IM and 24 h gain. Phosphatidylcholine PC(36:3), PC(36:2), and arachidonic acid (C20:4) positively (P<0.05) correlated with IM. The ether lipid PCo(38:6) and multiple cholesteryl esters negatively (P<0.05) correlated with IM. ROC analysis indicated arachidonic acid and docosanoic acid (C22:0) may serve as excellent biomarkers that distinguish between high and low IM. Similar to gilts found to be infertile, lipid profiles of low colostrum intake animals had greater abundance of very long chain fatty acids, lipids with high levels of unsaturation, and cholesteryl esters, which are metabolized in peroxisomes indicating their potential dysfunction.


Subject(s)
Cholesterol Esters , Colostrum , Pregnancy , Swine , Animals , Female , Colostrum/metabolism , Cholesterol Esters/metabolism , Peroxisomes , Diet/veterinary , Arachidonic Acids/metabolism
6.
FASEB J ; 37(7): e22972, 2023 07.
Article in English | MEDLINE | ID: mdl-37302013

ABSTRACT

Docosahexaenoic (DHA) and arachidonic acids (ARA) are omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFAs). These molecules constitute a substantial portion of phospholipids in plasma membranes. Therefore, both DHA and ARA are essential diet components. Once consumed, DHA and ARA can interact with a large variety of biomolecules, including proteins such as insulin and α-synuclein (α-Syn). Under pathological conditions known as injection amyloidosis and Parkinson's disease, these proteins aggregate forming amyloid oligomers and fibrils, toxic species that exert high cell toxicity. In this study, we investigate the role of DHA and ARA in the aggregation properties of α-Syn and insulin. We found that the presence of both DHA and ARA at the equimolar concentrations strongly accelerated aggregation rates of α-Syn and insulin. Furthermore, LCPUFAs substantially altered the secondary structure of protein aggregates, whereas no noticeable changes in the fibril morphology were observed. Nanoscale Infrared analysis of α-Syn and insulin fibrils grown in the presence of both DHA and ARA revealed the presence of LCPUFAs in these aggregates. We also found that such LCPUFAs-rich α-Syn and insulin fibrils exerted significantly greater toxicities compared to the aggregates grown in the LCPUFAs-free environment. These findings show that interactions between amyloid-associated proteins and LCPUFAs can be the underlying molecular cause of neurodegenerative diseases.


Subject(s)
Fatty Acids, Omega-3 , Parkinson Disease , Humans , alpha-Synuclein/metabolism , Insulin , Amyloid/toxicity , Amyloid/chemistry , Fatty Acids, Unsaturated , Amyloidogenic Proteins , Arachidonic Acids
7.
Int Arch Allergy Immunol ; 184(7): 681-691, 2023.
Article in English | MEDLINE | ID: mdl-36996769

ABSTRACT

INTRODUCTION: Eczema is a common allergic skin condition among children and adolescents, and polyunsaturated fatty acids (PUFAs) are a kind of fatty acid which were reported to be associated with reduced risk of eczema. Previous studies explored different types of PUFAs with various age groups of children and adolescents, and the influence of confounding factors such as medicine use was not considered. In the present study, we aimed to identify the associations between PUFAs and the risk of eczema in children and adolescents. These findings of our study might help better understand the associations between PUFAs and eczema. METHODS: This cross-sectional study collected the data of 2,560 children and adolescents aged 6-19 years from National Health and Nutrition Examination Surveys (NHANES) between 2005 and 2006. Total PUFA, omega-3 (n-3), including octadecatrienoic acid/18:3, octadecatrienoic acid/18:4, eicosapentaenoic acid/20:5, docosapentaenoic acid/22:5, and docosahexaenoic acid/22:6, omega-6 (n-6), including octadecatrienoic acid/18:2 and eicosatetraenoic acid/20:4, total n-3 intake, total n-6 intake, and n-3/n-6 were main variables in this study. Univariate logistic regression was applied for identifying potential confounders for eczema. Univariate and multivariate logistic regression analysis were conducted to explore the associations between PUFAs and eczema. Subgroup analysis was performed on subjects with different ages, and patients complicated with other allergic diseases, allergy, and medicine use or not. RESULTS: In total, there were 252 (9.8%) subjects who had eczema. After adjusting for confounding factors including age, race, poverty to income ratio (PIR), medicine use, hay fever, sinus infection, body mass index (BMI), serum total immunoglobulin E (IgE) antibody, and IgE, we observed that eicosatetraenoic acid/20:4 (OR = 0.17, 95% CI: 0.04-0.68) and total n-3 (OR = 0.88, 95% CI: 0.77-0.99) were linked with decreased risk of eczema in children and adolescents. Eicosatetraenoic acid/20:4 was correlated with decreased risk of eczema in participants without hay fever (OR = 0.82, 95% CI: 0.70-0.97) and medicine use (OR = 0.80, 95% CI: 0.68-0.94) or with allergy (OR = 0.75, 95% CI: 0.59-0.94). Total n-3 intake was associated with a reduced risk of eczema with the adjusted OR of 0.84, 95% CI: 0.72-0.98) in participants without hay fever. In those without sinus infection, octadecatrienoic acid/18:4 was linked with decreased risk of eczema (OR = 0.83, 95% CI: 0.69-0.99). CONCLUSION: N-3 and eicosatetraenoic acid/20:4 might be associated with the risk of eczema in children and adolescents.


Subject(s)
Eczema , Fatty Acids, Omega-3 , Hypersensitivity , Rhinitis, Allergic, Seasonal , Humans , Child , Adolescent , Rhinitis, Allergic, Seasonal/complications , Nutrition Surveys , Cross-Sectional Studies , Eczema/epidemiology , Eczema/etiology , Immunoglobulin E , Arachidonic Acids
8.
Curr Med Chem ; 30(21): 2463-2474, 2023.
Article in English | MEDLINE | ID: mdl-35532255

ABSTRACT

BACKGROUND: Yi-Jing decoction (YJD), a traditional Chinese medicine prescription, has been reported to be effective in the treatment of polycystic ovary syndrome (PCOS). However, the underlying mechanisms of YJD in treating PCOS are still unclear. OBJECTIVE: In the present work, the effective ingredients of YJD and their treatment mechanisms on PCOS were systematically analyzed. METHODS: The effective ingredients of YJD and targets of PCOS were selected from public databases. The network pharmacology method was used to analyze the ingredients, potential targets, and pathways of YJD for the treatment of PCOS. RESULTS: One hundred and three active ingredients were identified from YJD, of which 82 were hit by 65 targets associated with PCOS. By constructing the disease-common targetcompound network, five ingredients (quercetin, arachidonate, beta-sitosterol, betacarotene, and cholesterol) were selected out as the key ingredients of YJD, which can interact with the 10 hub genes (VEGFA, AKT1, TP53, ALB, TNF, PIK3CA, IGF1, INS, IL1B, PTEN) against PCOS. These genes are mainly involved in prostate cancer, steroid hormone biosynthesis, and EGFR tyrosine kinase inhibitor resistance pathways. In addition, the results of molecular docking showed that the ingredients of YJD have a good binding affinity with the hub genes. CONCLUSION: These results demonstrate that the treatment of PCOS by YJD is through regulating the levels of androgen and insulin and improving the inflammatory microenvironment.


Subject(s)
Drugs, Chinese Herbal , Polycystic Ovary Syndrome , Female , Male , Humans , Molecular Docking Simulation , Network Pharmacology , Polycystic Ovary Syndrome/drug therapy , Arachidonic Acids , Databases, Factual , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Tumor Microenvironment
9.
J Ethnopharmacol ; 300: 115723, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36115600

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaojin Pills (XJPs), which has the function of dissipating knots and dispersing swelling, removing blood stasis, and relieving pain, is a classic prescription for the treatment of mammary glands hyperplasia. It is also the first choice of Chinese patent medicine for the clinical treatment of mammary glands hyperplasia in contemporary traditional Chinese medicine clinics. Previous studies have shown that the efficacy of XJPs "taken orally after soaked with Chinese Baijiu" in tradition was significantly better than that of taking it orally with water in modern in terms of activating the blood, anti-inflammation, analgesia, anti-mammary gland hyperplasia, anti-breast cancer and its metastasis in vitro and in vivo, especially under low-dose conditions. However, the material basis for the difference in efficacy between XJP&B and XJP&W is still unclear. AIM OF THE STUDY: To analyze the material basis of the significant difference in efficacy between XJP&B and XJP&W from the perspective of serum pharmacochemistry and pharmacokinetics, and clarified the scientific connotation of XJPs "taken orally after soaked with Chinese Baijiu". MATERIALS AND METHODS: Ultra-high performance liquid chromatography-mass spectrometry combined with a multivariate statistical analysis method were used to screen the differential components in the Chinese Baijiu extract and the water extract of XJPs and the corresponding residues, so as to clarify the differential components between XJP&B and XJP&W in vitro. The migrating components in the blood after XJP&B and XJP&W were characterized by serum pharmacochemical methods, in order to clarify the differential components in rats. The pharmacokinetic parameters of the representative components absorbed into the blood were compared between XJP&B and XJP&W by the pharmacokinetics study method, in order to determine the dynamic changes of the representative components in rats. RESULTS: The identification results of different components in vitro showed that there were 34 and 12 different compounds between the Chinese Baijiu extract and water extract of XJPs, and the residues after Chinese Baijiu extraction and water extraction, respectively. The content of different components such as arachidonic acid, ursolic acid, 3-acetyl-11-keto-ß-boswellic acid, 2α-hydroxyursolic acid, and oleanolic acid was higher in the Chinese Baijiu extract, which was more than twice the content in the water extract. The results of the serum pharmacochemistry study indicated that 42 prototype components were identified in the serum of rats after XJP&B and XJP&W, including organic acids, alkaloids, steroids, and terpenoids. And XJP&B increased the absorption of the prototype components of organic acids in XJPs into the blood. The pharmacokinetic study results of representative components demonstrated that the mean plasma concentration-time profile and pharmacokinetic parameters of muscone, aconitine, and 3-acetyl-11-keto-ß-boswellic acid were significantly different between XJP&B and XJP&W. Compared with XJP&W, the Cmax and AUC0-t of muscone and aconitine in XJP&B were higher, and the T1/2 and MRT0-t of 3-acetyl-11-keto-ß-boswellic acid in XJP&B were relatively longer. CONCLUSION: This research proved that "taking XJPs orally after being soaked with Chinese Baijiu" can increase the dissolution and absorption of active ingredients in XJPs, increase the plasma concentration and content of representative ingredients, and prolong its action time, thus enhancing the biological activity of XJPs in vitro and in vivo. To a certain extent, this study revealed the material basis of the significantly better efficacy of XJP&B than XJP&W and clarified the scientific connotation of XJPs "taken orally after soaked with Chinese Baijiu", which can provide a theoretical basis for the optimization of XJPs' clinical administration method.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Oleanolic Acid , Aconitine/analysis , Animals , Arachidonic Acids , China , Chromatography, High Pressure Liquid/methods , Cycloparaffins , Drugs, Chinese Herbal/chemistry , Hyperplasia , Nonprescription Drugs , Oleanolic Acid/analysis , Rats , Triterpenes , Water
10.
Metabolomics ; 18(11): 84, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289122

ABSTRACT

INTRODUCTION: Phytoestrogens found in soy, fruits, peanuts, and other legumes, have been identified as metabolites capable of providing beneficial effects in multiple pathological conditions due to their ability to mimic endogenous estrogen. Interestingly, the health-promoting effects of some phytoestrogens, such as isoflavones, are dependent on the presence of specific gut bacteria. Specifically, gut bacteria can metabolize isoflavones into equol, which has a higher affinity for endogenous estrogen receptors compared to dietary isoflavones. We have previously shown that patients with multiple sclerosis (MS), a neuroinflammatory disease, lack gut bacteria that are able to metabolize phytoestrogen. Further, we have validated the importance of both isoflavones and phytoestrogen-metabolizing gut bacteria in disease protection utilizing an animal model of MS. Specifically, we have shown that an isoflavone-rich diet can protect from neuroinflammatory diseases, and that protection was dependent on the ability of gut bacteria to metabolize isoflavones into equol. Additionally, mice on a diet with isoflavones showed an anti-inflammatory response compared to the mice on a diet lacking isoflavones. However, it is unknown how isoflavones and/or equol mediates their protective effects, especially their effects on host metabolite levels. OBJECTIVES: In this study, we utilized untargeted metabolomics to identify metabolites found in plasma that were modulated by the presence of dietary isoflavones. RESULTS: We found that the consumption of isoflavones increased anti-inflammatory monounsaturated fatty acids and beneficial polyunsaturated fatty acids while reducing pro-inflammatory glycerophospholipids, sphingolipids, phenylalanine metabolism, and arachidonic acid derivatives. CONCLUSION: Isoflavone consumption alters the systemic metabolic landscape through concurrent increases in monounsaturated fatty acids and beneficial polyunsaturated fatty acids plus reduction in pro-inflammatory metabolites and pathways. This highlights a potential mechanism by which an isoflavone diet may modulate immune-mediated disease.


Subject(s)
Isoflavones , Animals , Mice , Isoflavones/pharmacology , Isoflavones/metabolism , Equol/metabolism , Phytoestrogens/metabolism , Lipid Metabolism , Receptors, Estrogen/metabolism , Phenylalanine/metabolism , Metabolomics , Estrogens , Bacteria/metabolism , Inflammation/drug therapy , Fatty Acids, Monounsaturated , Sphingolipids , Glycerophospholipids , Arachidonic Acids
11.
Gene ; 846: 146856, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36067864

ABSTRACT

Dysregulation of lipid metabolism and diabetes are risk factors for nonalcoholic fatty liver disease (NAFLD), and the gut-liver axis and intestinal microbiome are known to be highly associated with the pathogenesis of this disease. In Japan, the traditional medicine daisaikoto (DST) is prescribed for individuals affected by hepatic dysfunction. Herein, we evaluated the therapeutic potential of DST for treating NAFLD through modification of the liver and stool metabolome and microbiome by using STAM mice as a model of NAFLD. STAM mice were fed a high-fat diet with or without 3 % DST for 3 weeks. Plasma and liver of STAM, STAM with DST, and C57BL/6J ("Normal") mice were collected at 9 weeks, and stools at 4, 6, and 9 weeks of age. The liver pathology, metabolome and stool microbiome were analyzed. DST ameliorated the NAFLD activity score of STAM mice and decreased the levels of several liver lipid mediators such as arachidonic acid and its derivatives. In normal mice, nine kinds of family accounted for 94.1 % of microbiome composition; the total percentage of these family was significantly decreased in STAM mice (45.6 %), and DST administration improved this imbalance in microbiome composition (65.2 %). In stool samples, DST increased ursodeoxycholic acid content and altered several amino acids, which were correlated with changes in the gut microbiome and liver metabolites. In summary, DST ameliorates NAFLD by decreasing arachidonic acid metabolism in the liver; this amelioration seems to be associated with crosstalk among components of the liver, intestinal environment, and microbiome.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Amino Acids/metabolism , Animals , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Arachidonic Acids/therapeutic use , Diet, High-Fat/adverse effects , Disease Models, Animal , Drugs, Chinese Herbal , Gastrointestinal Microbiome/physiology , Japan , Lipids/pharmacology , Liver/metabolism , Medicine, Traditional , Metabolome , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , Ursodeoxycholic Acid/pharmacology
12.
J Diabetes Res ; 2022: 4587907, 2022.
Article in English | MEDLINE | ID: mdl-36147256

ABSTRACT

Introduction: Monounsaturated fatty acids (MUFA) are understood to have therapeutic and preventive effects on chronic complications associated with type 2 diabetes mellitus (T2DM); however, there are differences between individual MUFAs. Although the effects of palmitoleic acid (POA) are still debated, POA can regulate glucose homeostasis, lipid metabolism, and cytokine production, thus improving metabolic disorders. In this study, we investigated and compared the metabolic effects of POA and oleic acid (OA) supplementation on glucose and lipid metabolism, insulin sensitivity, and inflammation in a prediabetic model, the hereditary hypertriglyceridemic rat (HHTg). HHTg rats exhibiting genetically determined hypertriglyceridemia, insulin resistance, and impaired glucose tolerance were fed a standard diet. POA and OA were each administered intragastrically at a dose of 100 mg/kg b.wt. for four weeks. Results: Supplementation with both MUFAs significantly elevated insulin and glucagon levels, but only POA decreased nonfasting glucose. POA-treated rats showed elevated circulating NEFA associated with increased lipolysis, lipoprotein lipase gene expression, and fatty acid reesterification in visceral adipose tissue (VAT). The mechanism of improved insulin sensitivity of peripheral tissues (measured as insulin-stimulated lipogenesis and glycogenesis) in POA-treated HHTg rats could contribute increased circulating adiponectin and omentin levels together with elevated FADS1 gene expression in VAT. POA-supplemented rats exhibited markedly decreased proinflammatory cytokine production by VAT, which can alleviate chronic inflammation. OA-supplemented rats exhibited decreased arachidonic acid (AA) profiles and decreased proinflammatory AA-derived metabolites (20-HETE) in membrane phospholipids of peripheral tissues. Slightly increased FADS1 gene expression after OA along with increased adiponectin production by VAT was reflected in slightly ameliorated adipose tissue insulin sensitivity (increased insulin-stimulated lipogenesis). Conclusions: Our results show that POA served as a lipokine, ameliorating insulin sensitivity in peripheral tissue and markedly modulating the metabolic activity of VAT including cytokine secretion. OA had a beneficial effect on lipid metabolism and improved inflammation by modulating AA metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Prediabetic State , Adiponectin , Animals , Anti-Inflammatory Agents , Arachidonic Acids , Cytokines , Fatty Acids/metabolism , Fatty Acids, Monounsaturated/pharmacology , Fatty Acids, Monounsaturated/therapeutic use , Fatty Acids, Nonesterified , Glucagon , Glucose/metabolism , Inflammation , Insulin/metabolism , Lipoprotein Lipase , Oleic Acid/pharmacology , Prediabetic State/drug therapy , Rats
13.
J Pain ; 23(10): 1724-1736, 2022 10.
Article in English | MEDLINE | ID: mdl-35697285

ABSTRACT

Preclinical studies demonstrate opposing effects of long-chain polyunsaturated fatty acid (PUFA) metabolites on inflammation and nociception. Omega-6 (n-6) PUFAs amplify both processes while omega-3 (n-3) PUFAs inhibit them. This cross-sectional study examined relationships between PUFAs in circulating erythrocytes and 2 chronic idiopathic pain conditions: temporomandibular disorder (TMD) and low back pain in a community-based sample of 503 U.S. adults. Presence or absence of TMD and low back pain, respectively, were determined by clinical examination and by responses to established screening questions. Liquid chromatography-tandem mass spectrometry quantified PUFAs. In multivariable logistic regression models, a higher ratio of n-6/n-3 long-chain PUFAs was associated with greater odds of TMD (odds ratio ((OR) = 1.75, 95% confidence limits (CL): 1.16, 2.64) and low back pain (OR = 1.63, 95% CL: 1.07, 2.49). Higher levels of the pronociceptive n-6 long-chain arachidonic acid (AA) were associated with a greater probability of both pain conditions for women, but not men. Higher levels of the antinociceptive long-chain n-3 PUFAs eicosapentaenoic and docosahexaenoic acids were associated with a lower probability of both pain conditions for men, but not women. As systemic inflammation is not a hallmark of these conditions, PUFAs may influence idiopathic pain through other mechanisms. PERSPECTIVE: This cross-sectional clinical study found that a higher ratio of circulating n-6/n-3 long-chain PUFAs was associated with greater odds of 2 common chronic overlapping pain conditions. This suggests that the pro and antinociceptive properties of n-6 and n-3 PUFAs, respectively, influence pain independently of their well-established inflammatory pathways.


Subject(s)
Chronic Pain , Fatty Acids, Omega-3 , Low Back Pain , Temporomandibular Joint Disorders , Adult , Analgesics , Arachidonic Acids , Chronic Pain/drug therapy , Cross-Sectional Studies , Docosahexaenoic Acids , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Fatty Acids, Unsaturated , Humans , Inflammation , Low Back Pain/drug therapy , Temporomandibular Joint Disorders/drug therapy
14.
Biochem Biophys Res Commun ; 609: 9-14, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35413542

ABSTRACT

The endocannabinoid 2-arachidonoylglycerol (2AG) is an important modulator of stress responses. Its level in the brain increases in response to stress, but region-specific effects of stress on brain 2AG are not well known yet. Moreover, green nut oil (GNO), oil extracted from the seeds of Plukenetia volubilis has several health benefits, but its effects on brain 2AG levels are unknown. Therefore, we conducted this study to explore the effects of stress and GNO supplementation on 2AG levels in specific brain regions of senescence-accelerated mouse prone 8 (SAMP8). In this study, desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) revealed that water-immersion stress for three days significantly increased 2AG levels in several brain regions of SAMP8 mice, including the hypothalamus, midbrain, and hindbrain. No significant change was observed in the relative abundance of brain 2AG in stress given SAMP8 mice after eighteen days of removing stress load compared to control SAMP8 mice. GNO supplementation also increased brain 2AG in SAMP8 mice without stress load. Additionally, GNO supplementation sustained the increased brain 2AG levels in stress given SAMP8 mice after eighteen days of removing stress load. Among all brain regions, a relatively higher accumulation of 2AG was noted in the hypothalamus, midbrain, and hindbrain of GNO-fed SAMP8. Our data explored the potentiality of GNO supplementation to improve brain 2AG levels which might be used to treat anxiety and depressive behaviors.


Subject(s)
Brain , Nuts , Aging , Animals , Arachidonic Acids , Dietary Supplements , Endocannabinoids , Glycerides , Hypothalamus , Mesencephalon , Mice , Rhombencephalon
15.
J Ethnopharmacol ; 293: 115268, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35398502

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Herba Delphinii Brunoniani, a Tibetan Material Medica, derived from the aerial parts of Delphinium brunonianum Royle, possesses efficacy of cooling blood to remove apthogentic heat, and dispelling wind to arrest itching, and has been used for the treatment for liver disease according to Tibetan Medicine Theories in Shel Gong Shel Phreng. However, the mechanisms of action remain unclear. AIM OF THE STUDY: This work aimed to investigate the efficacy mechanism of Delphinium brunonianum extract (DBE) on nonalcoholic steatohepatitis (NASH), a kind of liver disease by integrating serum metabolomics and network pharmacology analysis. MATERIALS AND METHODS: In this study, NASH model mice were established by a high-fat diet. The indexes of lipid accumulation, insulin resistance, and inflammatory reaction were used to evaluate the efficacy of DBE. A combination of UHPLC-QTOF-MS based metabolomics and network pharmacology was established to illustrate the serum biomarkers of NASH mice and to demonstrate the anti-NASH mechanisms of DBE. Serum metabolomics demonstrated potential metabolites and the corresponding metabolic pathways in the efficacy of DBE. Network pharmacology screened the targets of DBE against NASH. Finally, the mechanisms of DBE against NASH were verified by in-vivo pharmacology. RESULTS: Metabolomics revealed that DBE significantly regulated the abnormal levels of twenty-two metabolites, which involved the biosynthesis of unsaturated fatty acids and steroid hormone, linoleic acid metabolism, arachidonic acid metabolism, and alpha-Linolenic acid metabolism pathways. Network pharmacology showed that DBE exhibited anti-NASH effects through regulating the targets of PTGS2, PLA2, ALOX5, ALOX15, FASN, and CYP450. Finally, united pharmacological verification result, we found that the mechanisms of DBE against NASH may be related to the regulation of the unsaturated fatty acids biosynthesis and the arachidonic acid metabolism pathway. CONCLUSIONS: Integrating serum metabolomic and network analysis, we found that DBE might inhibit the pathological process of NASH by regulating the relative targets and the metabolic pathways, which may be a potential mechanism for the anti-NASH efficacy of DBE. This integrated strategy also provided a rational way for revealing the pharmacodynamic mechanisms of multi-components, multi-targets, and multi-pathways in Traditional Chinese Medicine (TCM).


Subject(s)
Delphinium , Drugs, Chinese Herbal , Non-alcoholic Fatty Liver Disease , Animals , Arachidonic Acids , Drugs, Chinese Herbal/pharmacology , Metabolomics , Mice , Network Pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy
16.
Clin Nutr ; 41(3): 698-708, 2022 03.
Article in English | MEDLINE | ID: mdl-35158177

ABSTRACT

BACKGROUND & AIMS: Alzheimer's disease (AD) and age-related dementias represent a major and increasing global health challenge. Unhealthy diet and lifestyle can unbalance the intestinal microbiota composition and, consequently energy metabolism, contributing to AD pathogenesis. Impairment of cerebral cholesterol metabolism occurs in both aging and AD, and lipid-lowering agents have been associated to a lower risk of neurodegenerative diseases, but the link between blood lipid profile and AD remains a matter of debate. Recently, probiotics have emerged as a promising and safe strategy to manipulate gut microbiota composition and increase the host health status through a multi-level mechanism that is currently under investigation. Specifically, oral supplementation with a multi-strain probiotic formulation (SLAB51) reduced amyloid beta aggregates and brain damages in a triple transgenic mouse model of AD (3xTg-AD). Treated mice showed improved cognitive functions in response to an enrichment of gut anti-inflammatory metabolites, increased plasma concentrations of neuroprotective gut hormones, and ameliorated glucose uptake and metabolism. METHODS: This work focuses on the evaluation of the effects of SLAB51 chronic administration on lipid metabolism in 3xTg-AD mice and the respective wild-type counterpart. On this purpose, 8 weeks old mice were orally administered with SLAB51 for 4 and 12 months to analyze the plasma lipid profile (using lipidomic analyses and enzymatic colorimetric assays), along with the cerebral and hepatic expression levels of key regulators of cholesterol metabolism (through Western blotting and ELISA). RESULTS: Upon probiotics administration, cholesterol biosynthesis was inhibited in AD mice with a process involving sterol regulatory element binding protein 1c and liver X receptors mediated pathways. Decreased plasma and brain concentration of 27-hydroxycholesterol and increased brain expression of cholesterol 24S-hydroxylase indicated that alternative pathways of bile acid synthesis are influenced. The plasmatic increase of arachidonic acid in treated AD mice reflects dynamic interactions among several actors of a complex inflammatory response, in which polyunsaturated fatty acids can compete each other and simultaneously co-operate in the resolution of inflammation. CONCLUSIONS: These evidence, together with the hypocholesterolemic effects, the ameliorated fatty acids profile and the decreased omega 6/omega 3 ratio successfully demonstrated that microbiota modulation through probiotics can positively change lipid composition in AD mice, with arachidonic acid representing one important hub metabolite in the interactions among probiotic-induced lipid profile changes, insulin sensitivity, and inflammation.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/pharmacology , Animals , Arachidonic Acids/pharmacology , Humans , Inflammation/complications , Lipid Metabolism , Lipids/pharmacology , Mice
17.
Sci Rep ; 12(1): 822, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039558

ABSTRACT

Scoparone (6,7-dimethoxycoumarin) is a simple coumarin from botanical drugs of Artemisia species used in Traditional Chinese Medicine and Génépi liquor. However, its bioavailability to the brain and potential central effects remain unexplored. We profiled the neuropharmacological effects of scoparone upon acute and subchronic intraperitoneal administration (2.5-25 mg/kg) in Swiss mice and determined its brain concentrations and its effects on the endocannabinoid system (ECS) and related lipids using LC-ESI-MS/MS. Scoparone showed no effect in the forced swimming test (FST) but, administered acutely, led to a bell-shaped anxiogenic-like behavior in the elevated plus-maze test and bell-shaped procognitive effects in the passive avoidance test when given subchronically and acutely. Scoparone rapidly but moderately accumulated in the brain (Cmax < 15 min) with an apparent first-order elimination (95% eliminated at 1 h). Acute scoparone administration (5 mg/kg) significantly increased brain arachidonic acid, prostaglandins, and N-acylethanolamines (NAEs) in the FST. Conversely, subchronic scoparone treatment (2.5 mg/kg) decreased NAEs and increased 2-arachidonoylglycerol. Scoparone differentially impacted ECS lipid remodeling in the brain independent of serine hydrolase modulation. Overall, the unexpectedly potent central effects of scoparone observed in mice could have toxicopharmacological implications for humans.


Subject(s)
Brain/metabolism , Coumarins/pharmacology , Animals , Arachidonic Acid/metabolism , Arachidonic Acids/metabolism , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Biological Availability , Cognition/drug effects , Coumarins/administration & dosage , Coumarins/pharmacokinetics , Endocannabinoids/metabolism , Ethanolamines/metabolism , Glycerides/metabolism , Infusions, Parenteral , Lipid Metabolism , Male , Maze Learning/drug effects , Mice , Prostaglandins/metabolism
18.
Life Sci ; 293: 120279, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35032552

ABSTRACT

BACKGROUND: Curcumin is one of the compounds present in plants of the genus Curcuma sp., being very used not only as condiment but also with medicinal purposes. As an analgesic, papers highlight the efficacy of curcumin in the treatment of various types of pain. AIMS: In this study we evaluated the peripheral antinociceptive effect of curcumin and by which mechanisms this effect is induced. MAIN METHODS: The mice paw pressure test was used on animals which had increased pain sensitivity by intraplantar injection of carrageenan. All the drugs were administered in the right hind paw. KEY FINDINGS: Curcumin was administered to the right hind paw animals induced antinociceptive effect. Non -selective antagonist of opioid receptors naloxone reverted the antinociceptive effect induced by curcumin. Selective antagonists for µ, δ and κ opioid receptors clocinnamox, naltrindole and nor- binaltorphimine, respectively, reverted the antinociceptive effect induced by curcumin. Bestatin, enkephalinases inhibitor that degrade peptides opioids, did not change the nociceptive response. Selective antagonists for CB1 and CB2 cannabinoid receptors, AM251 and AM630, respectively, reversed the antinociceptive effect induced by curcumin. The MAFP inhibitor of the enzyme FAAH which breaks down anandamide, JZL184, enzyme inhibitor MAGL which breaks down the 2-AG, as well as the VDM11 anandamide reuptake inhibitor potentiated the antinociceptive effect of curcumin. SIGNIFICANCE: These results suggest that curcumin possibly peripheral antinociception induced by opioid and cannabinoid systems activation and possibly for endocannabinoids and opioids release.


Subject(s)
Analgesics/therapeutic use , Cannabinoid Receptor Agonists/therapeutic use , Curcumin/therapeutic use , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Receptors, Opioid/metabolism , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arachidonic Acids/pharmacology , Arachidonic Acids/therapeutic use , Cannabinoid Receptor Agonists/pharmacology , Carrageenan/toxicity , Cinnamates/pharmacology , Curcumin/pharmacology , Dose-Response Relationship, Drug , Endocannabinoids/pharmacology , Endocannabinoids/therapeutic use , Hyperalgesia/chemically induced , Male , Mice , Morphine Derivatives/pharmacology , Narcotic Antagonists/pharmacology , Pain/chemically induced , Pain/drug therapy , Pain/metabolism , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/therapeutic use
19.
Nutr Neurosci ; 25(5): 931-944, 2022 May.
Article in English | MEDLINE | ID: mdl-32954972

ABSTRACT

Aim: We aimed to investigate whether maternal malnutrition during gestation/lactation induces long-lasting changes on inflammation, lipid metabolism and endocannabinoid signaling in the adult offspring hypothalamus and the role of hypothalamic astrocytes in these changes.Methods: We analyzed the effects of a free-choice hypercaloric palatable diet (P) during (pre)gestation, lactation and/or post-weaning on inflammation, lipid metabolism and endogenous cannabinoid signaling in the adult offspring hypothalamus. We also evaluated the response of primary hypothalamic astrocytes to palmitic acid and anandamide.Results: Postnatal exposure to a P diet induced factors involved in hypothalamic inflammation (Tnfa and Il6) and gliosis (Gfap, vimentin and Iba1) in adult offspring, being more significant in females. In contrast, maternal P diet reduced factors involved in astrogliosis (vimentin), fatty acid oxidation (Cpt1a) and monounsaturated fatty acid synthesis (Scd1). These changes were accompanied by an increase in the expression of the genes for the cannabinoid receptor (Cnr1) and Nape-pld, an enzyme involved in endocannabinoid synthesis, in females and a decrease in the endocannabinoid degradation enzyme Faah in males. These changes suggest that the maternal P diet results in sex-specific alterations in hypothalamic endocannabinoid signaling and lipid metabolism. This hypothesis was tested in hypothalamic astrocyte cultures, where palmitic acid (PA) and the polyunsaturated fatty acid N-arachidonoylethanolamine (anandamide or AEA) were found to induce similar changes in the endocannabinoid system (ECS) and lipid metabolism.Conclusion: These results stress the importance of both maternal diet and sex in long term metabolic programming and suggest a possible role of hypothalamic astrocytes in this process.


Subject(s)
Cannabinoids , Endocannabinoids , Adult Children , Arachidonic Acids , Astrocytes/metabolism , Cannabinoids/metabolism , Diet , Female , Gliosis/metabolism , Humans , Hypothalamus/metabolism , Inflammation/metabolism , Lipid Metabolism , Male , Palmitic Acid/metabolism , Polyunsaturated Alkamides , Vimentin/metabolism
20.
Cell Tissue Bank ; 23(1): 93-100, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33797678

ABSTRACT

The level of the major endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are altered in several types of carcinomas, and are known to regulate tumor growth. Thusly, this study hypothesized that the HEp-2 human laryngeal squamous cell carcinoma (LSCC) cell line releases AEA and 2-AG, and aimed to determine if their exogenous supplementation has an anti-proliferative effect in vitro. In this in vitro observational study a commercial human LSCC cell line (HEp-2) was used to test for endogenous AEA and 2-AG release via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The anti-proliferative effect of AEA and 2-AG supplementation was evaluated via WST-1 proliferation assay. It was observed that the HEp-2 LSCC cell line released AEA and 2-AG; the median quantity of AEA released was 15.69 ng mL-1 (range: 14.55-15.95 ng mL-1) and the median quantity of 2-AG released was 2.72 ng -1 (range: 2.67-2.74 ng mL-1). Additionally, both AEA and 2-AG exhibited an anti-proliferative effect. The anti-proliferative effect of 2-AG was stronger than that of AEA. These findings suggest that AEA might function via a CB1 receptor-independent pathway and that 2-AG might function via a CB2-dependent pathway. The present findings show that the HEp-2 LSCC cell line releases the major endocannabinoids AEA and 2-AG, and that their supplementation inhibits tumor cell proliferation in vitro. Thus, cannabinoid ligands might represent novel drug candidates for laryngeal cancers, although functional in vivo studies are required in order to validate their potency.


Subject(s)
Endocannabinoids , Head and Neck Neoplasms , Arachidonic Acids , Cell Line , Chromatography, Liquid , Dietary Supplements , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Glycerides , Humans , Polyunsaturated Alkamides , Squamous Cell Carcinoma of Head and Neck , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL