Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Country/Region as subject
Language
Affiliation country
Publication year range
1.
Am J Cardiol ; 192: 155-159, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36807131

ABSTRACT

A 39-year-old male was referred for treatment of hypertension. He had been treated for argininosuccinic aciduria since 8 months of age. Therapeutic drugs, including l-arginine, sodium phenylbutyrate, and antiepileptic drugs, had been prescribed. A detailed medical history revealed that he complained of chest discomfort under psychologic stress. A 12-lead electrocardiogram showed abnormal q waves in lead III and aVF. Transthoracic echocardiography showed hypokinesia of the left ventricular posterior wall. The patient was diagnosed with myocardial infarction because of coronary vasospastic angina by intracoronary acetylcholine provocation test. Argininosuccinic aciduria is a genetic disorder of the urea cycle caused by a deficiency of argininosuccinate lyase. Reduction of the enzymatic activity leads to a decrease in nitric oxide production, even if arginine is supplemented. Our case report supports the significance of endothelial function in the pathogenesis of coronary vasospasm.


Subject(s)
Argininosuccinic Aciduria , Coronary Vasospasm , Male , Humans , Adult , Argininosuccinic Aciduria/diagnosis , Argininosuccinic Aciduria/genetics , Argininosuccinic Aciduria/therapy , Argininosuccinate Lyase/genetics , Angina Pectoris , Arginine
2.
Genet Med ; 14(5): 501-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22241104

ABSTRACT

The urea cycle consists of six consecutive enzymatic reactions that convert waste nitrogen into urea. Deficiencies of any of these enzymes of the cycle result in urea cycle disorders (UCDs), a group of inborn errors of hepatic metabolism that often result in life-threatening hyperammonemia. Argininosuccinate lyase (ASL) catalyzes the fourth reaction in this cycle, resulting in the breakdown of argininosuccinic acid to arginine and fumarate. ASL deficiency (ASLD) is the second most common UCD, with a prevalence of ~1 in 70,000 live births. ASLD can manifest as either a severe neonatal-onset form with hyperammonemia within the first few days after birth or as a late-onset form with episodic hyperammonemia and/or long-term complications that include liver dysfunction, neurocognitive deficits, and hypertension. These long-term complications can occur in the absence of hyperammonemic episodes, implying that ASL has functions outside of its role in ureagenesis and the tissue-specific lack of ASL may be responsible for these manifestations. The biochemical diagnosis of ASLD is typically established with elevation of plasma citrulline together with elevated argininosuccinic acid in the plasma or urine. Molecular genetic testing of ASL and assay of ASL enzyme activity are helpful when the biochemical findings are equivocal. However, there is no correlation between the genotype or enzyme activity and clinical outcome. Treatment of acute metabolic decompensations with hyperammonemia involves discontinuing oral protein intake, supplementing oral intake with intravenous lipids and/or glucose, and use of intravenous arginine and nitrogen-scavenging therapy. Dietary restriction of protein and dietary supplementation with arginine are the mainstays in long-term management. Orthotopic liver transplantation (OLT) is best considered only in patients with recurrent hyperammonemia or metabolic decompensations resistant to conventional medical therapy.


Subject(s)
Argininosuccinic Aciduria/diagnosis , Argininosuccinic Aciduria/genetics , Arginine/metabolism , Arginine/therapeutic use , Argininosuccinate Lyase/genetics , Argininosuccinic Acid/blood , Argininosuccinic Acid/metabolism , Argininosuccinic Acid/urine , Argininosuccinic Aciduria/therapy , Child, Preschool , Citrulline/blood , Cognition Disorders/enzymology , Cognition Disorders/genetics , Diet, Protein-Restricted , Fumarates/metabolism , Genetic Testing , Glucose/therapeutic use , Humans , Hyperammonemia/enzymology , Hyperammonemia/genetics , Hypertension/enzymology , Hypertension/genetics , Infant , Infant, Newborn , Lipids/therapeutic use , Liver Diseases/enzymology , Liver Diseases/genetics , Liver Transplantation , Neonatal Screening , Phenylbutyrates/therapeutic use , Sodium Benzoate/therapeutic use
3.
Mol Genet Metab ; 100(1): 24-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20236848

ABSTRACT

Twenty-three patients with late onset argininosuccinate lyase deficiency (ASLD) were identified during a 27-year period of newborn screening in Austria (1:95,600, 95% CI=1:68,036-1:162,531). One additional patient was identified outside the newborn screening with neonatal hyperammonemia. Long-term outcome data were available in 17 patients (median age 13 years) ascertained by newborn screening. Patients were treated with protein restricted diet and oral arginine supplementation during infancy and childhood. IQ was average/above average in 11 (65%), low average in 5 (29%), and in the mild intellectual disability range in 1 (6%) patients. Four patients had an abnormal EEG without evidence of clinical seizures and three had abnormal liver function tests and/or evidence of hepatic steatosis. Plasma citrulline levels were elevated in four patients. Plasma ammonia levels were within normal range prior and after a protein load in all patients. Seven different mutations were identified in the 16 alleles investigated. Four mutations were novel (p.E189G, p.R168C, p.R126P, and p.D423H). All mutations were associated with low argininosuccinate lyase activities (0-15%) in red blood cells. Newborn screening might be beneficial in the prevention of chronic neurologic and intellectual sequelae in late onset ASLD, but a proportion of benign variants might have contributed to the overall favorable outcome as well.


Subject(s)
Argininosuccinic Aciduria/diagnosis , Argininosuccinic Aciduria/genetics , Adolescent , Adult , Arginine/blood , Arginine/therapeutic use , Austria , Child , Child, Preschool , Citrulline/blood , Electroencephalography , Female , Follow-Up Studies , Humans , Infant, Newborn , Male , Neonatal Screening , Treatment Outcome
4.
Article in English | WPRIM | ID: wpr-630029

ABSTRACT

Argininosuccinic aciduria is an inborn error of the urea cycle caused by deficiency of argininosuccinate lyase (ASL). ASL-deficient patients present with progressive intoxication due to accumulation of ammonia in the body. Early diagnosis and treatment of hyperammonemia are necessary to improve survival and prevent long-term handicap. Two clinical phenotypes have been recognized--neonatal acute and milder late-onset form. We investigated patients with hyperammonemia by a stepwise approach in which quantitative amino acids analysis was the core diagnostic procedure. Here, we describe the clinical phenotypes and biochemical characteristics in diagnosing this group of patients. We have identified 13 patients with argininosuccinic aciduria from 2003 till 2009. Ten patients who presented with acute neonatal hyperammonemic encephalopathy had markedly elevated blood ammonia (> 430 micromol/L) within the first few days of life. Three patients with late-onset disease had more subtle clinical presentations and they developed hyperammonemia only during the acute catabolic state at two to twelve months of age. Their blood ammonia was mild to moderately elevated (> 75-265 micromol/L). The diagnosis was confirmed by detection of excessive levels of argininosuccinate in the urine and/or plasma. They also have moderately increased levels of citrulline and, low levels of arginine and ornithine in their plasma. Two patients succumbed to the disease. To date, eleven patients remained well on a dietary protein restriction, oral ammonia scavenging drugs and arginine supplementation. The majority of them have a reasonable good neurological outcome.


Subject(s)
Age of Onset , Amino Acids/analysis , Argininosuccinic Acid/blood , Argininosuccinic Acid/urine , Argininosuccinic Aciduria/diagnosis , Argininosuccinic Aciduria/metabolism , Argininosuccinic Aciduria/physiopathology , Malaysia , Phenotype
5.
Malays J Pathol ; 32(2): 87-95, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21329179

ABSTRACT

Argininosuccinic aciduria is an inborn error of the urea cycle caused by deficiency of argininosuccinate lyase (ASL). ASL-deficient patients present with progressive intoxication due to accumulation of ammonia in the body. Early diagnosis and treatment of hyperammonemia are necessary to improve survival and prevent long-term handicap. Two clinical phenotypes have been recognized--neonatal acute and milder late-onset form. We investigated patients with hyperammonemia by a stepwise approach in which quantitative amino acids analysis was the core diagnostic procedure. Here, we describe the clinical phenotypes and biochemical characteristics in diagnosing this group of patients. We have identified 13 patients with argininosuccinic aciduria from 2003 till 2009. Ten patients who presented with acute neonatal hyperammonemic encephalopathy had markedly elevated blood ammonia (> 430 micromol/L) within the first few days of life. Three patients with late-onset disease had more subtle clinical presentations and they developed hyperammonemia only during the acute catabolic state at two to twelve months of age. Their blood ammonia was mild to moderately elevated (> 75-265 micromol/L). The diagnosis was confirmed by detection of excessive levels of argininosuccinate in the urine and/or plasma. They also have moderately increased levels of citrulline and, low levels of arginine and ornithine in their plasma. Two patients succumbed to the disease. To date, eleven patients remained well on a dietary protein restriction, oral ammonia scavenging drugs and arginine supplementation. The majority of them have a reasonable good neurological outcome.


Subject(s)
Argininosuccinic Aciduria/diagnosis , Argininosuccinic Aciduria/metabolism , Argininosuccinic Aciduria/physiopathology , Age of Onset , Amino Acids/analysis , Argininosuccinic Acid/blood , Argininosuccinic Acid/urine , Female , Humans , Infant , Infant, Newborn , Malaysia , Male , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL