Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 367
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Undersea Hyperb Med ; 51(1): 1-5, 2024.
Article in English | MEDLINE | ID: mdl-38615347

ABSTRACT

Chronic wounds have a significant impact on a patient's quality of life. Different pathologies, such as poor blood supply and tissue breakdown, may lead to inadequate oxygenation of the wound. Hyperbaric oxygen (HBO2) is a widely used treatment for an increasing number of medical practices. A new so-called "hyperbaric treatment" trend has emerged. The use of low-pressure, soft-sided, or inflatable chambers represents a growing trend in hyperbaric medicine. Used in professional settings as well as directly marketed to individuals for home use, they are promoted as equivalent to clinical hyperbaric treatments provided in medical centers. However, these chambers are pressurized to 1.3 atmospheres absolute (ATA) on either air or with an oxygen concentrator, both generate oxygen partial pressures well below those used in approved hyperbaric centers for UHMS-approved indications. A total of 130 consecutive patients with chronic ulcers where tested. TcPO2 was measured near the ulcer area while the patient was breathing 100% O2 at 1.4 ATA for five and 10 minutes. The average TcPO2 at 1.4 ATA after 10 minutes of O2 breathing was 161 mmHg (1-601 mmHg, standard deviation 137.91), compared to 333 mmHg in 2 ATA (1-914±232.56), p < 0.001. Each electrode tested was also statistically significant, both after five minutes of O2 breathing and after 10 minutes. We have not found evidence supporting the claim that 1.4 ATA treatment can benefit a chronic ulcer patient. The field of HBO2 is constantly evolving. We have discovered new ways to treat previously incurable ailments. Nevertheless, it is important to note that new horizons must be examined scientifically, supported by evidence-based data. The actual effect of 1.4 ATA on many ailments is yet to be determined.


Subject(s)
Hyperbaric Oxygenation , Humans , Ulcer/therapy , Blood Gas Monitoring, Transcutaneous , Quality of Life , Oxygen , Atmosphere
2.
J Environ Sci (China) ; 140: 292-305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38331509

ABSTRACT

Integrated CO2 capture and utilization (ICCU) technology requires dual functional materials (DFMs) to carry out the process in a single reaction system. The influence of the calcination atmosphere on efficiency of 4% Ru-8% Na2CO3-8% CaO/γ-Al2O3 DFM is studied. The adsorbent precursors are first co-impregnated onto alumina and calcined in air. Then, Ru precursor is impregnated and four aliquotes are subjected to different calcination protocols: static air in muffle or under different mixtures (10% H2/N2, 50% H2/N2 and N2) streams. Samples are characterized by XRD, N2 adsorption-desorption, H2 chemisorption, TEM, XPS, H2-TPD, H2-TPR, CO2-TPD and TPSR. The catalytic behavior is evaluated, in cycles of CO2 adsorption and hydrogenation to CH4, and temporal evolution of reactants and products concentrations is analyzed. The calcination atmosphere influences the physicochemical properties and, ultimately, activity of DFMs. Characterization data and catalytic performance discover the acccomodation of Ru nanoparticles disposition and basic sites is mostly influencing the catalytic activity. DFM calcined under N2 flow (RuNaCa-N2) shows the highest CH4 production (449 µmol/g at 370°C), because a well-controlled decomposition of precursors which favors the better accomodation of adsorbent and Ru phases, maximizing the specific surface area, the Ru-basic sites interface and the participation of different basic sites in the CO2 methanation reaction. Thus, the calcination in a N2 flow is revealed as the optimal calcination protocol to achieve highly efficient DFM for integrated CO2 adsorption and hydrogenation applications.


Subject(s)
Aluminum Oxide , Carbon Dioxide , Adsorption , Hydrogenation , Atmosphere , Ions
3.
J Environ Radioact ; 270: 107295, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37741154

ABSTRACT

Achieving non-destructive micrometer-scale molecular and structural analysis of uranic materials in atmospheric aerosols with traditional methodologies is a challenge. Spatially resolved analysis of uranium in actinide-bearing aerosols is critical for nuclear forensics. Although laser Raman microspectrometry enables this, for the normally low uranium concentrations in the aerosols the spectra are indiscernible (band-free) against pronounced background: trace analysis requires a push in analytical strategy. We combined laser Raman microspectrometry (utilizing two lasers (λ = 532 nm, λ = 785 nm)) with principal component analysis (PCA) and multivariate curve resolution-alternate least squares (MCR-ALS) to perform size-resolved analysis of uranium in aerosols. Uranium-specific Raman scatter bands corresponding to uranyl nitrate (860 cm-1), uranium sulphate (868 cm-1), uranyl chloride (816 cm-1) and uranium trioxide (839 cm-1) were detected. The 816 cm-1, 854 cm-1, 868 cm-1 bands were resolved by MCR-ALS and used to identify and map uranium in PM4.5 size aerosols. Based on spectral feature selection of the signature bands, PCA identified two sources of aerosol particles in model nuclear atmosphere - Sea spray for PM4.5 and re-suspension of 'nuclear' dust from a rare earth element (REE) mine for PM2.5. The MCR-ALS-resolved uranium bands showed the potential for attributive nuclear forensic analysis.


Subject(s)
Radiation Monitoring , Uranium , Uranium/analysis , Least-Squares Analysis , Principal Component Analysis , Aerosols/analysis , Atmosphere
4.
Plant Physiol Biochem ; 202: 107962, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37625252

ABSTRACT

Potato greening under light causes post-harvest loss and compromises progress being made in the potato industry. In this study, we investigated the inhibiting effects of ethanol fumigation treatment on potato greening and water loss under light. This paper also examined the different treatments on the relationship between starch granule size and potato greening. Our results suggested that ethanol fumigation combined with modified atmosphere packaging have an effective in improving the overall visual quality and maintained a higher a* value and lower chlorophyll concentration. Ethanol fumigation combined with modified atmosphere packaging treatment deterred greening and water loss compared to the alone treatment. This was due to the larger starch granule size and fewer grana lamellae around the amyloplasts. Our results provide an effectively strategy that treating potatoes with 600 µL L-1 ethanol combined with modified atmosphere packaging to delay potato greening and explain the underlying mechanism of ethanol inhibition of potato greening.


Subject(s)
Solanum tuberosum , Fumigation , Atmosphere , Ethanol/pharmacology , Water , Starch
5.
Environ Sci Technol ; 57(35): 13079-13087, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37603774

ABSTRACT

Selenium (Se) is an essential micronutrient with an important atmospheric component in its biogeochemical cycle. In this cycle, phytoplankton form volatile organic Se species, such as dimethyl selenide (CH3SeCH3) and dimethyl diselenide (CH3SeSeCH3), which are emitted into the atmosphere. To predict the atmospheric fate of these methylated Se compounds, we investigated their ozonolysis reaction. We used proton-transfer-reaction time-of-flight mass spectrometry to quantify atmospheric Se and its isotopes, and used this method in kinetic and product studies. The ozonolysis of CH3SeCH3 proceeded with a rate constant of (7.4 ± 2.2) × 10-17 cm3 molec-1 s-1 at 26 ± 1 °C with an activation energy of 50 ± 14 kJ mol-1 forming dimethyl selenoxide (CH3Se(O)CH3). Comparatively, CH3SeSeCH3 reacted with O3 at (2.6 ± 0.9) × 10-17 cm3 molec-1 s-1 at 27 ± 1 °C with an activation energy of 56 ± 5 kJ mol-1 forming methylselinic acid (CH3Se(O)OH). At 20 ppbv of O3, the atmospheric lifetimes of CH3SeCH3 and CH3SeSeCH3 are 7.6 and 22 h, respectively. The Se oxidation products were confirmed by synthesis and can serve as new atmospheric tracers of methylated Se compounds. Overall, we measured Se isotopes in real time and determined the rate constants, activation energies, and oxidation products. These mechanisms can now be used to determine the quantitative atmospheric fate of Se toward O3, and thus its distribution within a changing climate.


Subject(s)
Ozone , Selenium , Kinetics , Atmosphere , Isotopes
6.
Meat Sci ; 204: 109268, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37379705

ABSTRACT

Raw beef patties were treated with either 450 ppm of Sodium metabisulphite (SMB), or Kakadu plum powder (KPP) (0.2%, 0.4%, 0.6%, 0.8%) or no additive (negative control) and stored under Modified Atmosphere Packaging at 4 ± 1 °C for 20 days. Lipid oxidation, microbial growth rate, pH, instrumental color, and surface myoglobin were studied. Total phenolic compounds (TPC) and vitamin C of the KPP were also measured. The TPC was 13.9 g GAE/ 100 g dry weight (DW) and for vitamin C, the L-AA (l-ascorbic acid) and DHAA (dehydroascorbic acid) were 12.05 g/100 g and 0.5 g/ 100 g DW, respectively. The experimental results indicated that lipid oxidation was significantly delayed throughout the storage period for KPP-treated samples compared to both the negative control and SMB-treated samples. KPP at levels of 0.2% and 0.4% in the raw beef patties were efficient in slowing down the microbial growth rate compared to the negative control; however, SMB had a higher antimicrobial activity. The pH, the redness as well as metmyoglobin formation in the raw beef patties were reduced by the inclusion of the KPP in treated samples. A correlation (r = -0.66) was noted between KPP treatments and lipid oxidation, but there was no correlation (r = -0.006) between KPP treatment and microbial growth. This study demonstrates that KPP could be used as natural preservative for shelf-life extension of raw beef patties.


Subject(s)
Prunus domestica , Terminalia , Animals , Cattle , Ascorbic Acid/pharmacology , Lipids , Atmosphere , Oxidative Stress
7.
Nature ; 618(7967): 974-980, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258677

ABSTRACT

Phosphorus is a limiting nutrient that is thought to control oceanic oxygen levels to a large extent1-3. A possible increase in marine phosphorus concentrations during the Ediacaran Period (about 635-539 million years ago) has been proposed as a driver for increasing oxygen levels4-6. However, little is known about the nature and evolution of phosphorus cycling during this time4. Here we use carbonate-associated phosphate (CAP) from six globally distributed sections to reconstruct oceanic phosphorus concentrations during a large negative carbon-isotope excursion-the Shuram excursion (SE)-which co-occurred with global oceanic oxygenation7-9. Our data suggest pulsed increases in oceanic phosphorus concentrations during the falling and rising limbs of the SE. Using a quantitative biogeochemical model, we propose that this observation could be explained by carbon dioxide and phosphorus release from marine organic-matter oxidation primarily by sulfate, with further phosphorus release from carbon-dioxide-driven weathering on land. Collectively, this may have resulted in elevated organic-pyrite burial and ocean oxygenation. Our CAP data also seem to suggest equivalent oceanic phosphorus concentrations under maximum and minimum extents of ocean anoxia across the SE. This observation may reflect decoupled phosphorus and ocean anoxia cycles, as opposed to their coupled nature in the modern ocean. Our findings point to external stimuli such as sulfate weathering rather than internal oceanic phosphorus-oxygen cycling alone as a possible control on oceanic oxygenation in the Ediacaran. In turn, this may help explain the prolonged rise of atmospheric oxygen levels.


Subject(s)
Oceans and Seas , Phosphorus , Seawater , Atmosphere/chemistry , Carbon Dioxide/metabolism , Carbon Isotopes , Geologic Sediments/chemistry , History, Ancient , Hypoxia/metabolism , Oxygen/analysis , Oxygen/history , Oxygen/metabolism , Phosphorus/analysis , Phosphorus/history , Phosphorus/metabolism , Seawater/chemistry , Sulfates/metabolism , Carbonates/analysis , Carbonates/metabolism , Oxidation-Reduction
8.
Ambio ; 52(8): 1373-1388, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37115429

ABSTRACT

The detection of anthraquinone in tea leaves has raised concerns due to a potential health risk associated with this species. This led the European Union to impose a maximum residue limit (MRL) of 0.02 mg/kg for anthraquinone in dried tea leaves. As atmospheric contamination has been identified as one of the possible sources of anthraquinone residue, this study investigates the contamination resulting from the deposition of atmospheric anthraquinone using a global chemical transport model that accounts for the emission, atmospheric transport, chemical transformation, and deposition of anthraquinone on the surface. The largest contribution to the global atmospheric budget of anthraquinone is from residential combustion followed by the secondary formation from oxidation of anthracene. Simulations suggest that atmospheric anthraquinone deposition could be a substantial source of the anthraquinone found on tea leaves in several tea-producing regions, especially near highly industrialized and populated areas of southern and eastern Asia. The high level of anthraquinone deposition in these areas may result in residues in tea products exceeding the EU MRL. Additional contamination could also result from local tea production operations.


Subject(s)
Anthraquinones , Plant Leaves , Anthraquinones/analysis , Plant Leaves/chemistry , Food Contamination/analysis , Atmosphere , Tea/chemistry
9.
Food Chem ; 417: 135898, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36934707

ABSTRACT

The quality and safety of fresh-cut pineapple deteriorate during handling and storage due to physicochemical and microbial changes, so its preservation has attracted extensive attention. This study prepared sustained-release tea tree essential oil (TTO) solid preservative (SP) with an encapsulation efficiency of 71.45% and applied it on fresh-cut pineapple in modified atmospheres packaging (MAP). Results showed that TTO adsorbed on nano silicon dioxide (SiO2) was embedded in the starch-carboxymethyl cellulose network structure by extrusion. The hydrogen bond and hydrophobic interaction resulted in compact structure and good sustained-release performance of SP. The SP improved sensory quality and reduced nutrient loss and microbial spoilage of fresh-cut pineapple, which extended its shelf-life to four days. In addition, antioxidant capacity was enhanced with increasing antioxidant enzyme activity, antioxidant content, and 2,2-diphenyl-1-picrylhydrazine scavenging capacity and decreasing MDA accumulation. Therefore, sustained-release TTO solid preservative has potential for the preservation of fresh-cut pineapple.


Subject(s)
Ananas , Tea Tree Oil , Antioxidants , Atmosphere , Delayed-Action Preparations , Food Packaging/methods , Silicon Dioxide/chemistry
10.
Environ Geochem Health ; 45(10): 7145-7159, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36862270

ABSTRACT

With the growing concerns about the Earth's environment and human health, there has been a surge in research focused on the intersection of health and geology. This study quantitatively assesses the relationship between human health and geological factors using a new framework. The framework considers four key geological environment indicators related to health: soil, water, geological landform, and atmosphere. Results indicate that the atmospheric and water resource indicators in the study area were generally favorable, while the scores of geological landforms varied based on topography. The study also found that the selenium content in the soil greatly exceeded the local background value. Our research underscores the importance of geological factors on human health, establishes a new health-geological assessment model, and provides a scientific foundation for local spatial planning, water resource development, and land resource management. However, due to varying geological conditions worldwide, the framework and indicators for health geology may need to be adjusted accordingly.


Subject(s)
Geology , Selenium , Humans , Soil , Atmosphere , Geological Phenomena
11.
Environ Pollut ; 318: 120803, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36503012

ABSTRACT

The imbalance of atmospheric, terrestrial and aquatic phosphorus budgets remains a research conundrum and global concern. In this work, the uptake, distribution, bioaccumulation and emission of organophosphate esters (OPEs) by clove trees (Syzygium aromaticum), lemon trees (Citrus limon) and cape jasmine trees (Gardenia jasminoides var. fortuniana) was investigated as conduits for phosphorus transfer or sinks and sources. The objective was to assess the role OPEs in soils play as atmospheric phosphorus sources through plant bioaccumulation and emission. Results demonstrated OPEs in experimental soil plots ranging from 0.01 to 81.0 ng g-1 dry weight, were absorbed and transported through plants to the atmosphere. The total emission of OPEs varied greatly from 0.2 to 588.9 pg g-1 L-1 h-1, with a mean of 47.6 pg g-1 L-1 h-1. There was a negative linear relationship between the concentrations of total phosphorus and four OPEs, tri-iso-butyl phosphate, tri-n-butyl phosphate, tris (2-chloroisopropyl) phosphate and tripentyl phosphate. Trimethyl phosphate levels were positively correlated with total nitrogen, and the concentrations of tri-iso-butyl phosphate, tri-n-butyl phosphate, tris (2-chloroisopropyl) phosphate and tripentyl phosphate decreased along with available potassium in leaves after 72 h. There was a significantly positive linear relationship between higher emission concentrations of OPEs and the emission factor of OPEs concentration (F = 4.2, P = 0.002), with lower emissions of OPEs and the bioaccumulation of OPEs in leaves (F = 4.8, P = 0.004). OPEs releases to the atmosphere were enriched in aerosols, and participate in atmospheric chemical reactions like photolysis, thereby affecting the phosphorus balance and cycling in the atmosphere.


Subject(s)
Flame Retardants , Phosphorus , Bioaccumulation , Environmental Monitoring/methods , Flame Retardants/analysis , Esters , Organophosphates , Phosphates , Soil , Atmosphere , China
12.
Environ Sci Process Impacts ; 25(2): 151-164, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36004543

ABSTRACT

As scientists engage in research motivated by climate change and the impacts of pollution on air, water, and human health, we increasingly recognize the need for the scientific community to improve communication and knowledge exchange across disciplines to address pressing and outstanding research questions holistically. Our professional paths have crossed because our research activities focus on the chemical reactivity of Fe-containing minerals in air and water, and at the air-sea interface. (Photo)chemical reactions driven by Fe can take place at the surface of the particles/droplets or within the condensed phase. The extent and rates of these reactions are influenced by water content and biogeochemical activity ubiquitous in these systems. One of these reactions is the production of reactive oxygen species (ROS) that cause damage to respiratory organs. Another is that the reactivity of Fe and organics in aerosol particles alter surficial physicochemical properties that impact aerosol-radiation and aerosol-cloud interactions. Also, upon deposition, aerosol particles influence ocean biogeochemical processes because micronutrients such as Fe or toxic elements such as copper become bioavailable. We provide a perspective on these topics and future research directions on the reactivity of Fe in atmospheric aerosol systems, from sources to short- and long-term impacts at the sinks with emphasis on needs to enhance the predictive power of atmospheric and ocean models.


Subject(s)
Air Pollution , Iron , Humans , Iron/chemistry , Water , Atmosphere/chemistry , Aerosols/chemistry , Oceans and Seas
13.
Article in English | MEDLINE | ID: mdl-36497918

ABSTRACT

Studies show that forests are one of the main recreational destinations. This can be explained by their beneficial effects on the health of their visitors, which can be attributed to compounds from the terpene group. The aim of this research was to determine the chemical composition of air in the interiors of Nemoral Scots pine forests and submountainous beech forests, with the determination of compounds of the terpene group. Samples of organic compounds present in the air were collected with the use of Tenax TA sorbent tubes. The process of separation, identification, and determination of the extracted organic compounds was carried out with the use of the gas chromatography technique integrated with a flame ionization detector. Additional identification of the extracted compounds was carried out with the use of GC coupled with mass spectrometry. The most abundant group of compounds was the aliphatic hydrocarbons, both saturated (linear and branched) and unsaturated (terpenes). Carbonyl compounds were also found in the collected samples, but they constituted no more than 10% of all compounds present on the chromatograms. The concentrations of terpenes and terpenoids in the forest atmosphere varied from 10 to 74 µg·m-3, representing on average 33% of the total volatile organic compounds.


Subject(s)
Fagus , Volatile Organic Compounds , Forests , Volatile Organic Compounds/analysis , Atmosphere/analysis , Flame Ionization , Terpenes/analysis , Terpenes/chemistry
14.
Sci Total Environ ; 851(Pt 2): 158234, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36007635

ABSTRACT

Pollen is the most common cause of seasonal allergies, affecting over 33 % of the European population, even when considering only grasses. Informing the population and clinicians in real-time about the actual presence of pollen in the atmosphere is essential to reduce its harmful health and economic impact. Thus, there is a growing network of automatic particle analysers, and the reproducibility and transferability of implemented models are recommended since a reference dataset for local pollen of interest needs to be collected for each device to classify pollen, which is complex and time-consuming. Therefore, it would be beneficial to incorporate the reference dataset collected from other devices in different locations. However, it must be considered that laser-induced data are prone to device-specific noise due to laser and detector sensibility. This study collected data from two Rapid-E bioaerosol identifiers in Serbia and Italy and implemented a multi-modal convolutional neural network for pollen classification. We showed that models lost their performance when trained on data from one and tested on another device, not only in terms of the recognition ability but also in comparison with the manual measurements from Hirst-type traps. To enable pollen classification with just one model in both study locations, we first included the missing pollen classes in the dataset from the other study location, but it showed poor results, implying that data of one pollen class from different devices are more different than data of different pollen classes from one device. Combining all available reference data in a single model enabled the classification of a higher number of pollen classes in both study locations. Finally, we implemented a domain adaptation method, which improved the recognition ability and the correlations of transferred models only for several pollen classes.


Subject(s)
Neural Networks, Computer , Pollen , Reproducibility of Results , Atmosphere , Poaceae , Allergens
15.
Environ Sci Technol ; 56(12): 7588-7597, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35544717

ABSTRACT

Online detection of bioaerosols based on the light-induced fluorescence (LIF) technique is still challenging due to the complexity of bioaerosols and the external/internal mixing with nonbiological fluorescent compositions. Although many lab studies have measured the fluorescence properties of the biological and nonbiological materials, there is still a scarcity of knowledge of the sources of fluorescent aerosol particles (FAP) in the ambient atmosphere. Here, we fill this gap by combining the online measurement of an LIF-based instrument (wideband integrated bioaerosol sensor, WIBS, 0.8-20 µm) with the measurements of typical biological matter and the compositions related to major nonbiological FAP from May to July in the megacity Beijing. We find that fungal spores and pollen are widely observed in all types of FAP using a WIBS. Bacteria are suggested to be associated with the fine mode FAP (excitation/emission: 280 nm/310-400 nm; 0.8-3 µm). The FL-B and -BC particles (emission in 420-650 nm) contributing the most to FAP are strongly associated with humic-like substances, dust, burning and combustion emissions, and secondary organic aerosols (SOA). This study provides a guide for interpreting individual FAP measured by LIF instruments and points to the applicability of online LIF instruments to characterize nonbiological compositions including SOA.


Subject(s)
Air Pollutants , Environmental Monitoring , Aerosols/analysis , Air Pollutants/analysis , Atmosphere , Bacteria , Environmental Monitoring/methods , Particulate Matter/analysis , Pollen/chemistry
16.
Molecules ; 27(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35566181

ABSTRACT

The aim of this study was to analyze the microbiome of carrot (Daucus carota subsp. sativus) subjected to minimal pre-treatment (rinsing in organic acid solution) and packaging in a high-oxygen modified atmosphere, and then stored for 17 days under refrigeration conditions (4 °C). The highest levels of bacteria in the carrot microbiome were characterized, at almost 78%, by bacteria belonging to the Enterobacteriaceae and Pseudomonadaceae families. Rinsing in a solution of ascorbic and citric acids resulted in the improvement of microbiological quality in the first day of storage. However, the use of a high-oxygen modified atmosphere extended the shelf life of the minimally processed product. Compared to carrots stored in air, those stored in high oxygen concentration were characterized by a greater ratio of bacteria belonging to the Serratia and Enterobacter genera, and a lower ratio belonging to the Pseudomonas and Pantoea genera. Moreover, the ß-biodiversity analysis confirmed that the oxygen concentration was the main factor influencing the differentiation of the metabiomes of the stored carrots. The bacterial strains isolated from carrots identified by molecular methods were mostly pathogenic or potentially pathogenic microorganisms. Neither the minimal pre-treatment nor packaging in high-oxygen atmosphere was able to eliminate the threat of pathogenic bacteria emerging in the product.


Subject(s)
Daucus carota , Microbiota , Atmosphere , Bacteria/genetics , Carbon Dioxide/analysis , Colony Count, Microbial , Food Microbiology , Food Packaging/methods , Food Preservation/methods , Humans , Oxygen/analysis
17.
Front Public Health ; 10: 778253, 2022.
Article in English | MEDLINE | ID: mdl-35372238

ABSTRACT

Background: Promoting technology diffusion and utilization is a key measure to address the great disparity in technical capacity within integrated health systems. However, even the effectiveness and appropriateness regarding technology has been widely recognized, its diffusion and utilization are still stagnant. The mechanisms that influence the technology from being recognized to being widely applied in practice remain largely unknown. Purpose: Taking hepatic contrast-enhanced ultrasound (CEUS) as an example, this study aimed to investigate the comprehensive influencing mechanism of organizational atmosphere and organizational practice on the knowledge, attitude, and practice toward diffusion and utilization of hepatic CEUS in the medical alliance. Methods: Based on the integration of organizational ready for change (ORC) and knowledge-attitude-practice (KAP), a structured questionnaire was developed. A multistage random sampling method was applied to investigate physicians who directly use CEUS working at the liver disease-related departments of sampled health institutions. Structural equation modeling (SEM) was used to verify the proposed hypotheses, and determine the relationship between the factors. Results: In total, 292 physicians were included. SEM results demonstrated that knowledge influenced both attitude and practice, while attitude positively predicted practice. Organizational practice and organizational atmosphere associated positively with each other. Organizational atmosphere positively affected the physicians' attitude toward CEUS diffusion and utilization (ß = 0.425, p < 0.001), while organizational practice positively affected corresponding knowledge (ß = 0.423, p < 0.001) and practice (ß = 0.275, p < 0.001). Additionally, there was a partial mediating effect between organizational practice and physicians' CEUS diffusion and utilization behavior. Conclusion: By verifying the influencing mechanism of organizational atmosphere and organizational practice on the physicians' KAP of hepatic CEUS diffusion and utilization, this study benefit tailoring strategies for promoting technology diffusion and utilization within medical alliance. It is recommended to develop an organizational atmosphere of advocating technology innovation, establish organizational support mechanism (SM) with multiple concrete supporting countermeasures, and so on.


Subject(s)
Health Knowledge, Attitudes, Practice , Liver/diagnostic imaging , Physicians , Ultrasonography , Atmosphere , Contrast Media , Humans , Surveys and Questionnaires
18.
Chemosphere ; 297: 134145, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35240150

ABSTRACT

Non-thermal plasma (NTP) technology is an emerging advanced oxidation process, which has shown excellent performances in soil organic pollution remediation. Dissolved organic matter (DOM) is one of the most important components in soil, however, investigations on the structural and compositional changes of DOM during NTP process are lacking. Therefore, in the present study, we systematically investigated the soil DOM changes under different discharge voltages, atmospheres or soils with different moisture contents. The results indicated that after NTP treatment, substantial soil organic matters were released and dissolved in water. For instance, the DOC value of DOM increased dramatically from 21.1 to 197.3 mg L-1 after being discharged for 120 min under the discharge voltage of 80 V. The UV-Vis characterization results indicated the significant increase of hydrophilicity, and decreases of aromaticity and molecular weight for soil DOM during the initial discharge period. However, long time discharge resulted in slight recovery of aromaticity and hydrophobicity, possibly due to the dehydration and re-condensation of small molecules. EEM-FRI results indicated that the total fluorescence intensity of DOM decreased obviously, indicating the destruction of fluorescent dissolved organic matter (FDOM). While the proportions of humic-like and microbial byproduct-like substances increased, indicating that those substances were more recalcitrant under NTP treatment compared with fulvic acid-like and aromatic protein-like substances. Four fluorescence components were identified by PARAFAC, and microbial and terrestrial humic-like substances were more difficult to degrade compared to other humic-like substances and fulvic acid-like substances. Additionally, discharge voltage and atmosphere had great influences on DOM changes, while the impact of soil moisture content was not significant. Overall, this study provided insights into the DOM changes during NTP process, which is valuable for more comprehensive evaluation of the NTP technique application in practical soil remediation.


Subject(s)
Dissolved Organic Matter , Soil , Atmosphere , Humic Substances/analysis , Soil/chemistry , Spectrometry, Fluorescence
19.
Nat Commun ; 13(1): 88, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013214

ABSTRACT

Iodine has a significant impact on promoting the formation of new ultrafine aerosol particles and accelerating tropospheric ozone loss, thereby affecting radiative forcing and climate. Therefore, understanding the long-term natural evolution of iodine, and its coupling with climate variability, is key to adequately assess its effect on climate on centennial to millennial timescales. Here, using two Greenland ice cores (NEEM and RECAP), we report the Arctic iodine variability during the last 127,000 years. We find the highest and lowest iodine levels recorded during interglacial and glacial periods, respectively, modulated by ocean bioproductivity and sea ice dynamics. Our sub-decadal resolution measurements reveal that high frequency iodine emission variability occurred in pace with Dansgaard/Oeschger events, highlighting the rapid Arctic ocean-ice-atmosphere iodine exchange response to abrupt climate changes. Finally, we discuss if iodine levels during past warmer-than-present climate phases can serve as analogues of future scenarios under an expected ice-free Arctic Ocean. We argue that the combination of natural biogenic ocean iodine release (boosted by ongoing Arctic warming and sea ice retreat) and anthropogenic ozone-induced iodine emissions may lead to a near future scenario with the highest iodine levels of the last 127,000 years.


Subject(s)
Atmosphere/analysis , Climate Change/history , Ice Cover/chemistry , Iodine/analysis , Seawater/analysis , Arctic Regions , Atmosphere/chemistry , Greenland , History, 21st Century , History, Ancient , History, Medieval , Humans , Iodine/chemistry , Ozone/analysis , Ozone/chemistry , Seawater/chemistry
20.
Sci Total Environ ; 814: 152806, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34982985

ABSTRACT

Identifying the origin of bioaerosols is of central importance in many biological disciplines, such as human health, agriculture, forestry, aerobiology and conservation. Modelling sources, transportation pathways and sinks can reveal how bioaerosols vary in the atmosphere and their environmental impact. Grass pollen are particularly important due to their widely distributed source areas, relatively high abundance in the atmosphere and high allergenicity. Currently, studies are uncertain regarding sampler representability between distance and sources for grass pollen. Using generalized linear modelling, this study aimed to analyse this relationship further by answering the question of distance-to-source area contribution. Grass pollen concentrations were compared between urban and rural locations, located 6.4 km apart, during two years in Worcestershire, UK. We isolated and refined vegetation areas at 100 m × 100 m using the 2017 CEH Crop Map and conducted atmospheric modelling using HYSPLIT to identify which source areas could contribute pollen. Pollen concentrations were then modelled with source areas and meteorology using generalized linear mixed-models with three temporal variables as random variation. We found that the Seasonal Pollen Integral for grass pollen varied between both years and location, with the urban location having higher levels. Day of year showed higher temporal variation than the diurnal or annual variables. For the urban location, grass source areas within 30 km had positive significant effects in predicting grass pollen concentrations, while source areas within 2-10 km were important for the rural one. The source area differential was likely influenced by an urban-rural gradient that caused differences in the source area contribution. Temperature had positive highly significant effects on both locations while precipitation affected only the rural location. Combining atmospheric modelling, vegetation source maps and generalized linear modelling was found to be a highly accurate tool to identify transportation pathways of bioaerosols in landscape environments.


Subject(s)
Allergens , Pollen , Atmosphere , Humans , Poaceae , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL