Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Plant Cell Physiol ; 61(9): 1631-1645, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32618998

ABSTRACT

Methionine sulfoxide reductase B (MsrB) is involved in oxidative stress or defense responses in plants. However, little is known about its role in legume-rhizobium symbiosis. In this study, an MsrB gene was identified from Astragalus sinicus and its function in symbiosis was characterized. AsMsrB was induced under phosphorus starvation and displayed different expression patterns under symbiotic and nonsymbiotic conditions. Hydrogen peroxide or methyl viologen treatment enhanced the transcript level of AsMsrB in roots and nodules. Subcellular localization showed that AsMsrB was localized in the cytoplasm of onion epidermal cells and co-localized with rhizobia in nodules. Plants with AsMsrB-RNAi hairy roots exhibited significant decreases in nodule number, nodule nitrogenase activity and fresh weight of the aerial part, as well as an abnormal nodule and symbiosome development. Statistical analysis of infection events showed that plants with AsMsrB-RNAi hairy roots had significant decreases in the number of root hair curling events, infection threads and nodule primordia compared with the control. The content of hydrogen peroxide increased in AsMsrB-RNAi roots but decreased in AsMsrB overexpression roots at the early stage of infection. The transcriptome analysis showed synergistic modulations of the expression of genes involved in reactive oxygen species generation and scavenging, defense and pathogenesis and early nodulation. In addition, a candidate protein interacting with AsMsrB was identified and confirmed by bimolecular fluorescence complementation. Taken together, our results indicate that AsMsrB plays an essential role in nodule development and symbiotic nitrogen fixation by affecting the redox homeostasis in roots and nodules.


Subject(s)
Astragalus Plant/physiology , Mesorhizobium/physiology , Methionine Sulfoxide Reductases/physiology , Plant Proteins/physiology , Symbiosis , Astragalus Plant/enzymology , Astragalus Plant/genetics , Astragalus Plant/microbiology , Conserved Sequence/genetics , Gene Expression Profiling , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Nitrogen Fixation , Oxidative Stress , Phosphorus/deficiency , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Root Nodulation/physiology , Plant Roots/metabolism , Plant Roots/microbiology , Root Nodules, Plant/ultrastructure , Sequence Alignment , Symbiosis/physiology
2.
Zhongguo Zhong Yao Za Zhi ; 43(18): 3662-3667, 2018 Sep.
Article in Chinese | MEDLINE | ID: mdl-30384530

ABSTRACT

Astragalus membranaceus pathogenesis-related protein 10 (AmPR-10) is largely expressed in case of environmental pressure and pathogen invasion. This study aims to explore the biochemical functions of AmPR-10. The dried root of Astragalus membranaceus was mechanically homogenized and extracted by Tris-HCl buffer to obtain its crude extract, which was then purified by anion exchange chromatography and gel filtration chromatography to obtain electrophoretically pure AmPR-10. The nuclease activity of AmPR-10 was tested with different RNAs by detecting the absorption value at 260 nm. The results demonstrated potent nuclease activity toward yeast tRNA, yeast RNA, Poly (A) and Poly (C). The optimum reaction temperature was 50 °C and pH was 7-8. EDTA showed no effect on its activity, while Mg²âº exhibited potent activation effect on the activity, and Co²âº, Ca²âº and Zn²âº manifested moderately inhibition of the activity. Since AmPR-10 had no sequence homology with other known nucleases, AmPR-10 was probably a novel nuclease. The inhibition kinetic data against papain was analyzed by Lineweaver-Burk plots, and the results showed that the inhibition of papain followed noncompetitive-type kinetics. AmPR-10 played an important role in Astragalus membranaceus defense mechanism against environmental pressure and pathogen invasion, which may be achieved by inhibiting cycteine enzymes activity.


Subject(s)
Astragalus Plant/enzymology , Deoxyribonucleases/metabolism , Plant Proteins/metabolism , Astragalus Plant/genetics , Chromatography, Gel , Deoxyribonucleases/genetics , Plant Proteins/genetics
3.
Phytochemistry ; 70(9): 1098-1106, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19570557

ABSTRACT

Nicotiana tabacum L. (tobacco) plants were transformed to overexpress a selenocysteine methyltransferase gene from the selenium hyperaccumulator Astragalus bisulcatus (Hook.) A. Gray (two-grooved milkvetch), and an ATP-sulfurylase gene from Brassica oleracea L. var. italica (broccoli). Solvent extraction of leaves harvested from plants treated with selenate revealed five selenium-containing compounds, of which four were identified by chemical synthesis as 2-(methylseleno)acetaldehyde, 2,2-bis(methylseleno)acetaldehyde, 4-(methylseleno)-(2E)-nonenal, and 4-(methylseleno)-(2E,6Z)-nonadienal. These four compounds have not previously been reported in nature.


Subject(s)
Methyltransferases/metabolism , Nicotiana/chemistry , Nicotiana/genetics , Organoselenium Compounds/isolation & purification , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/genetics , Selenium/metabolism , Astragalus Plant/enzymology , Astragalus Plant/genetics , Molecular Structure , Organoselenium Compounds/chemistry , Plant Leaves/chemistry , Selenium/chemistry
4.
Plant J ; 59(1): 110-22, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19309459

ABSTRACT

A group of selenium (Se)-hyperaccumulating species belonging to the genus Astragalus are known for their capacity to accumulate up to 0.6% of their foliar dry weight as Se, with most of this Se being in the form of Se-methylselenocysteine (MeSeCys). Here, we report the isolation and molecular characterization of the gene that encodes a putative selenocysteine methyltransferase (SMT) enzyme from the non-accumulator Astragalus drummondii and biochemically compare it with an authentic SMT enzyme from the Se-hyperaccumulator Astragalus bisulcatus, a related species that lives within the same native habitat. The non-accumulator enzyme (AdSMT) shows a high degree of homology with the accumulator enzyme (AbSMT) but lacks the selenocysteine methyltransferase activity in vitro, explaining why little or no detectable levels of MeSeCys accumulation are observed in the non-accumulator plant. The insertion of mutations on the coding region of the non-accumulator AdSMT enzyme to better resemble enzymes that originate from Se accumulator species results in increased selenocysteine methyltransferase activity, but these mutations were not sufficient to fully gain the activity observed in the AbSMT accumulator enzyme. We demonstrate that SMT is localized predominantly within the chloroplast in Astragalus, the principal site of Se assimilation in plants. By using a site-directed mutagenesis approach, we show that an Ala to Thr amino acid mutation at the predicted active site of AbSMT results in a new enzymatic capacity to methylate homocysteine. The mutated AbSMT enzyme exhibited a sixfold higher capacity to methylate selenocysteine, thereby establishing the evolutionary relationship of SMT and homocysteine methyltransferase enzymes in plants.


Subject(s)
Astragalus Plant/enzymology , Methyltransferases/metabolism , Plant Proteins/metabolism , Selenium/metabolism , Amino Acid Sequence , Astragalus Plant/genetics , Catalytic Domain , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Cloning, Molecular , Gene Library , Homocysteine/metabolism , Methyltransferases/genetics , Microscopy, Electron, Transmission , Molecular Sequence Data , Mutagenesis, Site-Directed , Plant Proteins/genetics , Protein Structure, Tertiary , RNA, Plant/genetics , Selenocysteine/metabolism , Sequence Alignment
5.
J Exp Bot ; 59(11): 3027-37, 2008.
Article in English | MEDLINE | ID: mdl-18583351

ABSTRACT

Previously it had been shown that calycosin and calycosin-7-O-beta-D-glucoside (CGs) accumulate in whole plants, mainly in leaves, of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao (A. mongholicus) plants in response to low temperature. In this work, it was demonstrated that the influences of different conditions on CGs biosynthesis, by examining the changes in CGs content, as well as the expression of related genes, including phenylalanine ammonia lyase (PAL1), cinnamic acid 4-hydroxylase (C4H), chalcone synthase (CHS), chalcone reductase (CHR), chalcone isomerase (CHI), isoflavone synthase (IFS), and isoflavone 3'-hydroxylase (I3'H). The seven gene mRNAs accumulated in leaves of A. mongholicus upon exposure to low temperature in a light-dependent manner, though they exhibited different expression patterns. Transcriptions of CHS, CHR, CHI, IFS, and I3'H of the calycosin-7-O-beta-D-glucoside pathway were all up-regulated when plants were transferred from 16 degrees C to 2 degrees C or 25 degrees C or from 2 degrees C (kept for 24 h) to 25 degrees C. However, fluctuations in temperature influenced differently the transcriptions of PAL1 and C4H of the general phenylpropanoid pathway in leaves. Moreover, the amount of PAL1 expression changed sharply up and down, consistent with the variation of the content of CGs. PAL enzyme activity appears to be the limiting factor in determining the CGs levels. The inhibitor of PAL enzyme, L-alpha-aminooxy-beta-phenylpropionic acid, almost entirely shut down CGs accumulation at low temperature. All these results confirmed that PAL1, as a smart gene switch, directly controls the accumulation of CGs in A. mongholicus plants, in a light-dependent manner, during low temperature treatment.


Subject(s)
Astragalus Plant/enzymology , Glucosides/biosynthesis , Isoflavones/biosynthesis , Phenylalanine Ammonia-Lyase/metabolism , Alcohol Oxidoreductases/genetics , Astragalus Plant/genetics , Cold Temperature , DNA, Complementary/isolation & purification , Gene Expression Regulation, Plant , Intramolecular Lyases/genetics , Light , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Phenylalanine Ammonia-Lyase/antagonists & inhibitors , Phenylalanine Ammonia-Lyase/genetics , RNA, Messenger/metabolism , Trans-Cinnamate 4-Monooxygenase/genetics
6.
Colloids Surf B Biointerfaces ; 49(1): 60-5, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16600576

ABSTRACT

Water is a key factor influencing the yield and quality of crops. Plants mainly adapt to water deficits by biochemical changes and osmotic adjustment (OA). Research on drought tolerance of field crops has been done intensively, but there is little work to be done in medical plants. Traditional Chinese medicine (TCM) has a long history of several thousand years. TCM is playing an important role in daily life in China and applied widely in clinical experience on the globe. More and more wild medical plants are cultivated and introduced. It is known that ecological and environmental conditions are vital to cultivation and efficient component accumulation of medical plants. This study is concerned about biochemical changes of three genotypes of Radix Astragali during water deficient periods and we evaluated the relative ability of their drought tolerance on the above basis. We analyzed the effect of soil water deficits on antioxidant enzymes activity and osmoregulation substances in R. Astragali leaves of three genotypes collected on day 0, 5, 10, 15, 20 and 25 after onset of water deprivation. Under water deficient conditions, biochemical changes include protecting enzyme system, for instance superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). Osmoregulation matters include proline (Pro) and soluble sugar. Antioxidant enzyme activities and Pro, and soluble sugar content correlated between water deficient degree and time course. Antioxidant enzyme activities increased before 20 days, then decreased at the end of experiment. Proline content increased gradually, and soluble sugar content reached the highest on day 20. The order of the ability of drought tolerance in three genotypes of R. Astragali is Mongolia>Wild>Hebei by using index of drought tolerance. The research results are instructive for cultivation and introduction of R. Astragali under different conditions of water status.


Subject(s)
Astragalus Plant/metabolism , Catalase/chemistry , Peroxidase/chemistry , Seedlings/metabolism , Superoxide Dismutase/chemistry , Water-Electrolyte Balance , Astragalus Plant/enzymology , Astragalus Plant/genetics , Carbohydrates/chemistry , Dehydration/enzymology , Dehydration/metabolism , Drugs, Chinese Herbal/chemistry , Enzyme Activation , Genotype , Plant Leaves/chemistry , Proline/chemistry , Seedlings/enzymology , Seedlings/genetics , Time Factors
7.
Plant Cell Rep ; 25(7): 705-10, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16456646

ABSTRACT

An important traditional Chinese medicine herb, Astragalus membranaceus var. Mongholicus, whose dried root is known as Radix astragali ("Huangqi" in Chinese), has high flavonoid content as an essential active constituent. Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) catalyzes the first and also a rate-limiting step in phenylpropanoid pathway, which supplies precursors for a variety of secondary metabolites including flavonoids. A PAL gene, designated AmPAL1 (GenBank accession no. AY986506), was isolated from A. membranaceus var. Mongholicus with a full-length cDNA of 2562 nucleotides and an open reading frame of 2154 bp. Northern blot analysis revealed that AmPAL1 expressed universally in different organs, and its expression was markedly induced by UV irradiation, mechanical wounding, and white light irradiation on etiolated seedlings, with some distinctive responsive properties. Content of a typical flavonoid, quercetin, in A. membranaceus var. Mongholicus of different ages correlated with PAL enzymatic activity. Transgenic tobacco plants harboring AmPAL1 under the control of the CaMV35S promoter showed significantly increased PAL activity and correlatively increased quercetin content than those in non-transformed plants. These results indicate that PAL is maybe a key point for flux into flavonoid biosynthesis in the genetic control of secondary metabolism in A. membranaceus var. Mongholicus.


Subject(s)
Astragalus Plant/genetics , Astragalus Plant/metabolism , Flavonoids/biosynthesis , Gene Expression Profiling , Gene Expression Regulation, Plant , Phenylalanine Ammonia-Lyase/genetics , Astragalus Plant/enzymology , Gene Expression Regulation, Enzymologic , Molecular Sequence Data , Phylogeny , Seedlings , Nicotiana/genetics , Transgenes
8.
Plant J ; 42(6): 785-97, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15941393

ABSTRACT

Several Astragalus species have the ability to hyperaccumulate selenium (Se) when growing in their native habitat. Given that the biochemical properties of Se parallel those of sulfur (S), we examined the activity of key S assimilatory enzymes ATP sulfurylase (ATPS), APS reductase (APR), and serine acetyltransferase (SAT), as well as selenocysteine methyltransferase (SMT), in eight Astragalus species with varying abilities to accumulate Se. Se hyperaccumulation was found to positively correlate with shoot accumulation of S-methylcysteine (MeCys) and Se-methylselenocysteine (MeSeCys), in addition to the level of SMT enzymatic activity. However, no correlation was observed between Se hyperaccumulation and ATPS, APR, and SAT activities in shoot tissue. Transgenic Arabidopsis thaliana overexpressing both ATPS and APR had a significant enhancement of selenate reduction as a proportion of total Se, whereas SAT overexpression resulted in only a slight increase in selenate reduction to organic forms. In general, total Se accumulation in shoots was lower in the transgenic plants overexpressing ATPS, PaAPR, and SAT. Root growth was adversely affected by selenate treatment in both ATPS and SAT overexpressors and less so in the PaAPR transgenic plants. Such observations support our conclusions that ATPS and APR are major contributors of selenate reduction in planta. However, Se hyperaccumulation in Astragalus is not driven by an overall increase in the capacity of these enzymes, but rather by either an increased Se flux through the S assimilatory pathway, generated by the biosynthesis of the sink metabolites MeCys or MeSeCys, or through an as yet unidentified Se assimilation pathway.


Subject(s)
Astragalus Plant/metabolism , Plant Proteins/metabolism , Selenium/metabolism , Sulfur/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Astragalus Plant/classification , Astragalus Plant/enzymology , Biological Transport, Active , Gene Expression , Plants, Genetically Modified , Species Specificity
9.
BMC Plant Biol ; 4: 1, 2004 Jan 28.
Article in English | MEDLINE | ID: mdl-15005814

ABSTRACT

BACKGROUND: It has become increasingly evident that dietary Se plays a significant role in reducing the incidence of lung, colorectal and prostate cancer in humans. Different forms of Se vary in their chemopreventative efficacy, with Se-methylselenocysteine being one of the most potent. Interestingly, the Se accumulating plant Astragalus bisulcatus (Two-grooved poison vetch) contains up to 0.6% of its shoot dry weight as Se-methylselenocysteine. The ability of this Se accumulator to biosynthesize Se-methylselenocysteine provides a critical metabolic shunt that prevents selenocysteine and selenomethionine from entering the protein biosynthetic machinery. Such a metabolic shunt has been proposed to be vital for Se tolerance in A. bisulcatus. Utilization of this mechanism in other plants may provide a possible avenue for the genetic engineering of Se tolerance in plants ideally suited for the phytoremediation of Se contaminated land. Here, we describe the overexpression of a selenocysteine methyltransferase from A. bisulcatus to engineer Se-methylselenocysteine metabolism in the Se non-accumulator Arabidopsis thaliana (Thale cress). RESULTS: By over producing the A. bisulcatus enzyme selenocysteine methyltransferase in A. thaliana, we have introduced a novel biosynthetic ability that allows the non-accumulator to accumulate Se-methylselenocysteine and gamma-glutamylmethylselenocysteine in shoots. The biosynthesis of Se-methylselenocysteine in A. thaliana also confers significantly increased selenite tolerance and foliar Se accumulation. CONCLUSION: These results demonstrate the feasibility of developing transgenic plant-based production of Se-methylselenocysteine, as well as bioengineering selenite resistance in plants. Selenite resistance is the first step in engineering plants that are resistant to selenate, the predominant form of Se in the environment.


Subject(s)
Arabidopsis/genetics , Astragalus Plant/enzymology , Cysteine/analogs & derivatives , Cysteine/biosynthesis , Methyltransferases/genetics , Arabidopsis/drug effects , Arabidopsis/metabolism , Chromatography, High Pressure Liquid , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Mass Spectrometry/methods , Methyltransferases/metabolism , Organoselenium Compounds , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/metabolism , Plants, Genetically Modified , Selenium/analysis , Selenium/pharmacology , Selenocysteine/analogs & derivatives , Sodium Selenite/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL