ABSTRACT
Melatonin (N-acetyl-5 methoxytryptamine) is an indolic neurohormone that modulates a variety of physiological functions due to its antioxidant, anti-inflammatory, and immunoregulatory properties. Therefore, the purpose of this study was to critically review the effects of melatonin supplementation in sports performance and circulating biomarkers related to the health status of highly trained athletes. Data were obtained by performing searches in the following three bibliography databases: Web of Science, PubMed, and Scopus. The terms used were "Highly Trained Athletes", "Melatonin", and "Sports Performance", "Health Biomarkers" using "Humans" as a filter. The search update was carried out in February 2024 from original articles published with a controlled trial design. The PRISMA rules, the modified McMaster critical review form for quantitative studies, the PEDro scale, and the Cochrane risk of bias were applied. According to the inclusion and exclusion criteria, 21 articles were selected out of 294 references. The dose of melatonin supplemented in the trials ranged between 5 mg to 100 mg administered before or after exercise. The outcomes showed improvements in antioxidant status and inflammatory response and reversed liver damage and muscle damage. Moderate effects on modulating glycemia, total cholesterol, triglycerides, and creatinine were reported. Promising data were found regarding the potential benefits of melatonin in hematological biomarkers, hormonal responses, and sports performance. Therefore, the true efficiency of melatonin to directly improve sports performance remains to be assessed. Nevertheless, an indirect effect of melatonin supplementation in sports performance could be evaluated through improvements in health biomarkers.
Subject(s)
Athletes , Athletic Performance , Biomarkers , Dietary Supplements , Melatonin , Randomized Controlled Trials as Topic , Melatonin/administration & dosage , Melatonin/blood , Humans , Athletic Performance/physiology , Biomarkers/blood , Antioxidants/administration & dosage , Male , Female , AdultABSTRACT
BACKGROUND: Growing evidence supports the ergogenic effects of creatine supplementation on muscle power/strength, but its effects on endurance performance remain unclear. We assessed the effects of high-dose short-term creatine supplementation in professional cyclists during a training camp. METHODS: The study followed a double-blind, randomized parallel design. Twenty-three professional U23 cyclists (19 ± 1 years, maximum oxygen uptake: 73.0 ± 4.6 mL/kg/min) participated in a 6-day training camp. Participants were randomized to consume daily either a recovery drink (containing carbohydrates and protein) with a 20-g creatine supplement (creatine group, n = 11) or just the recovery drink (placebo group, n = 12). Training loads and dietary intake were monitored, and indicators of fatigue/recovery (Hooper index, countermovement jump height), body composition, and performance (10-second sprint, 3-, 6-, and 12-minute time trials, respectively, as well as critical power and W') were assessed as study outcomes. RESULTS: The training camp resulted in a significant (p < 0.001) increase of training loads (+50% for total training time and + 61% for training stress score, compared with the preceding month) that in turn induced an increase in fatigue indicators (significant time effect [p < 0.001] for delayed-onset muscle soreness, fatigue, and total Hooper index) and a decrease in performance (significant time effect [p = 0.020] for critical power, which decreased by -3.8%). However, no significant group-by-time interaction effect was found for any of the study outcomes (all p > 0.05). CONCLUSIONS: High-dose short-term creatine supplementation seems to exert no consistent beneficial effects on recovery, body composition or performance indicators during a strenuous training period in professional cyclists.
Subject(s)
Athletic Performance , Humans , Athletic Performance/physiology , Creatine , Dietary Supplements , Double-Blind Method , Fatigue , Muscle, Skeletal , Oxygen/metabolism , Oxygen Consumption , Adolescent , Young AdultABSTRACT
INTRODUCTION: To evaluate the acute effect of scapular mobilization with associated myofascial release compared to scapular mobilization without myofascial release on butterfly stroke sports performance. DESIGN: Randomized clinical trial. METHOD: Pilot study that non-probabilistically convenience sampling that selected butterfly swimmers who were simply randomized into three groups to receive the standard protocol (scapular mobilization with release of the subscapularis muscle by the lateral edge of the scapula and rib cage detachment) in intervention group (IG), sham group (SG) (scapular mobilization without subscapularis muscle release and without rib cage detachment) or no intervention in control group (CG). We evaluated the stroke frequency, length, and average speed of 30 swimmers using the 8.15 Kinovea® motion analysis system. RESULTS: The findings showed that, compared to the CG and IG, the SG showed a significant reduction in mean velocity (p = 0.002; p = 0.02, respectively), stroke frequency (p = 0.002; p = 0.003, respectively), and stroke length (p = 0.01; p = 0.05, respectively). DISCUSSION: The results showed that manual therapy through scapular mobilization without associated myofascial release with detachment of the scapula from the rib cage worsened the swimming efficiency indicators even after 30 min of application of the technique. The limitations of the studies are related to the sample size, the risk of non-probabilistic contraction bias and the lack of blinding of the evaluators. Thus, the results of this study should be evaluated with caution.
Subject(s)
Athletic Performance , Myofascial Release Therapy , Humans , Pilot Projects , Research Design , ScapulaABSTRACT
In recent years, postbiotics have increased in popularity, but the potential relevancy of postbiotics for augmenting exercise performance, recovery, and health is underexplored. A systematic literature search of Google Scholar and PubMed databases was performed with the main objective being to identify and summarize the current body of scientific literature on postbiotic supplementation and outcomes related to exercise performance and recovery. Inclusion criteria for this systematic review consisted of peer-reviewed, randomized, double-blind, and placebo-controlled trials, with a population including healthy men or women >18 years of age. Studies required the incorporation of a postbiotic supplementation regimen and an outcome linked to exercise. Search terms included paraprobiotics, Tyndallized probiotics, ghost biotics, heat-killed probiotics, inactivated probiotics, nonviable probiotics, exercise, exercise performance, and recovery. Only investigations written in English were considered. Nine peer-reviewed manuscripts and two published abstracts from conference proceedings were included and reviewed. Supplementation periods ranged from 13 days to 12 weeks. A total of 477 subjects participated in the studies (n = 16-105/study) with reported results spanning a variety of exercise outcomes including exercise performance, recovery of lost strength, body composition, perceptual fatigue and soreness, daily logs of physical conditions, changes in mood states, and biomarkers associated with muscle damage, inflammation, immune modulation, and oxidative stress. Early evidence has provided some indication that postbiotic supplementation may help to support mood, reduce fatigue, and increase the readiness of athletes across several weeks of exercise training. However, more research is needed to further understand how postbiotics may augment health, resiliency, performance, and recovery. Future investigations should include longer supplementation periods spanning a wider variety of competitive athletes and exercising populations.
Subject(s)
Dietary Supplements , Exercise , Probiotics , Humans , Probiotics/therapeutic use , Probiotics/administration & dosage , Female , Male , Athletic Performance/physiology , Randomized Controlled Trials as Topic , Adult , Recovery of FunctionABSTRACT
The ergogenic effects of acute caffeine intake on endurance cycling performance lasting ~1 h have been well documented in controlled laboratory studies. However, the potential benefits of caffeine supplementation in cycling disciplines such as cross-country/mountain biking have been rarely studied. In cross-country cycling, performance is dependent on endurance capacity, which may be enhanced by caffeine, but also on the technical ability of the cyclist to overcome the obstacles of the course. So, it is possible that the potential benefits of caffeine are not translated to cross-country cycling. The main objective of this study was to investigate the effects of acute caffeine intake, in the form of coffee, on endurance performance during a cross-country cycling time trial. Eleven recreational cross-country cyclists (mean ± SD: age: 22 ± 3 years; nine males and two females) participated in a single-blinded, randomised, counterbalanced and crossover experiment. After familiarisation with the cross-country course, participants completed two identical experimental trials after the ingestion of: (a) 3.00 mg/kg of caffeine in the form of soluble coffee or (b) 0.04 mg/kg of caffeine in the form of decaffeinated soluble coffee as a placebo. Drinks were ingested 60 min before performing a 13.90 km cross-country time trial over a course with eight sectors of varying technical difficulty. The time to complete the trial and the mean and the maximum speed were measured through Global Positioning System (GPS) technology. Heart rate was obtained through a heart rate monitor. At the end of the time trial, participants indicated their perceived level of fatigue using the traditional Borg scale. In comparison to the placebo, caffeine intake in the form of coffee significantly reduced the time to complete the trial by 4.93 ± 4.39% (43.20 ± 7.35 vs. 41.17 ± 6.18 min; p = 0.011; effect size [ES] = 0.300). Caffeine intake reduced the time to complete four out of eight sectors with different categories of technical difficulty (p ≤ 0.010; ES = 0.386 to 0.701). Mean heart rate was higher with caffeine (169 ± 6 vs. 162 ± 13 bpm; p = 0.046; ES = 0.788) but the rating of perceived exertion at the end of the trial was similar with caffeinated coffee than with the placebo (16 ± 1 vs. 16 ± 2 a.u.; p = 0.676; ES = 0.061). In conclusion, the intake of 3 mg/kg of caffeine delivered via soluble coffee reduced the time to complete a cross-country cycling trial in recreational cyclists. These results suggest that caffeine ingested as coffee may be an ergogenic substance for cross-country cycling.
Subject(s)
Athletic Performance , Caffeine , Performance-Enhancing Substances , Adult , Female , Humans , Male , Young Adult , Athletic Performance/physiology , Caffeine/pharmacology , Coffee/chemistry , Cross-Over StudiesABSTRACT
We investigated the acute effects of caffeine supplementation (6 mgï½¥kg-1 ) on 60-m sprint performance and underlying components with a step-to-step ground reaction force measurement in 13 male sprinters. After the first round sprint as a control, caffeine supplementation-induced improvement in 60-m sprint times (7.811 s at the first versus 7.648 s at the second round, 2.05%) were greater compared with the placebo condition (7.769 s at the first versus 7.768 s at the second round, 0.02%). Using average values for every four steps, in the caffeine condition, higher running speed (all six step groups), higher step frequency (5th-16th and 21st-24th step groups), shorter support time (all the step groups except for 13th-16th step) and shorter braking time (9th-24th step groups) were found. Regarding ground reaction forces variables, greater braking mean force (13th-19th step group), propulsive mean force (1st-12th and 17th-20th step groups), and effective vertical mean force (9th-12th step group) were found in the caffeine condition. For the block clearance phase at the sprint start, push-off and reaction times did not change, while higher total anteroposterior mean force, average horizontal external power, and ratio of force were found in the caffeine condition. These results indicate that, compared with placebo, acute caffeine supplementation improved sprint performance regardless of sprint sections during the entire acceleration phase from the start through increases in step frequency with decreases in support time. Moreover, acute caffeine supplementation promoted increases in the propulsive mean force, resulting in the improvement of sprint performance.
Subject(s)
Athletic Performance , Caffeine , Humans , Male , Biomechanical Phenomena , Caffeine/pharmacology , Kinetics , Acceleration , Dietary SupplementsABSTRACT
Despite the numerous scientific evidence on the topic, there is no clear and consistent answer that clarifies the true effects of beetroot juice (BJ) supplementation on different types of physical performance. This study examined whether an acute intake of BJ improves swimming performance, physiological variables of anaerobic metabolism, or subjective measures during high-intensity interval exercise with incomplete rest in competitive swimmers. Eighteen competitive swimmers (nine females and nine males) participated in this cross-over randomized, placebo-controlled, double-blind and counterbalanced study. In two trials, swimmers ingested BJ (70 mL, 6.4 mmol/400 mg NO3-) or placebo (PLA) (70 mL, 0.04 mmol/3 mg NO3-) three hours before a 2×6×100 m maximal effort with 40 seconds rest between repetitions and three minutes between blocks. The 100 m times showed no differences between groups (p > 0.05), but there was an interaction between block×repetition×condition (F5 = 3.10; p = 0.046; ηp2 = 0.54), indicating that the BJ group decreased the time of the sixth repetition of block2 compared to block1 (p = 0.01). Lactate concentration showed no differences between conditions (p > 0.05), but there was a main effect of block (ηp2 = 0.60) and a block×repetition interaction (ηp2 = 0.70), indicating higher values in block2 and increasing values between repetitions in block1. The subjective scales, perception of exertion (RPE) and Total Quality Recovery (TQR), showed no effects of condition (p > 0.05), but BJ swimmers had a greater TQR in the last repetitions of each block. In conclusion, a single dose of BJ did not enhance intermittent swimming performance or modified the physiological (lactate and heart rate) or subjective (RPE and TQR) variables; although there was a possible positive effect on the exercise tolerance at the end of effort.
Subject(s)
Athletic Performance , Beta vulgaris , Male , Female , Humans , Swimming/physiology , Athletic Performance/physiology , Fruit and Vegetable Juices , Dietary Supplements , Cross-Over Studies , Antioxidants , Lactic AcidABSTRACT
BACKGROUND: Iron deficiency in athletes is initially treated with a nutritional intervention. If negative iron balance persists, oral iron supplementation (OIS) can be used. Despite the recent proposal for a refinement of treatment strategies for iron-deficient athletes, there is no general consensus regarding the actual efficiency, dosage, or optimal regimen of OIS. OBJECTIVE: The aim of this meta-analysis was to evaluate to what extent OIS affects blood iron parameters and physical performance in healthy adult athletes. METHODS: PubMed, Web of Science, PEDro, CINAHL, SPORTDiscus, and Cochrane were searched from inception to 2 November 2022. Articles were eligible if they satisfied the following criteria: recruited subjects were healthy, adult and physically active individuals, who used exclusively OIS, irrespective of sex and sports discipline. EXCLUSION CRITERIA: simultaneous supplementation with iron and any other micronutrient(s), intravenous iron supplementation or recent exposure to altitude acclimatisation. The methodological quality of included studies was assessed with the PEDro scale, the completeness of intervention reporting with the TIDieR scale, while the GRADE scale was used for quality of evidence synthesis. The present study was prospectively registered in PROSPERO online registry (ID: CRD42022330230). RESULTS: From 638 articles identified through the search, 13 studies (n = 449) were included in the quantitative synthesis. When compared to the control group, the results demonstrated that OIS increases serum ferritin (standardized mean difference (SMD) = 1.27, 95% CI 0.44-2.10, p = 0.006), whereas blood haemoglobin (SMD = 1.31, 95% CI - 0.29 to 2.93, p = 0.099), serum transferrin receptor concentration (SMD = - 0.74, 95% CI - 1.89 to 0.41, p = 0.133), and transferrin saturation (SMD = 0.69, 95% CI - 0.84 to 2.22, p = 0.330) remained unaltered. Following OIS, a trend of small positive effect on VO2max (SMD = 0.49, 95% CI - 0.09 to 1.07, p = 0.086) was observed in young healthy athletes. The quality of evidence for all outcomes ranged from moderate to low. CONCLUSIONS: Increase in serum ferritin concentration after OIS was evident in subjects with initial pre-supplementation serum ferritin concentration ≤ 12 µg/l, while only minimal, if any effect, was observed in subjects with higher pre-supplementation serum ferritin concentration. The doses of OIS, that induced a beneficial effect on hematological parameters differed from 16 to 100 mg of elementary iron daily, over the period between 6 and 8 weeks. Shorter supplementation protocols have been shown to be ineffective.
Subject(s)
Dietary Supplements , Iron , Randomized Controlled Trials as Topic , Humans , Iron/administration & dosage , Athletes , Ferritins/blood , Administration, Oral , Athletic Performance/physiology , Hemoglobins/analysis , Hemoglobins/metabolism , Anemia, Iron-Deficiency/drug therapy , Anemia, Iron-Deficiency/bloodABSTRACT
OBJECTIVE: The purpose of this study was to explore the extent to which religious-psychological factors contribute to self-perceived sport performance among religious athletes. METHODS: The participants consisted of 612 athletes (310 males, 302 females) aged 12-70 years (mean age = 25.33; SD = 8.99) who were competing in sport competitions at the time, either individually or in a team, or both, and who had formally registered in local, regional, or national sport federations in Malaysia. They completed the Athletic Religious Faith Scale (ARFS) and a self-perceived sport performance questionnaire. RESULTS: The results showed that religious-psychological factors explain around 21% of the variance in self-perceived sport performance among religious athletes. Only three religious-psychological factors (i.e., religious coping, athletic identity, and religious dietary practices) contributed to the stimulation of self-perceived sport performance; in particular, religious coping was the most predictable factor, whereas the other factors (i.e., dependence on faith, flow, religious mental healing, and religious psychological effects) had no meaningful relationship with self-perceived sport performance. CONCLUSIONS: This finding suggests that sport psychologists, coaches, and other professionals should consider the importance of religious faith and help religious athletes practice positive religious coping (e.g., religious social support or religious meditation) to enhance athletes' well-being and athletic performance.
Subject(s)
Athletes , Athletic Performance , Male , Female , Humans , Adult , Malaysia , Athletes/psychology , Athletic Performance/psychology , Surveys and QuestionnairesABSTRACT
BACKGROUND: Taurine (TAU) and caffeine (CAF), as common ergogenic aids, are known to affect exercise performance; however, the effects of their combined supplementation, particularly in high temperature and humidity environments, have not been studied. HYPOTHESIS: The combination of TAU and CAF will have a greater effect on endurance cycle performance and improve changes in physiological indicators during exercise compared with TAU or CAF supplementation alone and placebo. STUDY DESIGN: Single-blind crossover randomized controlled study. LEVEL OF EVIDENCE: Level 1. METHODS: Twelve university students majoring in physical education volunteered to receive 4 different supplement ingestions: (1) placebo (maltodextrin), (2) TAU, (3) CAF, (4) TAU + CAF. After a 7-day washout period, participants completed a time to exhaustion (TTE) test in the heat (35°C, 65% relative humidity). RESULTS: All experimental groups improved TTE compared with the placebo group. Peak and mean power of countermovement jump were significantly higher in the CAF group compared with the placebo group before the exhaustion exercise (P = 0.02, d = 1.2 and P = 0.04, d = 1.1, respectively). Blood lactate was significantly lower after the exhaustion test in the TAU group compared with the CAF (P < 0.01, d = 0.8) and TAU + CAF (P < 0.01, d = 0.7) groups. Core temperature in the TAU group was significantly reduced in the placebo group later in the exhaustion test (P < 0.01, d = 1.9). CONCLUSION: In high temperature and humidity environments, acute TAU, CAF, and combined supplementation all improved TTE and did not affect recovery from lower limb neuromuscular fatigue compared with placebo, with TAU having the best effect. Combined supplementation failed to exhibit superimposed performance. CLINICAL RELEVANCE: The results provide suggestions for the effects of TAU, CAF, and their combined intake on exercise performance in high temperature and humidity environments.
Subject(s)
Athletic Performance , Caffeine , Cross-Over Studies , Hot Temperature , Humidity , Lactic Acid , Physical Endurance , Taurine , Humans , Caffeine/administration & dosage , Caffeine/pharmacology , Single-Blind Method , Young Adult , Male , Taurine/administration & dosage , Physical Endurance/drug effects , Physical Endurance/physiology , Athletic Performance/physiology , Lactic Acid/blood , Bicycling/physiology , Performance-Enhancing Substances/administration & dosage , Dietary Supplements , Exercise TestABSTRACT
Purpose: Exogenous melatonin has been proven to have beneficial effects on sleep. A good sleep quality promotes recovery and improves physical performance. In this sense, the present study aimed to explore the potential effect of nocturnal melatonin ingestion on psycho-cognitive and short-term maximal performances, in the following morning. Method: Twelve professional soccer players (22.9 ± 1.3 years, 1.80 ± 0.05 m, and 72.0 ± 8.8 kg) volunteered to perform two separate testing sessions after either nocturnal melatonin or placebo ingestion. The next morning, participants performed the following psycho-cognitive and physical tests: Hooper's index, reaction time, vigilance, handgrip strength (HG), squat jump (SJ), modified agility T-test (MAT) and Wingate anaerobic test (WanT). Rating of perceived exertion (RPE) and blood lactate [La] were recorded, respectively, immediately and 3 min after the WanT. Blood glucose [GL] was measured before and 3 min after WanT. Results: Compared with placebo, melatonin improved subjective sleep quality, short-term maximal performances (HG and SJ), reaction-time, as well as peak and mean WanT powers and decreased fatigue index and RPE scores. However, [La] and [GL] were not affected by melatonin ingestion. Conclusion: Nocturnal melatonin intake before sleep has beneficial effects on cognitive and physical performances the following day.
Subject(s)
Athletic Performance , Hand Strength , Lactic Acid , Melatonin , Reaction Time , Soccer , Humans , Melatonin/administration & dosage , Soccer/physiology , Athletic Performance/physiology , Young Adult , Hand Strength/physiology , Male , Reaction Time/drug effects , Lactic Acid/blood , Sleep Quality , Double-Blind Method , Blood Glucose/metabolism , Physical Exertion/physiology , Cross-Over Studies , Exercise Test , Cognition/drug effects , Cognition/physiologyABSTRACT
The main purpose of this study was to investigate the effect of a novel alginate-encapsulated carbohydrate-protein (CHO-PRO ratio 2:1) supplement (ALG) on cycling performance. The ALG, designed to control the release of nutrients, was compared to an isocaloric carbohydrate-only control (CON). Alginate encapsulation of CHOs has the potential to reduce the risk of carious lesions. METHODS: In a randomised cross-over clinical trial, 14 men completed a preliminary test over 2 experimental days separated by ~6 days. An experimental day consisted of an exercise bout (EX1) of cycling until exhaustion at W~73%, followed by 5 h of recovery and a subsequent time-to-exhaustion (TTE) performance test at W~65%. Subjects ingested either ALG (0.8 g CHO/kg/hr + 0.4 g PRO/kg/hr) or CON (1.2 g CHO/kg/hr) during the first 2 h of recovery. RESULTS: Participants cycled on average 75.2 ± 5.9 min during EX1. Levels of plasma branched-chain amino acids decreased significantly after EX1, and increased significantly with the intake of ALG during the recovery period. During recovery, a significantly higher plasma insulin and glucose response was observed after intake of CON compared to ALG. Intake of ALG increased plasma glucagon, free fatty acids, and glycerol significantly. No differences were found in the TTE between the supplements (p = 0.13) nor in the pH of the subjects' saliva. CONCLUSIONS: During the ALG supplement, plasma amino acids remained elevated during the recovery. Despite the 1/3 less CHO intake with ALG compared to CON, the TTE performance was similar after intake of either supplement.
Subject(s)
Alginates , Athletic Performance , Male , Humans , Alginates/pharmacology , Athletic Performance/physiology , Physical Endurance , Dietary Carbohydrates/pharmacology , Athletes , Dietary SupplementsABSTRACT
INTRODUCTION: The acute and isolated ingestion of sodium bicarbonate (NaHCO3) and caffeine (CAF) improves performance and delays fatigue in high-intensity tasks. However, it remains to be elucidated if the coingestion of both dietary supplements stimulates a summative ergogenic effect. This study aimed to examine the effect of the acute coingestion of NaHCO3 and CAF on repeated-sprint performance. METHODS: Twenty-five trained participants (age: 23.3 [4.0] y; sex [female/male]: 12/13; body mass: 69.6 [12.5] kg) participated in a randomized, double-blind, placebo (PLA) -controlled, crossover study. Participants were assigned to 4 conditions: (1) NaHCO3 + CAF, (2) NaHCO3, (3) CAF, or (4) PLA. Thus, they ingested 0.3 g/kg of NaHCO3, 3 mg/kg of CAF, or PLA. Then, participants performed 4 Wingate tests (Wt), consisting of a 30-second all-out sprint against an individualized resisted load, interspersed by a 1.5-minute rest period between sprints. RESULTS: Peak (Wpeak) and mean (Wmean) power output revealed a supplement and sprint interaction effect (P = .009 and P = .049, respectively). Compared with PLA, NaHCO3 + CAF and NaHCO3 increased Wpeak performance in Wt 3 (3%, P = .021) and Wt 4 (4.5%, P = .047), while NaHCO3 supplementation increased mean power performance in Wt 3 (4.2%, P = .001). In Wt 1, CAF increased Wpeak (3.2%, P = .054) and reduced time to Wpeak (-8.5%; P = .008). Plasma lactate showed a supplement plus sprint interaction (P < .001) when NaHCO3 was compared with CAF (13%, P = .031) and PLA (23%, P = .021). CONCLUSION: To summarize, although the isolated ingestion of CAF and NaHCO3 improved repeated-sprint performance, the coingestion of both supplements did not stimulate a synergic ergogenic effect.
Subject(s)
Athletic Performance , Caffeine , Cross-Over Studies , Dietary Supplements , Lactic Acid , Performance-Enhancing Substances , Running , Sodium Bicarbonate , Humans , Sodium Bicarbonate/administration & dosage , Sodium Bicarbonate/pharmacology , Caffeine/administration & dosage , Male , Female , Athletic Performance/physiology , Double-Blind Method , Young Adult , Performance-Enhancing Substances/administration & dosage , Running/physiology , Lactic Acid/blood , Adult , Exercise TestABSTRACT
BACKGROUND: Maintaining proper immune function and hormone status is important for athletes to avoid upper respiratory tract infection (URTI) and insufficient recovery, which is detrimental to sport performance and health. The aim of this study was to evaluate whether three-week supplementation of L-glutamine could benefit the mucosal immunity and hormonal status of combat-sport athletes as well as their rates of upper respiratory tract infection (URTI) and subjective feelings of well-being after intensive training. METHODS: Twenty-one combat-sport athletes from the National Taiwan University of Sport were recruited in this study. After intensive training, two groups of the participants were asked to consume powder form of 0.3 g/kg body weight of L-glutamine (GLU group) or maltodextrin (PLA group) with drinking water in a randomized design at the same time every day during 3 weeks. Saliva samples were collected to measure immunoglobulin A (IgA), nitric oxide (NO), testosterone (T) and cortisol (C) before and after three-week supplementation; moreover, Hooper's index questionnaires were completed for wellness assessment. The incidence and duration of URTI were recorded by using a health checklist throughout the entire study period. RESULTS: Supplementation of L-glutamine significantly enhanced the concentrations of IgA and NO in saliva; additionally, the incidence of URTI was significantly reduced. Regarding hormones, T concentration was significantly decreased in the PLA group, whereas C concentration was significantly increased, resulting in a significant decrease of T/C ratio. In contrast, the GLU group showed a significant increase of T/C ratio, while the mood scores of the Hooper's index questionnaire were higher in the PLA group. CONCLUSIONS: Three-week supplementation of L-glutamine after intensive training enhanced the mucosal immunity, improved hormonal status and reduced the rate of URTI of combat-sport athletes while feelings of well-being were also enhanced. Therefore, L-glutamine would be beneficial for the sports performance and recovery of athletes.
Subject(s)
Athletic Performance , Respiratory Tract Infections , Humans , Glutamine , Immunity, Mucosal , Athletes , Immunoglobulin A , Nitric Oxide , Respiratory Tract Infections/prevention & control , Dietary Supplements , PolyestersABSTRACT
BACKGROUND: Caffeine (CAF) ingestion improves performance in a broad range of exercise tasks. Nevertheless, the CAF-induced, dose-dependent effect on discipline-specific performance and cognitive functions in CrossFit/High-Intensity Functional Training (HIFT) has not been sufficiently investigated. The aim of this study was to evaluate the effect of acute supplementation of three different doses of CAF and placebo (PLA) on specific performance, reaction time (RTime), postural stability (PStab), heart rate (HR) and perceived exertion (RPE). METHODS: In a randomized double-blind placebo-controlled crossover design, acute pre-exercise supplementation with CAF (3, 6, or 9 mg/kg body mass (BM)) and PLA in 26 moderately trained CrossFit practitioners was examined. The study protocol involved five separate testing sessions using the Fight Gone Bad test (FGB) as the exercise performance evaluation and biochemical analyses, HR and RPE monitoring, as well as the assessment of RTime and PStab, with regard to CYP1A2 (rs762551) and ADORA2A (rs5751876) single nucleotide polymorphism (SNP). RESULTS: Supplementation of 6 mgCAF/kgBM induced clinically noticeable improvements in FGBTotal results, RTime and pre-exercise motor time. Nevertheless, there were no significant differences between any CAF doses and PLA in FGBTotal, HRmax, HRmean, RPE, pre/post-exercise RTime, PStab variables or pyruvate concentrations. Lactate concentration was higher (p < 0.05) before and after exercise in all CAF doses than in PLA. There was no effect of CYP1A2 or ADORA2A SNPs on performance. CONCLUSIONS: The dose-dependent effect of CAF supplementation appears to be limited to statistically nonsignificant but clinically considered changes on specific performance, RTime, PStab, RPE or HR. However, regarding practical CAF-induced performance implications in CrossFit/HIFT, 6 mgCAF/kgBM may be supposed as the most rational supplementation strategy.
Subject(s)
Athletic Performance , Caffeine , Humans , Caffeine/pharmacology , Cross-Over Studies , Cytochrome P-450 CYP1A2 , Reaction Time , Athletic Performance/physiology , Lactic Acid , Double-Blind Method , Dietary Supplements , PolyestersABSTRACT
Nitrate (NO3-) has properties that can improve muscle function, leading to improvements in metabolic cost of exercise as well as enhance force production. Gymnastics is a whole-body sport, involving events that demand a high level of strength and fatigue resistance. However, the effect of NO3- supplementation on both upper- and lower-body function in gymnasts is unknown. This study examined the effect of acute beetroot juice (BRJ) supplementation on isokinetic strength and endurance of the upper- and lower-body in highly trained international-level male gymnasts. In a double-blind, randomized crossover design, 10 international-level male gymnasts completed two acute supplementation periods, consuming either 2 × 70 ml NO3--rich (â¼12.8 mmol/L of NO3-) or NO3--depleted (PLA) BRJ. Maximal strength of the upper-leg and upper-arm at 60°/s, 120°/s, 180°/s, and 300°/s, and muscular endurance (50 repeated isokinetic contractions at 180°/s) were assessed. Plasma NO3- (BRJ: 663 ± 164 µM, PLA: 89 ± 48 µM) and nitrite (NO2-) concentrations (BRJ: 410 ± 137 nmol/L, PLA: 125 ± 36 nmol/L) were elevated following BRJ compared to PLA (both p < .001). Maximal strength of knee and elbow extensors and flexors did not differ between supplements (p > .05 for all velocities). Similarly, fatigue index of knee and elbow extension and flexion was not different between supplements (all p > .05). Acute BRJ supplementation, containing â¼12.8 mmol/L of NO3-, increased plasma NO3- and NO2- concentrations, but did not enhance isokinetic strength or fatigue resistance of either upper or lower extremities in international-level male gymnasts.
Subject(s)
Athletic Performance , Beta vulgaris , Humans , Male , Nitrogen Dioxide , Antioxidants , Dietary Supplements , Nitrates , Athletic Performance/physiology , Double-Blind Method , Polyesters , Cross-Over Studies , Fruit and Vegetable JuicesABSTRACT
PURPOSE: Polluted environments can adversely affect lung function and exercise performance. Evidence suggests that some nutrient supplements may offset pollution's detrimental effects. This study examined the effect of polyphenol supplementation on lung function and exercise performance in an ozone-polluted environment. METHODS: Ten male cyclists (mean ± SD: age, 43.8 ± 12.4 years; height, 177.8 ± 7.1 cm; weight, 76.03 ± 7.88 kg; VO2max 4.12 ± 0.72 L min-1) initially completed a baseline maximal incremental test and maximal effort 4 km time trial in ambient air. Thereafter cyclists completed two trials in an ozone-polluted environment (0.25 ppm) following seven days of supplementation with either polyphenol (PB) or placebo (PL). Experimental trials consisted of a three-stage submaximal test (50%, 60% and 70% incremental peak power) followed by a 4 km time trial. Lung function was measured pre- and post-exercise via spirometry and adverse respiratory symptoms with a Likert scale. RESULTS: Ozone exposure significantly reduced (p < 0.05) lung function relative to ambient air. There were no significant differences (p > 0.05) in measured variables across the three submaximal intensities. There was a small (d = 0.31) non-significant difference (p = 0.09) in 4 km performance in PB (406.43 ± 50.29 s) vs. PL (426.20 ± 75.06 s). Oxygen consumption during the time trial was greater in PB (3.49 ± 0.71 L min-1) vs PL (3.32 ± 0.71 L min-1, p = 0.01, d = 0.24). Cough severity (SOC) was lower (p = 0.03) with PB relative to PL. CONCLUSION: PB supplementation may provide small benefits to performance and reduce cough symptoms during high-intensity exercise in ozone-polluted environments.
Subject(s)
Athletic Performance , Ozone , Adult , Humans , Male , Middle Aged , Bicycling , Cough/chemically induced , Dietary Supplements , Lung , Oxygen Consumption , Ozone/adverse effects , PowdersABSTRACT
Top-class athletes have optimized their athletic performance largely through adequate training, nutrition, recovery, and sleep. A key component of sports nutrition is the utilization of nutritional ergogenic aids, which may provide a small but significant increase in athletic performance. Over the last decade, there has been an exponential increase in the consumption of nutritional ergogenic aids, where over 80% of young athletes report using at least one nutritional ergogenic aid for training and/or competition. Accordingly, due to their extensive use, there is a growing need for strong scientific investigations validating or invalidating the efficacy of novel nutritional ergogenic aids. Notably, an overview of the physiological considerations that play key roles in determining ergogenic efficacy is currently lacking. Therefore, in this brief review, we discuss important physiological considerations that contribute to ergogenic efficacy for nutritional ergogenic aids that are orally ingested including (1) the impact of first pass metabolism, (2) rises in systemic concentrations, and (3) interactions with the target tissue. In addition, we explore mouth rinsing as an alternate route of ergogenic efficacy that bypasses the physiological hurdles of first pass metabolism via direct stimulation of the central nervous system. Moreover, we provide real-world examples and discuss several practical factors that can alter the efficacy of nutritional ergogenic aids including human variability, dosing protocols, training status, sex differences, and the placebo effect. Taking these physiological considerations into account will strengthen the quality and impact of the literature regarding the efficacy of potential ergogenic aids for top-class athletes.
Subject(s)
Athletic Performance , Performance-Enhancing Substances , Humans , Female , Male , Dietary Supplements , Athletes , Performance-Enhancing Substances/pharmacologyABSTRACT
BACKGROUND: Supplementation with Angiotensin-(1-7) [(Ang-1-7)] has received considerable attention due to its possible ergogenic effects on physical performance. The effects of a single dose of Ang-(1-7) on the performance of mountain bike (MTB) athletes during progressive load tests performed until the onset of voluntary fatigue have previously been demonstrated. This study tested the effects of Ang-(1-7) in two different exercise protocols with different metabolic demands: aerobic (time trial) and anaerobic (repeated sprint). METHODS: Twenty one male recreational athletes were given capsules containing an oral formulation of HPßCD-Ang-(1-7) (0.8 mg) and HPßCD-placebo (only HPßCD) over a 7-day interval; a double-blind randomized crossover design was used. Physical performance was examined using two protocols: a 20-km cycling time trial or 4 × 30-s repeated all-out sprints on a leg cycle ergometer. Data were collected before and after physical tests to assess fatigue parameters, and included lactate levels, and muscle activation during the sprint protocol as evaluated by electromyography (EMG); cardiovascular parameters: diastolic and systolic blood pressure and heart rate; and performance parameters, time to complete (time trial), maximum power and mean power (repeated sprint). RESULTS: Supplementation with an oral formulation of HPßCD-Ang-(1-7) reduced basal plasma lactate levels and promoted the maintenance of plasma glucose levels after repeated sprints. Supplementation with HPßCD-Ang-(1-7) also increased baseline plasma nitrite levels and reduced resting diastolic blood pressure in a time trial protocol. HPßCD-Ang-(1-7) had no effect on the time trial or repeat sprint performance, or on the EMG recordings of the vastus lateralis and vastus medialis. CONCLUSIONS: Supplementation with HPßCD-Ang-(1-7) did not improve physical performance in time trial or in repeated sprints; however, it promoted the maintenance of plasma glucose and lactate levels after the sprint protocol and at rest, respectively. In addition, HPßCD-Ang-(1-7) also increased resting plasma nitrite levels and reduced diastolic blood pressure in the time trial protocol. TRIAL REGISTRATION: RBR-2nbmpbc, registered January 6th, 2023. The study was prospectively registered.
Subject(s)
Angiotensin I , Athletic Performance , Nitrites , Peptide Fragments , Humans , Male , Cross-Over Studies , 2-Hydroxypropyl-beta-cyclodextrin , Bicycling/physiology , Blood Glucose , Lactates , Dietary Supplements , Athletes , FatigueABSTRACT
The present randomized study investigated the effect of acute supplementation of 800 mg/kg of ketone monoester ingestion (KE) or placebo (PL) and 210 mg/kg of NaHCO3 co-ingestion on cycling performance of WorldTour cyclists during a road cycling stage simulation. Twenty-eight cyclists participated in the study (27.46 ± 4.32 years; 1.80 ± 0.06 m; 69.74 ± 6.36 kg). Performance, physiological, biochemical, and metabolism outcomes, gut discomfort, and effort perceived were assessed during a road cycling simulation composed of an 8-min time-trial (TT) performance + 30-s TT + 4.5 hr of outdoor cycling + a second 8-min TT + a second 30-s TT. Greater absolute and relative mean power during the first 8-min TT (F = 5.067, p = .033, ηp2=.163, F = 5.339, p = .029, ηp2=.170, respectively) was observed after KE than after PL (KE: 389 ± 34, PL: 378 ± 44 W, p = .002, d = 0.294 and KE: 5.60 ± 0.42, PL: 5.41 ± 0.44 W/kg, p = .001, d = 0.442). Additionally, greater concentration of ß-hydroxybutyrate blood concentration (F = 42.195, p < .001, ηp2=.619) was observed after KE than after PL during the first steps of the stage (e.g., after warm-up KE: 1.223 ± 0.642, PL: 0.044 ± 0.058 mM, p < .001, d = 2.589), although the concentrations returned to near baseline after 4.5 hr of outdoor cycling. Moreover, higher values of anion gap were observed (F = 2.333, p = .026, ηp2=.080) after KE than after PL ingestion, after the warm-up and after the first 8-min and 30-s TT. Additionally, lower concentrations of HCO3- were reported in the KE condition after warm-up and after the first 8-min and 30-s TT. During the initial phase of the stage simulation, acute supplementation with KE + NaHCO3 co-ingestion enhanced 8-min TT cycling performance (3.1%) in WorldTour cyclists with a concomitant hyperketonaemia.