Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Plant Foods Hum Nutr ; 79(2): 497-502, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38589624

ABSTRACT

Metabolites of the edible and medicinal plant Arctium have been shown to possess beneficial activities. The phytochemical profile of Arctium lappa is well-explored and its fruits are known to contain mainly lignans, fatty acids, and sterols. But the fruits of other Arctium species have not been thoroughly investigated. Therefore, this study compares the metabolic profiles of the fruits of A. lappa, Arctium tomentosum, and Arctium minus. Targeted metabolomics led to the putative identification of 53 metabolites in the fruit extracts, the majority of these being lignans and fatty acids. Quantification of the major lignans showed that the year of collection had a significant effect on the lignan content. Furthermore, A. lappa fruits contained lesser amounts of arctigenin but greater amounts of arctigenin glycoside than A. minus fruits. Regarding the profile of fatty acids, A. minus fruits differed from the others in the presence of linolelaidic acid.


Subject(s)
Arctium , Fatty Acids , Fruit , Lignans , Plant Extracts , Arctium/chemistry , Fruit/chemistry , Lignans/analysis , Fatty Acids/analysis , Fatty Acids/metabolism , Plant Extracts/analysis , Plant Extracts/chemistry , Furans/analysis , Furans/metabolism , Phytochemicals/analysis , Metabolome , Metabolomics
2.
Plant Foods Hum Nutr ; 79(2): 468-473, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38668914

ABSTRACT

The objective of our study was to analyse the extracts from six medicinal herb roots (marshmallow, dandelion, liquorice, angelica, burdock, and comfrey) in terms of antioxidant capacity (ABTS, DPPH) and inhibition of advanced glycation end product (AGEs) formation. The quantification of phenolic acids and flavonoids was analysed using the UHPLC-DAD-MS method. Fifteen polyphenolic compounds were detected in the studied herbs. The higher number of polyphenols were found in marshmallows (ten polyphenols), while the lowest was in comfrey (five compounds). Liquorice root revealed the highest individual phenolic concentration (382 µg/g dm) with the higher contribution of kaempferol-3-O-rutinoside. Comfrey root extract was characterised by the most abundant TPC (Total Phenolic Content) value (29.79 mg GAE/ g dm). Burdock and comfrey showed the strongest anti-AGE activity studies with the BDA-GLU model. Burdock root was also characterised by the highest anti-AGE activity in the BSA-MGO model. The highest antioxidant capacity was determined by ABTS (72.12 µmol TE/g dw) and DPPH (143.01 µmol TE/g dw) assays for comfrey extract. The p-coumaric acid content was significantly correlated with anti-AGE activity determined by the BSA-MGO model. This research sheds new light on the bioactivity of root herbs, explaining the role of p-coumaric acid in preventing diabetes.


Subject(s)
Antioxidants , Flavonoids , Glycation End Products, Advanced , Plant Extracts , Plant Roots , Plants, Medicinal , Polyphenols , Antioxidants/analysis , Antioxidants/pharmacology , Polyphenols/analysis , Polyphenols/pharmacology , Plant Roots/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/analysis , Plants, Medicinal/chemistry , Flavonoids/analysis , Flavonoids/pharmacology , Angelica/chemistry , Glycyrrhiza/chemistry , Arctium/chemistry , Propionates , Coumaric Acids/analysis , Coumaric Acids/pharmacology , Hydroxybenzoates/analysis , Chromatography, High Pressure Liquid
3.
Molecules ; 29(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474449

ABSTRACT

In this work, a novel sustainable approach was proposed for the integral valorisation of Arctium lappa (burdock) seeds and roots. Firstly, a preliminary recovery of bioactive compounds, including unsaturated fatty acids, was performed. Then, simple sugars (i.e., fructose and sucrose) and phenolic compounds were extracted by using compressed fluids (supercritical CO2 and propane). Consequently, a complete characterisation of raw biomass and extraction residues was carried out to determine the starting chemical composition in terms of residual lipids, proteins, hemicellulose, cellulose, lignin, and ash content. Subsequently, three alternative ways to utilise extraction residues were proposed and successfully tested: (i) enzymatic hydrolysis operated by Cellulases (Thricoderma resei) of raw and residual biomass to glucose, (ii) direct ethanolysis to produce ethyl levulinate; and (iii) pyrolysis to obtain biochar to be used as supports for the synthesis of sulfonated magnetic iron-carbon catalysts (Fe-SMCC) to be applied in the dehydration of fructose for the synthesis of 5-hydroxymethylfurfural (5-HMF). The development of these advanced approaches enabled the full utilisation of this resource through the production of fine chemicals and value-added compounds in line with the principles of the circular economy.


Subject(s)
Arctium , Arctium/chemistry , Lignin/chemistry , Plant Extracts/chemistry , Cellulose , Fructose
4.
Phytomedicine ; 128: 155491, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489894

ABSTRACT

BACKGROUND: Dengue and chikungunya, caused by dengue virus (DENV) and chikungunya virus (CHIKV) respectively, are the most common arthropod-borne viral diseases worldwide, for which there are no FDA-approved antivirals or effective vaccines. Arctigenin, a phenylpropanoid lignan from the seeds of Arctium lappa L. is known for its anti-inflammatory, anti-cancer, antibacterial, and immunomodulatory properties. Arctigenin's antimicrobial and immunomodulatory capabilities make it a promising candidate for investigating its potential as an anti-DENV and anti-CHIKV agent. PURPOSE: The aim of the study was to explore the anti-DENV and anti-CHIKV effects of arctigenin and identify the possible mechanisms of action. METHODS: The anti-DENV or anti-CHIKV effects of arctigenin was assessed using various in vitro and in silico approaches. Vero CCL-81 cells were infected with DENV or CHIKV and treated with arctigenin at different concentrations, temperature, and time points to ascertain the effect of the compound on virus entry or replication. In silico molecular docking was performed to identify the interactions of the compound with viral proteins. RESULTS: Arctigenin had no effects on DENV. Various time- and temperature-dependent assays revealed that arctigenin significantly reduced CHIKV RNA copy number and infectious virus particles and affected viral entry. Entry bypass assay revealed that arctigenin inhibited the initial steps of viral replication. In silico docking results revealed the high binding affinity of the compound with the E1 protein and the nsp3 macrodomain of CHIKV. CONCLUSION: This study demonstrates the in-vitro anti-CHIKV potential of arctigenin and suggests that the compound might affect CHIKV entry and replication. Further preclinical and clinical studies are needed to identify its safety and efficacy as an anti-CHIKV drug.


Subject(s)
Antiviral Agents , Arctium , Chikungunya virus , Dengue Virus , Virus Internalization , Virus Replication , Animals , Antiviral Agents/pharmacology , Arctium/chemistry , Chikungunya virus/drug effects , Chikungunya virus/physiology , Chlorocebus aethiops , Dengue Virus/drug effects , Dengue Virus/physiology , Furans/pharmacology , Lignans/pharmacology , Molecular Docking Simulation , Seeds/chemistry , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects
5.
Int J Biol Macromol ; 257(Pt 2): 128684, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086431

ABSTRACT

In this work, the effects of four different extraction methods, acid (HCl), alkali (NaOH), enzymes (cellulase/pectinase), and buffer (pH 7.0) on the physicochemical properties and functionalities of burdock pectin were systematically investigated and compared. Buffer extraction gave a low yield (2.8 %) and is therefore limited in its application. The acid treatment hydrolyzed the neutral sidechains and gave a homogalacturonan content of 72.6 %. By contrast, alkali and enzymes preserved the sidechains while degrading the polygalacturonan backbone, creating a rhamnogalacturonan-I dominant structure. The branched structure, low molecular weight, and high degree of methylation (42.3 %) contributed to the interfacial adsorption, emulsifying capacity, and cellular antioxidant activity of the enzyme-extracted product. For the acid-extracted product, the strong intramolecular electrostatic repulsion restricted the formation of a contact interface to prevent coalescence of the emulsion. In addition, they did not have sufficient reducing ends to scavenge free radicals. Although a high branching size (5.0) was adopted, the low degree of methylation (19.5 %) affected the emulsifying capacity of the alkali-extracted products. These results provide useful information for pectic polysaccharides production with tailored properties.


Subject(s)
Arctium , Arctium/chemistry , Pectins/chemistry , Polysaccharides/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Alkalies
6.
Zhongguo Zhong Yao Za Zhi ; 48(18): 5024-5031, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802844

ABSTRACT

Chemical constituents were isolated and purified from ethyl acetate fraction of Arctium lappa leaves by silica gel, ODS, MCI, and Sephadex LH-20 column chromatography. Their structures were identified with multiple spectroscopical methods including NMR, MS, IR, UV, and X-ray diffraction combined with literature data. Twenty compounds(1-20) were identified and their structures were determined as arctanol(1), citroside A(2), melitensin 15-O-ß-D-glucoside(3), 11ß,13-dihydroonopordopicrin(4), 11ß,13-dihydrosalonitenolide(5), 8α-hydroxy-ß-eudesmol(6), syringin(7), dihydrosyringin(8), 3,4,3',4'-tetrahydroxy-δ-truxinate(9),(+)-pinoresinol(10), phillygenin(11), syringaresinol(12), kaeperferol(13), quercetin(14), luteolin(15), hyperin(16), 4,5-O-dicaffeoylquinic acid(17), 1H-indole-3-carboxaldehyde(18), benzyl-ß-D-glucopyranoside(19), and N-(2'-phenylethyl) isobutyramide(20). Among them, compound 1 is a new norsesquiterpenoid, and compounds 2-5, 7-8, and 18-20 are isolated from this plant for the first time.


Subject(s)
Arctium , Arctium/chemistry , Magnetic Resonance Spectroscopy , Luteolin/analysis , Plant Leaves/chemistry
7.
BMC Plant Biol ; 23(1): 86, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36759759

ABSTRACT

BACKGROUND: Burdock is a biennial herb of Asteraceae found in Northern Europe, Eurasia, Siberia, and China. Its mature dry fruits, called Niu Bang Zi, are recorded in various traditional Chinese medicine books. With the development of sequencing technology, the mitochondrial, chloroplast, and nuclear genomes, transcriptome, and sequence-related amplified polymorphism (SRAP) fingerprints of burdock have all been reported. To make better use of this data for further research and analysis, a burdock database was constructed. RESULTS: This burdock multi-omics database contains two burdock genome datasets, two transcriptome datasets, eight burdock chloroplast genomes, one burdock mitochondrial genome, one A. tomentosum chloroplast genome, one A. tomentosum mitochondrial genome, 26 phenotypes of burdock varieties, burdock rhizosphere-associated microorganisms, and chemical constituents of burdock fruit, pericarp, and kernel at different growth stages (using UPLC-Q-TOF-MS). The wild and cultivation distribution of burdock in China was summarized, and the main active components and pharmacological effects of burdock currently reported were concluded. The database contains ten central functional modules: Home, Genome, Transcriptome, Jbrowse, Search, Tools, SRAP fingerprints, Associated microorganisms, Chemical, and Publications. Among these, the "Tools" module can be used to perform sequence homology alignment (Blast), multiple sequence alignment analysis (Muscle), homologous protein prediction (Genewise), primer design (Primer), large-scale genome analysis (Lastz), and GO and KEGG enrichment analyses (GO Enrichment and KEGG Enrichment). CONCLUSIONS: The database URL is http://210.22.121.250:41352/ . This burdock database integrates molecular and chemical data to provide a comprehensive information and analysis platform for interested researchers and can be of immense help to the cultivation, breeding, and molecular pharmacognosy research of burdock.


Subject(s)
Arctium , Plants, Medicinal , Plants, Medicinal/genetics , Arctium/genetics , Arctium/chemistry , Multiomics , Plant Breeding , Medicine, Chinese Traditional , Plant Extracts/chemistry
8.
J Ethnopharmacol ; 308: 116223, 2023 May 23.
Article in English | MEDLINE | ID: mdl-36781057

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Arctium lappa L., is a biennial plant that grows around the Eurasia. Many parts of Arctium lappa L. (roots, leaves and fruits, etc.) are medically used in different countries. Arctium lappa L. fruit, also called Arctii Fructus, is traditionally applied to dispel wind-heat, ventilate lung to promote eruption, remove toxicity substance and relieve sore throat. THE AIM OF THE REVIEW: The review aims to integrate the botany, ethnopharmacology, quality control, phytochemistry, pharmacology, derivatives and toxicity information of Arctii Fructus, so as to facilitate future research and explore the potential of Arctii Fructus as an agent for treating diseases. MATERIALS AND METHODS: Related knowledge about Arctii Fructus were acquired from Science Direct, GeenMedical, PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, Pharmacopoeia of the People's Republic of China, Doctoral and Master's thesis, ancient books, etc. RESULTS: Arctii Fructus as an herb used for medicine and food was pervasively distributed and applicated around the world. It was traditionally used to treat anemopyretic cold, dyspnea and cough, sore throat, etc. To date, more than 200 compounds have been isolated and identified from Arctii Fructus. It contained lignans, phenolic acids and fatty acids, terpenoids, volatile oils and others. Lignans, especially arctigenin and arctiin, had the extensive pharmacological effects such as anti-cancer, antiviral, anti-inflammatory activities. The ester derivatives of arctigenin had the anti-cancer, anti-Alzheimer's disease and immunity enhancing effects. Although Arctii Fructus extract had no toxicity, arctigenin was toxic at a certain dose. The alleviating effects of Arctii Fructus on chronic inflammation and ageing have been demonstrated by clinical studies. CONCLUSION: Arctii Fructus is regarded as a worthy herb with many chemical components and various pharmacological effects. Several traditional applications have been supported by modern pharmacological research. However, their action mechanisms need to be further studied. Although many chemical components were isolated from Arctii Fructus, the current research mainly focused on lignans, especially arctiin and arctigenin. Therefore, it is very important to deeply clarify the pharmacological activities and action mechanism of the compounds and make full medicinal use of the resources of Arctii Fructus.


Subject(s)
Arctium , Botany , Lignans , Pharyngitis , Humans , Ethnopharmacology , Fruit/chemistry , Arctium/chemistry , Lignans/analysis , Quality Control , Phytochemicals/analysis
9.
Biomed Pharmacother ; 158: 114104, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36516694

ABSTRACT

Arctium lappa L. is a medicinal edible homologous plant, commonly known as burdock or bardana, which belongs to the Asteraceae family. It is widely distributed throughout Northern Asia, Europe, and North America and has been utilized for hundreds of years. The roots, fruits, seeds, and leaves of A. lappa have been extensively used in traditional Chinese Medicine (TCM). A. lappa has attracted a great deal of attention due to its possession of highly recognized bioactive metabolites with significant therapeutic potential. Numerous pharmacological effects have been demonstrated in vitro and in vivo by A. lappa and its bioactive metabolites, including antimicrobial, anti-obesity, antioxidant, anticancer, anti-inflammatory, anti-diabetic, anti-allergic, antiviral, gastroprotective, hepatoprotective, and neuroprotective activities. Additionally, A. lappa has demonstrated considerable clinical efficacies and valuable applications in nanomedicine. Collectively, this review covers the properties of A. lappa and its bioactive metabolites, ethnopharmacology aspects, pharmacological effects, clinical trials, and applications in the field of nanomedicine. Hence, a significant attention should be paid to clinical trials and industrial applications of this plant with particular emphasis, on drug discovery and nanotechnology.


Subject(s)
Anti-Infective Agents , Arctium , Plants, Medicinal , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Ethnopharmacology , Arctium/chemistry , Nanomedicine , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use
10.
Chem Biodivers ; 19(11): e202200615, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36198078

ABSTRACT

Arctium lappa L., also known as burdock, is an edible wild plant which has the ability to grow in distinct environments and is considered a weed in several parts of the world. This species has great value in the biological and medical fields with its major secondary components being phenolic compounds and terpenes, substances rich in desired biological activities as antioxidant, antimicrobial, antitumor and anti-inflammatory. In addition, burdock leaves extracts have shown a modulatory effect on the complement system, which plays an important role in the development of inflammatory diseases, with an inhibitory effect on all complement pathways. Thus, natural products with those relevant activities are promising agents for healthcare applications. Therefore, the species A. lappa may represent an interesting asset for researching and developing new therapies for inflammatory afflictions.


Subject(s)
Arctium , Arctium/chemistry , Plant Extracts/chemistry , Antioxidants/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Phytochemicals/pharmacology , Phytochemicals/metabolism
11.
J Enzyme Inhib Med Chem ; 37(1): 2452-2477, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36093586

ABSTRACT

Arctium lappa L. is a prevalent medicinal herb and a health supplement that is commonly used in Asia. Over the last few decades, the bioactive component arctigenin has attracted the attention of researchers because of its anti-inflammatory, antioxidant, immunomodulatory, multiple sclerosis fighting, antitumor, and anti-leukemia properties. After summarising the research and literature on arctigenin, this study outlines the current status of research on pharmacological activity, total synthesis, and structural modification of arctigenin. The purpose of this study is to assist academics in obtaining a more comprehensive understanding of the research progress on arctigenin and to provide constructive suggestions for further investigation of this useful molecule.


Subject(s)
Arctium , Lignans , Anti-Inflammatory Agents , Arctium/chemistry , Furans/chemistry , Furans/pharmacology , Lignans/chemistry , Lignans/pharmacology
12.
Phytochem Anal ; 33(8): 1214-1224, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36131366

ABSTRACT

INTRODUCTION: The total lignans from Fructus arctii (TLFA) is a mixture of a series of lignans isolated from dried ripe fruit of Arctium lappa L. We previously reported on the pharmacological activity of TLFA that is related to diabetes. An accurate and practical TLFA quantitative analysis method for utilising it needs to be established. OBJECTIVE: This study aimed to develop an effective quantitative analysis method for assessing the TLFA quality. METHODS: A total of 11 marker components were confirmed by analysing the high-performance liquid chromatography fingerprints of 24 batches of TLFA samples. The samples were prepared from TLFA and structurally identified as lappaol H, lappaol C, arctiin, arctignan D, arctignan E, matairesinol, arctignan G, isolappaol A, lappaol A, arctigenin, and lappaol F. In the quantitative analysis of multi-components by the single-marker (QAMS) method and with arctiin as an internal reference substance, the content of these lignans in TLFA was simultaneously determined according to their relative correction factors with arctiin. RESULTS: There was no significant difference between results measured by the QAMS and traditional external standard methods. Hierarchical cluster and principal component analyses were performed to evaluate 24 TLFA batches based on the contents of 10 marker components. The results revealed that QAMS method combined with chemometric analyses could accurately measure and clearly distinguish the different quality samples of TLFA. CONCLUSION: The QAMS method is a reliable and promising quality control method for TLFA. It can provide a reference for promoting quality control of complex multi-component systems, especially for traditional Chinese medicine.


Subject(s)
Arctium , Drugs, Chinese Herbal , Lignans , Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Lignans/analysis , Arctium/chemistry , Quality Control , Drugs, Chinese Herbal/chemistry
13.
Biomed Pharmacother ; 153: 113503, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076592

ABSTRACT

Arctium lappa (A. lappa) leaves are widely used in various traditional Chinese herbal formulae to ameliorate atherosclerosis (AS) and its complications such as stroke; however, there is no literature reporting the anti-atherosclerotic effect and mechanism of A. lappa leaves thus far. In the present study, we used network pharmacology and molecular docking approaches to examine the protective effect and potential mechanism of A. lappa leaves against AS in vivo and in vitro. From the network pharmacology, PPARG, HMGCR and SREBF2 were identified as the core targets of A. lappa leaves against AS. Further enrichment analyses of GO and KEGG pathways suggested that A. lappa leaves might play an anti-AS role by regulating metabolic processes and PPAR signalling pathways. The results of molecular docking experiment revealed that the major components of A. lappa leaves interacted with cholesterol efflux-regulating core proteins (PPARG, LXRα, ABCA1, and ABCG1), AMPK and SIRT1. Both in vivo and in vitro experimental results demonstrated that treatment with A. lappa leaves significantly lowered TC and LDL-C, increased HDL-C, and reduced cholesterol accumulation in the liver and aorta of the AS rat model and the foam cell model. Importantly, both in vivo and in vitro experimental results demonstrated that A. lappa leaves regulate the activity of the PPARG/LXRα signalling and AMPK/SIRT1 signalling pathways. Moreover, after treatment with the AMPK inhibitor Compound C in vitro, the improvement induced by A. lappa leaves was significantly reversed. In conclusion, A. lappa leaves attenuated AS-induced cholesterol accumulation by targeting the AMPK-mediated PPARG/LXRα pathway and promoting cholesterol efflux.


Subject(s)
Arctium , Atherosclerosis , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , ATP Binding Cassette Transporter 1/metabolism , Animals , Arctium/chemistry , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Cholesterol/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Liver X Receptors/drug effects , Liver X Receptors/metabolism , Molecular Docking Simulation , Network Pharmacology/methods , PPAR gamma/drug effects , PPAR gamma/metabolism , Rats , Sirtuin 1/metabolism
14.
J Pharm Pharmacol ; 74(3): 321-336, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-34612502

ABSTRACT

OBJECTIVES: Fructus arctii (F. arctii) is the dried ripe fruit of Arctium lappa Willd (Asteraceae). It is being used as a traditional medicine in China, Japan, Iran, Europe, Afghanistan, India, etc. for cough, inflammation, clearing the heat, detoxification, cancer and diabetes. This review summarized the botanical description, distribution, ethnopharmacology, bioactive constituents and pharmacological actions of F. arctii including methods to assess its quality. In addition, this review also provides insights into future research directions on F. arctii to further explore its bioactive constituents, mechanism involved in pharmacological activity, and clinical use including the development of new analytical methods for assessing the quality. KEY FINDINGS: The comprehensive analysis of the literature revealed that F. arctii contains lignans, volatile oil, flavonoids, sesquiterpenoids, triterpenes, phenolic acids, etc. Experimental studies on various extracts and drug formulations showed that it has antioxidant, antimicrobial, hypoglycaemic, lipid-lowering, anti-inflammatory, analgesic, antiviral, anti-tumour activity, etc. SUMMARY: The pharmacological activity of a few major constituents in F. arctii have been identified. However, there are still need more studies and more new technologies to prove the pharmacological activity and the effective mechanism of the other constituents that undergoing uncertain. Except for the animal experiments, clinical studies should be carried out to provide the evidence for clinical application.


Subject(s)
Arctium/chemistry , Medicine, Traditional/methods , Plant Extracts/pharmacology , Animals , Ethnopharmacology , Fruit , Humans , Phytochemicals/pharmacology , Plant Extracts/chemistry
15.
Biomed Chromatogr ; 35(11): e5187, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34061396

ABSTRACT

Burdock root is the root of Arctium lappa L., a plant of the Compositae family, which has the effects of dispersing wind and heat, detoxifying and reducing swelling. In order to better control the quality of burdock root, a screening study of quality control indicators was carried out. The current research combines biological activity evaluation with chemical analysis to screen and identify the biologically active compounds of burdock root as chemical components for the quality control of herbal medicine. The efficacy of 10 batches of ethanol extracts of burdock roots was evaluated by a tumor inhibition experiment in S180 tumor-bearing mice. The five main chemical components of these extracts were simultaneously quantitatively measured by ultra-high performance liquid chromatography combined with triple quadrupole mass spectrometry. Pearson correlation analysis was used to establish the relationship between these extracts' biological activity and chemical properties. The results showed that chlorogenic acid, caffeic acid and cynarin were positively correlated with the effect of inhibiting tumor growth, and further bioassays confirmed this conclusion. In conclusion, chlorogenic acid, caffeic acid and cynarin can be used as quality control markers for burdock root's antitumor effect.


Subject(s)
Antineoplastic Agents, Phytogenic , Arctium/chemistry , Chromatography, High Pressure Liquid/methods , Plant Extracts , Tandem Mass Spectrometry/methods , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Limit of Detection , Linear Models , Mice , Neoplasms, Experimental/pathology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/standards , Plant Roots/chemistry , Reproducibility of Results
16.
Bol. latinoam. Caribe plantas med. aromát ; 20(3): 324-338, may. 2021. tab, ilus
Article in English | LILACS | ID: biblio-1343496

ABSTRACT

In this present study, we investigated the influence of various extraction methods including maceration, sonication, infusion, decoction, and microwave extraction, on the chemical and biological potential of phytochemicals extracted from three medicinal plants (Ageratum conyzoides, Plantago majorand Arctium lappa L). The results were subsequently analyzed by variance analysis. Our results suggested that sonication is the most effective extraction method among the five methods tested herein, for the extraction of phytochemicals that have a high antioxidant potential and high phenolic content. The three plants employed for this study had a high concentration of flavonoids and phenolics which was compatible with the chemosystematics of the species. All the samples possessed a Sun Protection Factor (SPF) of less than 6. Interestingly, a maximum reaction time of approximately 20 min was noted for the complexation of AlCl3 with the flavonoids present in the phytochemical extract during analyses of the kinetic parameters. We finally identified that the Ageratum conyzoides extract, prepared by sonication, possessed a significant pharmacological potential against hepatocarcinoma tumour cells, whose result can guide further studies for its therapeutic efficacy.


En el presente estudio, investigamos la influencia de varios métodos de extracción, incluyendo maceración, sonicación, infusión, decocción y extracción por microondas, sobre el potencial químico y biológico de los fitoquímicos extraídos de tres plantas medicinales (Ageratum conyzoides, Plantago majory Arctium lappa L). Los resultados se analizaron posteriormente mediante análisis de varianza. Nuestros resultados sugieren que la sonicación es el método de extracción más eficaz entre los cinco métodos aquí probados, para la extracción de fitoquímicos que tienen un alto potencial antioxidante y un alto contenido fenólico. Las tres plantas empleadas para este estudio tenían una alta concentración de flavonoides y fenólicos que era compatible con la quimiosistemática de las especies. Todas las muestras poseían un factor de protección solar (SPF) menor a 6. Curiosamente, se observó un tiempo máximo de reacción de aproximadamente 20 min para la complejación de AlCl3con los flavonoides presentes en el extracto fitoquímico durante los análisis de los parámetros cinéticos. Finalmente, identificamos que el extracto de Ageratum conyzoides, elaborado por sonicación, posee un importante potencial farmacológico frente a las células tumorales del hepatocarcinoma, cuyo resultado puede orientar nuevos estudios sobre su eficacia terapéutica.


Subject(s)
Plants, Medicinal/chemistry , Phytochemicals/isolation & purification , Phenols/isolation & purification , Plantago/chemistry , Flavonoids/isolation & purification , Cell Survival , Analysis of Variance , Ageratum/chemistry , Arctium/chemistry
17.
Molecules ; 26(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801315

ABSTRACT

Many pathologies affecting muscles (muscular dystrophies, sarcopenia, cachexia, renal insufficiency, obesity, diabetes type 2, etc.) are now clearly linked to mechanisms involving oxidative stress. In this context, there is a growing interest in exploring plants to find new natural antioxidants to prevent the appearance and the development of these muscle disorders. In this study, we investigated the antioxidant properties of Arctium lappa leaves in a model of primary human muscle cells exposed to H2O2 oxidative stress. We identified using bioassay-guided purification, onopordopicrin, a sesquiterpene lactone as the main molecule responsible for the antioxidant activity of A. lappa leaf extract. According to our findings, onopordopicrin inhibited the H2O2-mediated loss of muscle cell viability, by limiting the production of free radicals and abolishing DNA cellular damages. Moreover, we showed that onopordopicrin promoted the expression of the nuclear factor-erythroid-2-related factor 2 (Nrf2) downstream target protein heme oxygenase-1 (HO-1) in muscle cells. By using siRNA, we demonstrated that the inhibition of the expression of Nrf2 reduced the protective effect of onopordopicrin, indicating that the activation of the Nrf2/HO-1 signaling pathway mediates the antioxidant effect of onopordopicrin in primary human muscle cells. Therefore, our results suggest that onopordopicrin may be a potential therapeutic molecule to fight against oxidative stress in pathological specific muscle disorders.


Subject(s)
Antioxidants/pharmacology , Arctium/chemistry , Lactones/pharmacology , Muscle, Skeletal/drug effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , Sesquiterpenes/pharmacology , Humans , Hydrogen Peroxide/chemistry , Phytochemicals/pharmacology
18.
Phytomedicine ; 85: 153526, 2021 May.
Article in English | MEDLINE | ID: mdl-33691269

ABSTRACT

BACKGROUND: Arctium lappa L. roots are very popular cultivated vegetables, which possesses various pharmacological activities. Our previous studies have demonstrated that Arctium lappa L. roots exerted protective effects against H2O2, glutamate and N-methyl-D-aspartic acid (NMDA)-induced neuronal injury in vitro. However, whether Arctium lappa L. roots could prevent against cerebral ischemia and the underlying mechanism remain unclear. PURPOSE: The objective of the present study was to investigate the neuroprotective effects of ethyl acetate extract of Arctium lappa L. roots (EAL) and the active ingredient 4,5-O-dicaffeoyl-1-O-[4-malic acid methyl ester]-quinic acid (DCMQA) in EAL against cerebral ischemia and explore the underlying mechanism. STUDY DESIGN: The neuroprotective effects of EAL and DCMQA were investigated in rats with permanent middle cerebral artery occlusion (MCAO) and in oxygen glucose deprivation/reoxygenation (OGD/R)-stimulated SH-SY5Y cells, respectively. METHODS: The infarct volume, brain edema and neurological deficits were measured following MCAO. TUNEL and Nissl staining were performed to detect neuronal loss and apoptosis of neurons in rat brains. Cell survival was measured by MTT and LDH assay. In addition, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) levels were determined by DCFH-DA and JC-1 fluorescent probe, respectively. Hoechst 33342 staining and Annexin V-FITC/PI double staining were performed to evaluate neuronal apoptosis. The expression levels of proteins were evaluated by western blot. RESULTS: EAL reduced brain infarct volume, ameliorated brain edema and improved neurological deficits in MCAO rats. In addition, EAL inhibited oxidative stress and inflammatory responses following MCAO. Besides, active compound DCMQA alleviated cytotoxicity as well as inhibited over-production of intracellular ROS and loss of MMP induced by OGD/R in SH-SY5Y cells. Moreover, EAL and DCMQA inhibited apoptosis by decreasing the expressions of pro-apoptotic proteins including bax, cytochrome c and cleaved caspase-3 while promoting the bcl-2 expression in MCAO rats and OGD/R-stimulated neurons, respectively. In addition, DCMQA suppressed the production of autophagosomes and down-regulated expression of Beclin 1 and LC3. Furthermore, inhibiting AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway contributed to DCMQA-mediated suppression of autophagy induced by OGD/R. CONCLUSION: Our findings demonstrate that Arctium lappa L. roots protect against cerebral ischemia through inhibiting apoptosis and AMPK/mTOR-mediated autophagy in vitro and in vivo, providing a theoretical basis for the development of CQAs in Arctium lappa L. roots as neuroprotective drugs for the prevention and treatment of ischemic stroke.


Subject(s)
Apoptosis/drug effects , Arctium/chemistry , Autophagy/drug effects , Brain Ischemia/drug therapy , Neuroprotective Agents/pharmacology , Plant Preparations/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line , Cell Survival/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Oxidative Stress/drug effects , Plant Roots/chemistry , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
19.
Sci Rep ; 11(1): 5175, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664334

ABSTRACT

The prevalence of metabolic syndrome (MS) is increasing among the elderly, and new lifestyle-based treatment strategies are warranted. We conducted a randomized, double-blind controlled trial of the effects of aquatic exercise (AE) and/or consumption of burdock root extract (BE) on body composition and serum sex hormones, i.e., testosterone, estradiol, sex hormone-binding globulin (SHBG), and dehydroepiandrosterone-sulfate (DHEA-S) in elderly women with MS. The percentage of abdominal fat was decreased in the AE group. Waist circumference was increased in the control (CON) group, but not in the other groups. SHBG and estradiol levels were enhanced by both AE and BE and correlated with changes in fat-related body composition. DHEA-S levels only increased in the BE group, which was consistent with changes in lean body mass. Testosterone levels decreased in the CON group, which correlated with changes in lean body mass, skeletal muscle mass, body fat, and waist circumference. Our findings suggested that the combined AE/BE intervention exerted no synergistic and/or additive effects on any sex-related outcome measures in elderly women with MS.


Subject(s)
Exercise , Metabolic Syndrome/therapy , Obesity, Abdominal/therapy , Sex Hormone-Binding Globulin/genetics , Aged , Arctium/chemistry , Body Mass Index , Female , Gonadal Steroid Hormones/genetics , Gonadal Steroid Hormones/metabolism , Humans , Metabolic Syndrome/epidemiology , Metabolic Syndrome/pathology , Obesity, Abdominal/epidemiology , Obesity, Abdominal/genetics , Obesity, Abdominal/pathology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Roots/chemistry
20.
Molecules ; 25(21)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138135

ABSTRACT

Thymus vulgaris and Arctium lappa have been used as a folk remedy in the Iraqi Kurdistan region to deal with different health problems. The aim of the current study is to investigate the cytotoxicity of T. vulgaris and A. lappa in leukemia and multiple myeloma (MM) cell lines and determine the mode of cell death triggered by the most potent cytotoxic fractions of both plants in MM. Resazurin assay was used to evaluate cytotoxic and ferroptosis activity, apoptosis, and modulation in the cell cycle phase were investigated via Annexin V-FITC/PI dual stain and cell-cycle arrest assays. Furthermore, we used western blotting assay for the determination of autophagy cell death. n-Hexane, chloroform, ethyl acetate, and butanol fractions of T. vulgaris and A. lappa exhibited cytotoxicity in CCRF-CEM and CEM/ADR 5000 cell lines at concentration range 0.001-100 µg/mL with potential activity revealed by chloroform and ethyl acetate fractions. NCI-H929 displayed pronounced sensitivity towards T. vulgaris (TCF) and A. lappa (ACF) chloroform fractions with IC50 values of 6.49 ± 1.48 and 21.9 ± 0.69 µg/mL, respectively. TCF induced apoptosis in NCI-H929 cells with a higher ratio (71%), compared to ACF (50%) at 4 × IC50. ACF demonstrated more potent autophagy activity than TCF. TCF and ACF induced cell cycle arrest and ferroptosis. Apigenin and nobiletin were identified in TCF, while nobiletin, ursolic acid, and lupeol were the main compounds identified in ACF. T. vulgaris and A. lappa could be considered as potential herbal drug candidates, which arrest cancer cell proliferation by induction of apoptosis, autophagic, and ferroptosis.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis/drug effects , Arctium/chemistry , Autophagy/drug effects , Ferroptosis/drug effects , Leukemia , Multiple Myeloma , Plant Extracts , Plant Leaves/chemistry , Thymus Plant/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Humans , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Plant Extracts/chemistry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL