Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Bacteriol ; 204(2): e0032621, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34807725

ABSTRACT

Bacteria have evolved a variety of enzymes to eliminate endogenous or host-derived oxidative stress factors. The Dps protein, first identified in Escherichia coli, contains a ferroxidase center, and protects bacteria from reactive oxygen species damage. Little is known of the role of Dps-like proteins in bacterial pathogenesis. Actinobacillus pleuropneumoniae causes pleuropneumonia, a respiratory disease of swine. The A. pleuropneumoniae ftpA gene is upregulated during shifts to anaerobiosis, in biofilms and, as found in this study, in the presence of H2O2. An A. pleuropneumoniae ftpA deletion mutant (ΔftpA) had increased H2O2 sensitivity, decreased intracellular viability in macrophages, and decreased virulence in a mouse infection model. Expression of ftpA in an E. coli dps mutant restored wild-type H2O2 resistance. FtpA possesses a conserved ferritin domain containing a ferroxidase site. Recombinant rFtpA bound and oxidized Fe2+ reversibly. Under aerobic conditions, the viability of an ΔftpA mutant was reduced compared with the wild-type strain after extended culture, upon transition from anaerobic to aerobic conditions, and upon supplementation with Fenton reaction substrates. Under anaerobic conditions, the addition of H2O2 resulted in a more severe growth defect of ΔftpA than it did under aerobic conditions. Therefore, by oxidizing and mineralizing Fe2+, FtpA alleviates the oxidative damage mediated by intracellular Fenton reactions. Furthermore, by mutational analysis, two residues were confirmed to be critical for Fe2+ binding and oxidization, as well as for A. pleuropneumoniae H2O2 resistance. Taken together, the results of this study demonstrate that A. pleuropneumoniae FtpA is a Dps-like protein, playing critical roles in oxidative stress resistance and virulence. IMPORTANCE As a ferroxidase, Dps of Escherichia coli can protect bacteria from reactive oxygen species damage, but its role in bacterial pathogenesis has received little attention. In this study, FtpA of the swine respiratory pathogen A. pleuropneumoniae was identified as a new Dps-like protein. It facilitated A. pleuropneumoniae resistance to H2O2, survival in macrophages, and infection in vivo. FtpA could bind and oxidize Fe2+ through two important residues in its ferroxidase site and protected the bacteria from oxidative damage mediated by the intracellular Fenton reaction. These findings provide new insights into the role of the FtpA-based antioxidant system in the pathogenesis of A. pleuropneumoniae, and the conserved Fe2+ binding ligands in Dps/FtpA provide novel drug target candidates for disease prevention.


Subject(s)
Actinobacillus pleuropneumoniae/genetics , Actinobacillus pleuropneumoniae/metabolism , Bacterial Proteins/metabolism , Oxidation-Reduction , Stress, Physiological/genetics , Actinobacillus pleuropneumoniae/chemistry , Animals , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Escherichia coli Proteins/genetics , Female , Iron/metabolism , Mice , Reactive Oxygen Species , Virulence/genetics
2.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830146

ABSTRACT

The widespread of carbapenem-resistant Acinetobacter baumannii (CRAB) is of great concern in clinical settings worldwide. It is urgent to develop new therapeutic agents against this pathogen. This study aimed to evaluate the therapeutic potentials of compound 62520, which has been previously identified as an inhibitor of the ompA promoter activity of A. baumannii, against CRAB isolates, both in vitro and in vivo. Compound 62520 was found to inhibit the ompA expression and biofilm formation in A. baumannii ATCC 17978 at sub-inhibitory concentrations in a dose-dependent manner. These inhibitory properties were also observed in clinical CRAB isolates belonging to sequence type (ST) 191. Additionally, compound 62520 exhibited a bacteriostatic activity against clinical clonal complex (CC) 208 CRAB isolates, including ST191, and ESKAPE pathogens. This bacteriostatic activity was not different between STs of CRAB isolates. Bacterial clearance was observed in mice infected with bioimaging A. baumannii strain 24 h after treatment with compound 62520. Compound 62520 was shown to significantly increase the survival rates of both immunocompetent and neutropenic mice infected with A. baumannii ATCC 17978. This compound also increased the survival rates of mice infected with clinical CRAB isolate. These results suggest that compound 62520 is a promising scaffold to develop a novel therapeutic agent against CRAB infections.


Subject(s)
Acinetobacter Infections/prevention & control , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Gene Expression Regulation, Bacterial/drug effects , Acinetobacter Infections/microbiology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/physiology , Animals , Anti-Bacterial Agents/administration & dosage , Bacterial Outer Membrane Proteins/metabolism , Biofilms/drug effects , Biofilms/growth & development , Drug Resistance, Multiple, Bacterial/genetics , Female , Humans , Mice, Inbred BALB C , Microbial Sensitivity Tests/methods , Promoter Regions, Genetic/genetics , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/pharmacology , Survival Analysis
3.
J Microbiol ; 59(9): 871-878, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34449059

ABSTRACT

Anti-virulence therapeutic strategies are promising alternatives against drug-resistant pathogens. Outer membrane protein A (OmpA) plays a versatile role in the pathogenesis and antimicrobial resistance of Acinetobacter baumannii. Therefore, OmpA is an innovative target for anti-virulence therapy against A. baumannii. This study aimed to develop a high-throughput screening (HTS) system to discover small molecules inhibiting the ompA promoter activity of A. baumannii and screen chemical compounds using the bacterial growth-based HTS system. The ompA promoter and open reading frame of nptI fusion plasmids that controlled the expression of nptI encoding resistance to kanamycin by the ompA promoter were constructed and then transformed into A. baumannii ATCC 17978. This reporter strain was applied to screen small molecules inhibiting the ompA promoter activity in a chemical library. Of the 7,520 chemical compounds, 15 exhibited ≥ 70% growth inhibition of the report strain cultured in media containing kanamycin. Three compounds inhibited the expression of ompA and OmpA in the outer membrane of A. baumannii ATCC 17978, which subsequently reduced biofilm formation. In conclusion, our reporter strain is useful for large-scale screening of small molecules inhibiting the ompA expression in A. baumannii. Hit compounds identified by the HTS system are promising scaffolds to develop novel therapeutics against A. baumannii.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Biofilms/drug effects , Promoter Regions, Genetic/drug effects , Small Molecule Libraries/pharmacology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/physiology , Bacterial Outer Membrane Proteins/genetics , Drug Evaluation, Preclinical , Gene Expression Regulation, Bacterial/drug effects , Humans , Virulence/drug effects
4.
Int J Mol Sci ; 22(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205216

ABSTRACT

Two independent, complementary methods of structural analysis were used to elucidate the effect of divalent magnesium and iron cations on the structure of the protective Dps-DNA complex. Small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-EM) demonstrate that Mg2+ ions block the N-terminals of the Dps protein preventing its interaction with DNA. Non-interacting macromolecules of Dps and DNA remain in the solution in this case. The subsequent addition of the chelating agent (EDTA) leads to a complete restoration of the structure of the complex. Different effect was observed when Fe cations were added to the Dps-DNA complex; the presence of Fe2+ in solution leads to the total complex destruction and aggregation without possibility of the complex restoration with the chelating agent. Here, we discuss these different responses of the Dps-DNA complex on the presence of additional free metal cations, investigating the structure of the Dps protein with and without cations using SAXS and cryo-EM. Additionally, the single particle analysis of Dps with accumulated iron performed by cryo-EM shows localization of iron nanoparticles inside the Dps cavity next to the acidic (hydrophobic) pore, near three glutamate residues.


Subject(s)
Bacterial Outer Membrane Proteins/ultrastructure , DNA/ultrastructure , Escherichia coli Proteins/ultrastructure , Iron/chemistry , Magnesium/chemistry , Amino Acid Sequence/drug effects , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Cations/chemistry , Cryoelectron Microscopy , DNA/chemistry , DNA/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/ultrastructure , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Scattering, Small Angle , X-Ray Diffraction
5.
Nat Commun ; 12(1): 2460, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33911082

ABSTRACT

It is well established that antibiotic treatment selects for resistance, but the dynamics of this process during infections are poorly understood. Here we map the responses of Pseudomonas aeruginosa to treatment in high definition during a lung infection of a single ICU patient. Host immunity and antibiotic therapy with meropenem suppressed P. aeruginosa, but a second wave of infection emerged due to the growth of oprD and wbpM meropenem resistant mutants that evolved in situ. Selection then led to a loss of resistance by decreasing the prevalence of low fitness oprD mutants, increasing the frequency of high fitness mutants lacking the MexAB-OprM efflux pump, and decreasing the copy number of a multidrug resistance plasmid. Ultimately, host immunity suppressed wbpM mutants with high meropenem resistance and fitness. Our study highlights how natural selection and host immunity interact to drive both the rapid rise, and fall, of resistance during infection.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Meropenem/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Selection, Genetic/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Humans , Hydro-Lyases/genetics , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Middle Aged , Plasmids/genetics , Porins/genetics , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/immunology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Sequence Analysis, DNA , Shock, Hemorrhagic/microbiology
6.
Arch Microbiol ; 202(10): 2711-2726, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32728830

ABSTRACT

In recent years, bioremediation is considered as an efficient method to remove the pollutants from the industrial wastewater. In this study, quantitative gene expressions (Real-time RT-PCR) of mtr gene cluster (mtrA, mtrB, mtrC, mtrD, mtrE, mtrF and omcA) in five different uranium concentrations (0.1, 0.25, 0.5, 1 and 2 mM) were performed with ICP and microscopic live cell counting analysis under anaerobic condition, by Shewanella RCRI7 as a native bacterium. The results indicated that the amount of uranium removal and live-cell counting were decreased in the higher uranium concentrations (1 and 2 mM), due to the uranium toxicity, suggesting 0.5 mM as the optimum uranium concentration for Shewanella RCRI7 resistance. The expression of mtrCED and omcA genes presented increasing trend in the lower uranium concentrations (0.1, 0.25 and 0.5 mM) and a decreasing trend in 1 and 2 mM, while mtrABF, presented an inverse pattern, proving the alternative role of mtrF for mtrC and omcA, as the substantial multiheme cytochromes in Extracellular Electron Transfer (EET) pathway. These data are a proof of these gene vital roles in the EET pathway, proposing them for genetic engineering toward EET optimization, as the certain pathway in heavy metal bioremediation process.


Subject(s)
Biodegradation, Environmental , Membrane Transport Proteins/genetics , Shewanella/genetics , Shewanella/metabolism , Uranium/analysis , Water Pollutants, Chemical/analysis , Bacterial Outer Membrane Proteins/genetics , Cytochrome c Group/genetics , Electron Transport/genetics , Multigene Family/genetics , Oxidation-Reduction , Wastewater/chemistry , Water Pollution/analysis
7.
BMC Infect Dis ; 20(1): 507, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32660436

ABSTRACT

BACKGROUND: Group A streptococcus (GAS) is an important human pathogen responsible for a broad range of infections. Epidemiological surveillance has been crucial to detect changes in the geographical and temporal variation of the disease pattern. The objective of this study was to investigate the molecular epidemiological characteristics and antimicrobial resistance of GAS isolates from patients in Children's Hospital in Beijing. METHODS: From 2016 to 2017, pharyngeal swab samples were collected from the outpatients in Children's Hospital, Capital Institute of Pediatrics, who were diagnosed with scarlet fever. Antimicrobial susceptibility test was performed according to the distribution of conventional antibiotics and Clinical and Laboratory Standards Institute (CLSI) recommendations. The distribution of the macrolide-resistance genes (ermB, ermA, mefA), emm (M protein-coding gene) typing, and superantigens (SAg) gene profiling were examined by polymerase chain reaction (PCR). RESULTS: A total of 297 GAS isolates were collected. The susceptibility of the isolates to penicillin, ceftriaxone, and levofloxacin was 100%. The resistance rate to erythromycin and clindamycin was 98.3 and 96.6%, respectively. The dominant emm types were emm12 (65.32%), emm1 (27.61%), emm75 (2.69%), and emm89 (1.35%). Of the 297 isolates, 290 (97.64%) carried the ermB gene, and 5 (1.68%) carried the mefA gene, while none carried the ermA gene. The most common superantigen genes identified from GAS isolates were smeZ (96.97%), speC (92.59%), speG (91.58%), ssa (85.52%), speI (54.55%), speH (52.19%), and speA (34.34%). Isolates with the genotype emm1 possessed speA, speC, speG, speJ, speM, ssa, and smeZ, while emm12 possessed speC, speG, speH, speI, speM, ssa, and smeZ superantigens. CONCLUSIONS: The prevalent strain of GAS isolates in Beijing has a high resistance rate to macrolides; however, penicillin can still be the preferred antibiotic for treatment. Erythromycin resistance was predominantly mediated by ermB. The common emm types were emm12 and emm1. There was a correlation between emm and the superantigen gene. Thus, long-term monitoring and investigation of the emm types and superantigen genes of GAS prevalence are imperative.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Penicillins/therapeutic use , Scarlet Fever/drug therapy , Scarlet Fever/epidemiology , Streptococcus pyogenes/immunology , Adolescent , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Beijing/epidemiology , Cardiopulmonary Resuscitation , Carrier Proteins/genetics , Child , Child, Preschool , Erythromycin/therapeutic use , Female , Hospitals, Pediatric , Humans , Infant , Male , Microbial Sensitivity Tests , Scarlet Fever/microbiology , Streptococcus pyogenes/isolation & purification , Superantigens/genetics
8.
Eur J Clin Microbiol Infect Dis ; 39(12): 2361-2371, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32676802

ABSTRACT

Our study aimed to investigate the epidemiological and molecular characteristics of isolates collected from Group A Streptococcus (GAS) infections in children in Beijing China during the year 2019. Emm typing, superantigens, and erythromycin resistance genotypes were determined by PCR. Antimicrobial susceptibility testing was performed as recommended by Clinical Laboratory Standards Institute (CLSI). A total of 271 GAS isolates were collected. Thirteen different emm types, including 31 subtypes, were identified. The most prevalent emm types were emm12 (52.77%), emm1 (36.9%), emm3.1 (2.95%), and emm75.0 (2.95%). Two variant subtypes, STC36.0 and STG840.2, were identified. There was no difference in the portion of emm12 and emm1 isolates in scarlet fever, impetigo, and psoriasis. The majority of superantigens detected were smeZ (94.46%), speC (91.14%), and ssa (74.91%), followed by speH (56.46%), speI (45.76%), speJ (36.9%), and speA (34.32%). More scarlet fever isolates harbored speA (35.6%) and speJ (38.4%), more psoriasis isolates harbored speI (57.9%), and more impetigo isolates harbored ssa (89.7%). Isolates were universally susceptible to penicillin and resistant to erythromycin (94.83%). Moreover, 89.67% erythromycin resistance isolates harbored the ermB gene. The erythromycin resistance rate of the isolates from the three diseases was different. Scarlet fever is the common streptococcal infectious disease in dermatology. Emm12 and emm1 were the most prevalent emm types. The most prevalent superantigens detected were smeZ, spec, and ssa. There is association between diversity of superantigens and disease manifestation. Hence, continuous surveillance of GAS molecular epidemiological characterizations in different diseases is needed.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Scarlet Fever/drug therapy , Scarlet Fever/epidemiology , Streptococcus pyogenes/immunology , Adolescent , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Beijing/epidemiology , Child , Child, Preschool , Erythromycin/therapeutic use , Exotoxins/genetics , Female , Hospitals, Pediatric , Humans , Infant , Infant, Newborn , Male , Membrane Proteins/genetics , Microbial Sensitivity Tests , Penicillins/therapeutic use , Scarlet Fever/genetics , Scarlet Fever/microbiology , Streptococcus pyogenes/isolation & purification , Superantigens/genetics
9.
Enzyme Microb Technol ; 138: 109555, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32527525

ABSTRACT

Hydroxy- or ketone- functionalized fatty acid methyl esters (FAMEs) are important compounds for production of pharmaceuticals, vitamins, cosmetics or dietary supplements. Biocatalysis through enzymatic cascades has drawn attention to the efficient, sustainable, and greener synthetic processes. Furthermore, whole cell catalysts offer important advantages such as cofactor regeneration by cell metabolism, omission of protein purification steps and increased enzyme stability. Here, we report the first whole cell catalysis employing an engineered P450 BM3 variant and cpADH5 coupled cascade reaction for the biosynthesis of hydroxy- and keto-FAMEs. Firstly, P450 BM3 was engineered through the KnowVolution approach yielding P450 BM3 variant YE_M1_2, (R47S/Y51W/T235S/N239R/I401 M) which exhibited boosted performance toward methyl hexanoate. The initial oxidation rate of YE_M1_2 toward methyl hexanoate was determined to be 23-fold higher than the wild type enzyme and a 1.5-fold increase in methyl 3-hydroxyhexanoate production was obtained (YE_M1_2; 2.75 mM and WT; 1.8 mM). Subsequently, the whole cell catalyst for the synthesis of methyl 3-hydroxyhexanoate and methyl 3-oxohexanoate was constructed by combining the engineered P450 BM3 and cpADH5 variants in an artificial operon. A 2.06 mM total product formation was achieved by the whole cell catalyst including co-expressed channel protein, FhuA and co-solvent addition. Moreover, the generated whole cell biocatalyst also accepted methyl valerate, methyl heptanoate as well as methyl octanoate as substrates and yielded ω-1 ketones as the main product.


Subject(s)
Alcohol Dehydrogenase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Esters/metabolism , Fatty Acids/biosynthesis , Alcohol Dehydrogenase/genetics , Bacillus megaterium/enzymology , Bacillus megaterium/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Biocatalysis , Candida parapsilosis/enzymology , Candida parapsilosis/genetics , Caproates/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Directed Molecular Evolution , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Esters/chemistry , Fatty Acids/chemistry , Hydroxylation , Operon , Substrate Specificity
10.
mBio ; 11(3)2020 06 23.
Article in English | MEDLINE | ID: mdl-32576675

ABSTRACT

Escherichia coli secretes high-affinity Fe3+ chelators to solubilize and transport chelated Fe3+ via specific outer membrane receptors. In microaerobic and anaerobic growth environments, where the reduced Fe2+ form is predominant, ferrous transport systems fulfill the bacterial need for iron. Expression of genes coding for iron metabolism is controlled by Fur, which when bound to Fe2+ acts as a repressor. Work carried out here shows that the constitutively activated EnvZ/OmpR two-component system, which normally controls expression of the ompC and ompF porin genes, dramatically increases the intracellular pool of accessible iron, as determined by whole-cell electron paramagnetic resonance spectroscopy, by inducing the OmpC/FeoB-mediated ferrous transport pathway. Elevated levels of intracellular iron in turn activated Fur, which inhibited the ferric transport pathway but not the ferrous transport pathway. The data show that the positive effect of constitutively activated EnvZ/OmpR on feoB expression is sufficient to overcome the negative effect of activated Fur on feoB In a tonB mutant, which lacks functional ferric transport systems, deletion of ompR severely impairs growth on rich medium not supplemented with iron, while the simultaneous deletion of ompC and ompF is not viable. These data, together with the observation of derepression of the Fur regulon in an OmpC mutant, show that the porins play an important role in iron homeostasis. The work presented here also resolves a long-standing paradoxical observation of the effect of certain mutant envZ alleles on iron regulon.IMPORTANCE The work presented here solved a long-standing paradox of the negative effects of certain missense alleles of envZ, which codes for kinase of the EnvZ/OmpR two-component system, on the expression of ferric uptake genes. The data revealed that the constitutive envZ alleles activate the Feo- and OmpC-mediated ferrous uptake pathway to flood the cytoplasm with accessible ferrous iron. This activates the ferric uptake regulator, Fur, which inhibits ferric uptake system but cannot inhibit the feo operon due to the positive effect of activated EnvZ/OmpR. The data also revealed the importance of porins in iron homeostasis.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Iron/metabolism , Multienzyme Complexes/metabolism , Porins/metabolism , Trans-Activators/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Biological Transport/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Homeostasis , Multienzyme Complexes/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Trans-Activators/genetics
11.
Hum Vaccin Immunother ; 16(10): 2537-2547, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32118511

ABSTRACT

Chlamydia trachomatis is the most common bacterial sexually-transmitted pathogen for which there is no vaccine. We previously demonstrated that the degree of phosphate substitution in an aluminum hydroxide adjuvant in a TLR-4-based C. trachomatis serovar E (Ser E) recombinant major outer membrane protein (rMOMP) formulation had an impact on the induced antibody titers and IFN-γ levels. Here, we have extended these observations using outbreed CD-1 mice immunized with C. trachomatis Ser E rMOMP formulations to evaluate the impact on bacterial challenge. The results confirmed that the rMOMP vaccine containing the adjuvant with the highest phosphate substitution induced the highest neutralizing antibody titers while the formulation with the lowest phosphate substitution induced the highest IFN-γ production. The most robust protection was observed in mice vaccinated with the formulation containing the adjuvant with the lowest phosphate substitution, as shown by the number of mice with positive vaginal cultures, number of positive cultures and number of C. trachomatis inclusion forming units recovered. This is the first report showing that vaccination of an outbred strain of mice with rMOMP induces protection against a vaginal challenge with C. trachomatis.


Subject(s)
Chlamydia Infections , Chlamydia trachomatis , Animals , Antibodies, Bacterial , Bacterial Outer Membrane Proteins/genetics , Bacterial Vaccines , Chlamydia Infections/prevention & control , Female , Mice , Phosphates , Serogroup
12.
Pol J Microbiol ; 69(3): 301-310, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33574859

ABSTRACT

Leptospirosis is a worldwide infectious and zoonotic disease. The incidence of this disease is high in temperate regions, especially in northern Iran. The aim of this study was to investigate the effects of temperature, pH, and Phyllanthus amarus plant extract on the lipL32 gene expression in pathogenic Leptospira spp. Fifty water samples were collected. Culture and PCR technique were used to isolate and identify the bacterium and the presence of the lipL32 gene. The samples were exposed to different temperatures and pH levels for one day and the Ph. amarus plant extract at different concentrations for one and seven days. RNA was extracted, and cDNA synthesis was performed for all the samples. All cDNAs were evaluated by the real-time PCR (SYBR green) technique. Out of the 50 samples, ten samples (20%), using PCR were determined to contain the pathogenic Leptospira. Fold change of the expression of the lipL32 gene associated with stresses was as follows: temperature stress of 40°C, 35°C, and 25°C reduced the lipL32 gene expression in all three isolates, especially in the isolates type 1. The pH stress, i.e., pH values equal to 8 or 9 reduced the gene expression in three types of isolates, and pH = 6 stress increases the lipL32 gene expression in the isolates of type 1. Ph. amarus plant extract stress reduced the mentioned gene expression only in isolates of type 2. Temperature and pH stresses could lead to differences in the expression level and cause the lipL32 gene expression decrease in three pathogenic isolates. The MIC results showed anti-leptospiral effect of Ph. amarus plant extract.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Leptospira/physiology , Leptospira/pathogenicity , Lipoproteins/genetics , Stress, Physiological , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Hydrogen-Ion Concentration , Iran , Leptospira/drug effects , Leptospira/genetics , Leptospirosis/microbiology , Lipoproteins/metabolism , Microbial Sensitivity Tests , Microbial Viability/drug effects , Phyllanthus/chemistry , Plant Extracts/pharmacology , Real-Time Polymerase Chain Reaction , Stress, Physiological/drug effects , Temperature , Virulence Factors/genetics , Virulence Factors/metabolism
13.
Microb Pathog ; 140: 103927, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31846743

ABSTRACT

The use of traditional foods and beverages or their bioactive compounds as anti-virulence agents is a new alternative method to overcome the increased global emergence of antimicrobial resistance in enteric pathogens. In the present study, we investigated the anti-virulence activity of a polyphenolic fraction previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against Vibrio cholerae O1. The isolated fraction was mainly composed of the polyphenols catechin and isorhamnetin. The fraction, the individual polyphenols and the combination of the individual polyphenols significantly inhibited bacterial swarming motility and expression of flagellar regulatory genes motY and flaC, even at sub-inhibitory concentrations. The polyphenolic compounds also decreased bacterial protease secretion and mucin penetration in vitro. In vivo study revealed that the polyphenolic fraction significantly inhibited V. cholerae induced fluid accumulation in the rabbit ileal loop model and intestinal colonization in suckling mice model. Therefore, the anti-virulence activity of the Kombucha polyphenolic fraction involved inhibition of motility and protease secretion of V. cholerae, thus preventing bacterial penetration through the mucin layer as well as fluid accumulation and bacterial colonization in the intestinal epithelial cells. The overall results implied that Kombucha might be considered as a potential alternative source of anti-virulence polyphenols against V. cholerae. To the best of our knowledge, this is the first report on the anti-virulence activity of Kombucha, mostly attributed to its polyphenolic content.


Subject(s)
Kombucha Tea , Polyphenols/pharmacology , Vibrio cholerae/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/drug effects , Catechin/pharmacology , Cell Movement/drug effects , Cholera/drug therapy , Gene Expression/drug effects , Intestine, Small/drug effects , Intestine, Small/microbiology , Mice , Peptide Hydrolases/drug effects , Plant Extracts/pharmacology , Quercetin/analogs & derivatives , Quercetin/pharmacology , Rabbits , Vibrio cholerae/pathogenicity , Virulence/drug effects , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
14.
J Agric Food Chem ; 67(42): 11703-11709, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31578056

ABSTRACT

Astaxanthin is a carotenoid of high commercial value because of its excellent antioxidative, anti-inflammatory, and anticancer properties. Here, we developed a novel strategy for improving the production of astaxanthin via morphology and oxidative stress engineering. First, we identified the morphology-/membrane- and oxidative stress-related genes, which should be knocked down, using the CRISPRi system. Deleting the morphology-/membrane-related genes (lpp and bamB) and the oxidative stress-related genes (uspE and yggE) generated longer and larger cells with higher reactive oxygen species (ROS) levels, thus enhancing the production of astaxanthin and decreasing cell growth. To not only improve cell growth but also obtain longer and larger cells with higher ROS levels, a complementary expression system using a temperature-sensitive plasmid was established. Complementarily expressing the morphology-/membrane-related genes (lpp and bamB) and the oxidative stress-related genes (uspE and yggE) further improved the production of astaxanthin to 11.92 mg/g dry cell weight in shake flask cultures.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli/cytology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Lipoproteins/genetics , Lipoproteins/metabolism , Metabolic Engineering , Oxidative Stress , Reactive Oxygen Species/metabolism , Xanthophylls/biosynthesis
15.
Proc Natl Acad Sci U S A ; 116(43): 21748-21757, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31591200

ABSTRACT

The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the ß-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/drug effects , Protein Multimerization/drug effects , Triazines/pharmacology , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Bacterial Outer Membrane Proteins/genetics , Biological Transport/physiology , Cell Membrane/drug effects , Cell Membrane Permeability/physiology , Drug Evaluation, Preclinical , Drug Resistance, Bacterial/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests
16.
J Cell Biochem ; 120(11): 18640-18649, 2019 11.
Article in English | MEDLINE | ID: mdl-31338900

ABSTRACT

BACKGROUND: Acinetobacter baumannii has emerged as a major cause of nosocomial infections. Various resistance mechanisms of A. baumannii against antibiotics have transformed it into a successful nosocomial pathogen. Because of the limited number of available antibiotics, we used a medicinal plant with an antibacterial effect. Zataria multiflora Boiss (ZMB) extract and its components were used for the treatment of pneumonic mice infected with A. baumannii. The biological effects of this extract and the regulation of the outer membrane protein A (ompA) gene were used in a mouse model. METHODS: A pneumonic mouse model was prepared using clinical and standard strains (1.5 × 108 colony-forming units/mL) of A. baumannii. BALB/c mice groups were treated with a ZMB extract, carvacrol, thymol, and sensitive antibiotics. The lung tissues of the treated mice were cultured for 5 days and each day, bacterial clearance and the ompA gene expression were assessed by quantitative real-time polymerase chain reaction. RESULTS: In the lung tissue culture of pneumonic mice infected with standard or clinical isolate, no colony was detected when treated with the ZMB extract after 2 and 3 days (P < 0.01), respectively. In the carvacrol-treated group, bacterial clearance was seen at day 4 and day 5 (P < 0.05). Bacterial clearance was seen 5 days after treatment with thymol and imipenem and 6 days after ampicillin/sulbactam treatment. The regulation of ompA gene was significantly decreased in this order: ZMB extract, carvacrol, thymol, imipenem, and ampicillin/sulbactam. DISCUSSION: The ZMB extract had a potent bactericidal effect against A. baumannii that could downregulate the ompA gene. ZBM extract and carvacrol could be novel therapeutic agents for antibiotic-resistant A. baumannii.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/drug effects , Lung Diseases/drug therapy , Plant Extracts/pharmacology , Acinetobacter Infections/microbiology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/physiology , Animals , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Cymenes/pharmacology , Gene Expression Regulation, Bacterial , Humans , Imipenem/pharmacology , Lamiaceae/chemistry , Lung/drug effects , Lung/microbiology , Lung/pathology , Lung Diseases/microbiology , Mice, Inbred BALB C , Microbial Sensitivity Tests , Thymol/pharmacology
17.
Chem Biol Interact ; 305: 195-202, 2019 May 25.
Article in English | MEDLINE | ID: mdl-30940451

ABSTRACT

A significant risk to the food chain is the presence of noxious pollutants in the feeds of animals whose products are used in human nutrition. Consequently, analytical methods and biosensors have been developed to detect these types of contaminates in feeds. Here we have evaluated whether the expression of TolC, a promiscuous component of several ATP-dependent efflux pumps in E. coli, up-regulated in response to chemical stress, could be a useful biomarker for this aim. Changes in TolC expression in response to toxic compounds, with different abilities to induce DNA damage, were determined using two E. coli strains with (DH5α) and without (BL21(DE3)) inactivating mutation in RecA gene. Deoxycholic acid and potassium dichromate up-regulated TolC in both strains. In contrast, cisplatin-induced TolC up-regulation was abolished in the absence of a functional RecA. When the effect of several insecticides, herbicides, antibiotics and common soil pollutants on TolC expression was analyzed, a relationship between toxicity and their ability to up-regulate TolC was observed. However, this was not a general event because the insecticide α-cipermetrin induced a reduction in cell viability, which was not accompanied by TolC up-regulation. In contrast, the soil pollutant benzene was able to stimulate TolC expression at non-toxic concentrations. When this test was used to analyze aqueous extracts from different feedstuffs, up-regulation of TolC was found in the absence of cell toxicity and was even accompanied by enhanced cell viability. In conclusion, TolC expression is partly dependent on the integrity of the RecA/LexaA system. Although toxic compounds up-regulate TolC in a dose-dependent manner, this response is also activated by non-toxic agents. Thus, owing to its poor specificity regardless of its sensitivity, the use of TolC up-regulation in E. coli to detect the presence of toxic pollutants in conventional and unconventional sources of nutrients for ruminant feeding requires supplementary biomarkers.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Biomarkers/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Membrane Transport Proteins/metabolism , Soil Pollutants/toxicity , Up-Regulation/drug effects , Bacterial Outer Membrane Proteins/genetics , Cisplatin/pharmacology , Deoxycholic Acid/toxicity , Escherichia coli/drug effects , Escherichia coli Proteins/genetics , Membrane Transport Proteins/genetics , Organoplatinum Compounds/toxicity , Potassium Dichromate/toxicity , RNA, Messenger/metabolism , Soil Pollutants/chemistry
18.
Microbiology (Reading) ; 165(3): 311-323, 2019 03.
Article in English | MEDLINE | ID: mdl-30628887

ABSTRACT

Vitamin B12 is one of the most complex biomolecules in nature. Since few organisms can synthesize B12de novo, most bacteria utilize highly sensitive and specialized transporters to scavenge B12 and its precursors. In Gram-negative bacteria, BtuB is the outer membrane TonB-dependent receptor for B12. In the fresh water bacterium Caulobacter crescentus, btuB is among the most highly expressed genes. In this study, we characterized the function of BtuB in C. crescentus and unveiled a potential new function of this receptor involved in cellular fitness. Under standard minimal or rich growth conditions, we found that supplements of vitamin B12 to cultures of C. crescentus provided no significant advantage in growth rate. Using a B12 methionine auxotroph, we showed that BtuB in C. crescentus is capable of transporting B12 at low pico-molar range. A btuB knockout strain displayed higher sensitivity to detergents and to changes in osmotic pressure compared to the wild-type. Electron micrographs of this knockout strain revealed a morphology defect. The sensitivity observed in the btuB knockout strain was not due to changes in membrane permeability or altered S-layer levels. Our results demonstrate that btuB deletion mutants exhibit increased susceptibility to membrane stressors, suggesting a potential role of this receptor in membrane homeostasis. Because we only tested BtuB's function under laboratory conditions, we cannot eliminate the possibility that BtuB also plays a key role as a B12 scavenger in C. crescentus when growing in its highly variable and nutrient-limited natural environment.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane/physiology , Caulobacter crescentus/physiology , Membrane Transport Proteins/metabolism , Vitamin B 12/metabolism , Anti-Infective Agents/pharmacology , Bacterial Outer Membrane/drug effects , Bacterial Outer Membrane Proteins/genetics , Biological Transport , Caulobacter crescentus/drug effects , Caulobacter crescentus/genetics , Caulobacter crescentus/metabolism , Detergents/pharmacology , Gene Knockout Techniques , Membrane Transport Proteins/genetics , Osmotic Pressure
19.
Article in English | MEDLINE | ID: mdl-30578403

ABSTRACT

We report a case of a 24-year-old liver transplant recipient who developed hepatic artery thrombosis and graft failure, which was complicated by subphrenic abscess and persistent Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae bacteremia. Ceftazidime-avibactam treatment led to emergence of resistance, and alternative combination therapy failed due to persistent infection and toxicity. The infection resolved after initiation of meropenem-vaborbactam, which created a bridge to retransplantation. Treatment-emergent ceftazidime-avibactam resistance is increasingly recognized, suggesting a role for meropenem-vaborbactam.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Boronic Acids/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/drug effects , Liver Transplantation/adverse effects , Meropenem/therapeutic use , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/metabolism , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Ceftazidime/pharmacology , Drug Combinations , Drug Resistance, Multiple, Bacterial , Hepatic Artery/pathology , Humans , Klebsiella pneumoniae/genetics , Male , Microbial Sensitivity Tests , Salvage Therapy/methods , Thrombosis/pathology , Young Adult , beta-Lactamases/metabolism
20.
J Med Microbiol ; 67(11): 1544-1550, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30247119

ABSTRACT

PURPOSE: The most common illness caused by Streptococcus pyogenes (Group A streptococcus; GAS) is acute pharyngitis. It has been reported that a small percentage of patients experience recurrent GAS pharyngitis after 10 days of treatment with oral amoxicillin. The aim of this study was to clarify whether recurrent GAS pharyngitis is reactivation caused by the primary strain remaining at the infection site, or if the reinfection is caused by newly acquired strains. METHODOLOGY: A total of 135 GAS clinical strains were isolated from the tonsils of 116 pediatric patients with acute GAS pharyngitis between November, 2012 and April, 2014 in Saga, Japan. These strains were analysed by pulsed-field gel electrophoresis (PFGE)-typing methods. RESULTS: The isolates were grouped into 16 PFGE-types. The epidemic PFGE types that caused pharyngitis were found to change dynamically during 18 months. Eleven strains caused recurrent pharyngitis within 40 days after the last treatment, all of them showing the same PFGE-type as the primary strains. Eight of the strains caused recurrence more than 40 days after the treatment. Among them, six showed different PFGE-types from the primary strains. CONCLUSION: When recurrent pharyngitis emerges more than 40 days after the last treatment, penicillin can be prescribed again because reinfection is suspected. However, when recurrent pharyngitis takes place within 40 days after completing the treatment, alternative drugs should be considered for retreatment because the pharyngitis is likely to be due to reactivation.


Subject(s)
Amoxicillin/administration & dosage , Anti-Bacterial Agents/administration & dosage , Pharyngitis/drug therapy , Streptococcal Infections/drug therapy , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/genetics , Administration, Oral , Amoxicillin/pharmacology , Amoxicillin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Carrier Proteins/genetics , Child , Child, Preschool , Electrophoresis, Gel, Pulsed-Field , Female , Genotype , Humans , Japan/epidemiology , Male , Microbial Sensitivity Tests , Molecular Typing , Pharyngitis/epidemiology , Pharyngitis/microbiology , Recurrence , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Streptococcus pyogenes/classification , Streptococcus pyogenes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL