Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Publication year range
1.
Nat Commun ; 12(1): 5308, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489463

ABSTRACT

Climate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events.


Subject(s)
Droughts/statistics & numerical data , Microbiota/physiology , Soil Microbiology , Soil/chemistry , Water/analysis , Acidobacteria/classification , Acidobacteria/genetics , Acidobacteria/isolation & purification , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Altitude , Austria , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Biomass , Carbon/analysis , Chloroflexi/classification , Chloroflexi/genetics , Chloroflexi/isolation & purification , Grassland , Humans , Nitrogen/analysis , Phosphorus/analysis , Planctomycetales/classification , Planctomycetales/genetics , Planctomycetales/isolation & purification , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , Sulfur/analysis , Verrucomicrobia/classification , Verrucomicrobia/genetics , Verrucomicrobia/isolation & purification
2.
Food Funct ; 12(9): 3954-3964, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33977937

ABSTRACT

The therapeutic effects of water extract of ginseng (WEG) on exercise-induced fatigue (EF) have been reported in several previous studies, but the molecular mechanisms involved remain unexplored. In this study, the anti-EF effects of WEG were studied, and the potential mechanisms were discussed. We characterized the chemical components of WEG by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) and high performance liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD), and then examined the anti-EF effects of WEG on a rat model of weight-loaded swimming with a focus on endogenous metabolism and gut microbiota. WEG contains abundant (90.15%, w/w) saccharides and ginsenosides with structurally diverse glycosyls. WEG taken orally showed strong anti-EF effects by ameliorating energy metabolism abnormality, oxidative stress, lipid peroxidation, inflammatory response, disorders in the metabolism of bile acid, amino acid, fatty acid and lipid, as well as the gut microbiota dysbiosis. Given that gut microbiota is significantly associated with energy expenditure, systemic inflammation and host metabolism, these findings suggest a potential central role of the gut microbiota in mediating the anti-EF effect of WEG. That is, the saccharides and ginsenosides in WEG serve as energy substrates for specific intestinal bacteria, thereby beneficially regulating the gut microbiota, and the reshaped gut microbial ecosystem then triggers several molecular and cellular signaling pathways (e.g. butyrate or TGR5 signals) to achieve the therapeutic effects on EF. The outcomes highlighted here enable deeper insight into how WEG overcomes EF.


Subject(s)
Fatigue/drug therapy , Gastrointestinal Microbiome/drug effects , Panax , Physical Exertion , Plant Extracts/pharmacology , Amino Acids/metabolism , Animals , Bacteroidetes/classification , Bacteroidetes/growth & development , Bacteroidetes/isolation & purification , Bile Acids and Salts/metabolism , Dysbiosis , Fatigue/etiology , Fatty Acids/metabolism , Firmicutes/classification , Firmicutes/growth & development , Firmicutes/isolation & purification , Lipid Metabolism , Male , Metabolome , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Rats , Rats, Sprague-Dawley , Swimming
3.
Nutrients ; 13(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801901

ABSTRACT

Trilobatin was identified as the primary bioactive component in the Lithocarpus polystachyus Rehd (LPR) leaves. This study explored the antiobesity effect of trilobatin from LPR leaves and its influence on gut microbiota in obese rats. Results showed that trilobatin could significantly reduce body and liver weight gain induced by a high-fat diet, and the accumulation of perirenal fat, epididymal fat, and brown fat of SD (Male Sprague-Dawley) obese rats in a dose-independent manner. Short-chain fatty acids (SCFAs) concentrations increased, especially the concentration of butyrate. Trilobatin supplementation could significantly increase the relative abundance of Lactobacillus, Prevotella, CF231, Bacteroides, and Oscillospira, and decrease greatly the abundance of Blautia, Allobaculum, Phascolarctobacterium, and Coprococcus, resulting in an increase of the ratio of Bacteroidetes to Firmicutes (except the genera of Lactobacillus and Oscillospira). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway predicted by the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) indicated the different relative metabolic pathways after trilobatin supplementation. This study may reveal the contribution of gut microbiota to the antiobesity effect of trilobatin from LPR leaves and predict the potential regulatory mechanism for obesity induced by a high-fat diet.


Subject(s)
Anti-Obesity Agents/pharmacology , Diet, High-Fat , Dietary Supplements , Flavonoids/pharmacology , Gastrointestinal Microbiome/drug effects , Obesity/microbiology , Polyphenols/pharmacology , Animals , Anti-Obesity Agents/administration & dosage , Bacteroidetes/classification , Bacteroidetes/growth & development , Body Weight/drug effects , Fagaceae/chemistry , Fatty Acids, Volatile/analysis , Firmicutes/classification , Firmicutes/growth & development , Flavonoids/administration & dosage , Liver/drug effects , Male , Metabolic Networks and Pathways/drug effects , Obesity/etiology , Obesity/metabolism , Organ Size/drug effects , Plant Leaves/chemistry , Polyphenols/administration & dosage , Rats , Rats, Sprague-Dawley
4.
Cell Rep Med ; 2(3): 100206, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33763652

ABSTRACT

Extremely low birth weight (ELBW) infants often develop an altered gut microbiota composition, which is related to clinical complications, such as necrotizing enterocolitis and sepsis. Probiotic supplementation may reduce these complications, and modulation of the gut microbiome is a potential mechanism underlying the probiotic effectiveness. In a randomized, double-blind, placebo-controlled trial, we assessed the effect of Lactobacillus reuteri supplementation, from birth to post-menstrual week (PMW)36, on infant gut microbiota. We performed 16S amplicon sequencing in 558 stool samples from 132 ELBW preterm infants at 1 week, 2 weeks, 3 weeks, 4 weeks, PMW36, and 2 years. Probiotic supplementation results in increased bacterial diversity and increased L. reuteri abundance during the 1st month. At 1 week, probiotic supplementation also results in a lower abundance of Enterobacteriaceae and Staphylococcaceae. No effects were found at 2 years. In conclusion, probiotics may exert benefits by modulating the gut microbiota composition during the 1st month in ELBW infants.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome/genetics , Infant, Extremely Low Birth Weight/growth & development , Infant, Extremely Premature/growth & development , Limosilactobacillus reuteri/physiology , Probiotics/administration & dosage , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Biodiversity , Feces/microbiology , Female , Firmicutes/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Fusobacteria/classification , Fusobacteria/genetics , Fusobacteria/isolation & purification , Humans , Infant , Male , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Verrucomicrobia/classification , Verrucomicrobia/genetics , Verrucomicrobia/isolation & purification
5.
FEMS Microbiol Lett ; 368(5)2021 04 08.
Article in English | MEDLINE | ID: mdl-33606020

ABSTRACT

In recent years, the relationship between type 2 diabetes (T2D) and gut microbiota has attracted much interest. Dendrobium officinale is a valuable traditional Chinese medicine (TCM) with anti-T2D potential, while its action mechanism remains to be further studied. This study was designed to investigate the modulation effects of D. officinale on gut microbiota of T2D model mice to provide clues to its pharmacology by high-throughput sequencing techniques. It was found that D. officinale supplement could significantly reduce the fasting blood glucose levels of T2D mice. Dendrobium officinale supplement could modulate the composition of gut microbiota and increase the relative abundances of key bacterial taxa associated with T2D development, including Akkermansia and Parabacteroides. Compared with placebo group mice, several Kyoto Encyclopedia of Gene and Genomes pathways associated with T2D altered in the D. officinale treated group. These findings indicated the modulation of D. officinale on gut microbiota of T2D mice, which provide potential pharmacological implications.


Subject(s)
Akkermansia/growth & development , Bacteroidetes/growth & development , Dendrobium/chemistry , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome/drug effects , Plant Preparations/pharmacology , Akkermansia/classification , Animals , Bacteroidetes/classification , Diabetes Mellitus, Type 2/pathology , Gastrointestinal Microbiome/physiology , Male , Medicine, Chinese Traditional , Mice , Mice, Transgenic
6.
Molecules ; 25(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153091

ABSTRACT

The human gut microbiome plays an important role in human health, and many factors such as environment, host genetics, age, and diet have been found to influence the microbial composition. Tea, as one of the widely consumed beverages, has been known for centuries to have antioxidant, anti-inflammatory, and anticancer effects. To investigate the impact of green tea polyphenol on the diversity and metabolic functions of human gut microbes, we applied an in vitro human colonic model (HCM) in this study to mimic a short-term green tea ingestion event and investigate its related changes to gut microbial composition and their metabolic functions. The pH, temperature, anaerobic environment, feeding nutrient, and time point in each compartment of the HCM were tightly controlled to simulate the intestinal system, and pooled human fecal samples of two healthy volunteers were used for the colon microbiota inoculation within the colonic model. By adding green tea extract (GTE) to the growth medium, the detailed impacts of GTE polyphenol on gut microbial population/diversity, gut microbial metabolites, metabolic pathways, and their associations were investigated via 16 S ribosomal DNA sequencing and liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) analyses. Our data indicated that the treatment of green tea extract applied to gut microbiota can induce a significant decrease in the abundance of Firmicutes and a slight decrease in the abundance of Bacteroidetes, and these changes result in a decreased Firmicutes/Bacteroidetes ratio, which can be an effective indicator for successful GTE intervention, which may generate beneficial health effect to human. Meanwhile, the relative abundances of many detected bacteria genera among three HCM vessels changed through the GTE intervention. The overall effects of GTE on gut microbial beta-diversity were observed by multivariate statistical analyses, and the differences in metabolic profiles from different GTE treatment stages were detected. Moreover, we identified several associations between microbial population and microbial metabolites, which may assist us in establishing new hypotheses for future related studies. In summary, our study suggested that the microbial compositional changes induced by GTE also changed their metabolic functions, and consequentially, may change the host metabolism and impact human health.


Subject(s)
Bacteroidetes , Colon/microbiology , Firmicutes , Gastrointestinal Microbiome , Models, Biological , Tea , Bacteroidetes/classification , Bacteroidetes/growth & development , Firmicutes/classification , Firmicutes/growth & development , Humans
7.
BMC Microbiol ; 20(1): 291, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32957914

ABSTRACT

BACKGROUND: The dried roots and rhizomes of medicinal licorices are widely used worldwide as a traditional medicinal herb, which are mainly attributed to a variety of bioactive compounds that can be extracted from licorice root. Endophytes and plants form a symbiotic relationship, which is an important source of host secondary metabolites. RESULTS: In this study, we used high-throughput sequencing technology and high-performance liquid chromatography to explore the composition and structure of the endophytic bacterial community and the content of bioactive compounds (glycyrrhizic acid, liquiritin and total flavonoids) in different species of medicinal licorices (Glycyrrhiza uralensis, Glycyrrhiza glabra, and Glycyrrhiza inflata) and in different planting years (1-3 years). Our results showed that the contents of the bioactive compounds in the roots of medicinal licorices were not affected by the species, but were significantly affected by the main effect growing year (1-3) (P < 0.05), and with a trend of stable increase in the contents observed with each growing year. In 27 samples, a total of 1,979,531 effective sequences were obtained after quality control, and 2432 effective operational taxonomic units (OTUs) were obtained at 97% identity. The phylum Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes, and the genera unified-Rhizobiaceae, Pseudomonas, Novosphingobium, and Pantoea were significantly dominant in the 27 samples. Distance-based redundancy analysis (db-RDA) showed that the content of total flavonoids explained the differences in composition and distribution of endophytic bacterial communities in roots of cultivated medicinal liquorices to the greatest extent. Total soil salt was the most important factor that significantly affected the endophytic bacterial community in soil factors, followed by ammonium nitrogen and nitrate nitrogen. Among the leaf nutrition factors, leaf water content had the most significant effect on the endophytic bacterial community, followed by total phosphorus and total potassium. CONCLUSIONS: This study not only provides information on the composition and distribution of endophytic bacteria in the roots of medicinal licorices, but also reveals the influence of abiotic factors on the community of endophytic bacteria and bioactive compounds, which provides a reference for improving the quality of licorice.


Subject(s)
Flavonoids/biosynthesis , Glycyrrhiza uralensis/microbiology , Glycyrrhiza/microbiology , Plant Roots/microbiology , Rhizome/microbiology , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Ammonia/pharmacology , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , DNA Barcoding, Taxonomic , DNA, Bacterial/genetics , Endophytes/physiology , Firmicutes/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Flavanones/biosynthesis , Flavanones/isolation & purification , Flavonoids/classification , Flavonoids/isolation & purification , Glucosides/biosynthesis , Glucosides/isolation & purification , Glycyrrhiza/drug effects , Glycyrrhiza/metabolism , Glycyrrhiza uralensis/drug effects , Glycyrrhiza uralensis/metabolism , Glycyrrhizic Acid/isolation & purification , Glycyrrhizic Acid/metabolism , Microbial Consortia/drug effects , Microbial Consortia/genetics , Nitrates/pharmacology , Phylogeny , Plant Roots/metabolism , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , Rhizobiaceae/classification , Rhizobiaceae/genetics , Rhizobiaceae/isolation & purification , Rhizome/metabolism , Seasons , Secondary Metabolism , Soil/chemistry , Soil Microbiology , Symbiosis
8.
Carbohydr Polym ; 246: 116637, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32747272

ABSTRACT

In this study, rice starch-oleic acid complex with well-controlled digestibility was chosen as a supplementary diet for rats fed with high fat diet. Our results demonstrated that rice starch-oleic acid complex supplementation significantly decreased body weight, improved serum lipid profiles, hepatic metabolism and altered the composition of gut microbiota of rats, which might be related to the higher resistant starch (RS) level. Interestingly, rice starch-oleic acid complex supplementation contributed to the proliferation and growth of butyrate-producing bacteria. The Spearman's correlation analysis revealed that the genus Turicibacter and Romboutsia genus were positively correlated to HDL-c and SOD level. Meanwhile, based on the metagenomic data, Bifidobacteria genus might be a main primary degrader after rice starch-oleic acid complex intake, which was associated with the changes of key starch-degradation enzymes. Overall, our results provided basic data for the rational design of rice starch-based foods with nutritional functions and physiological benefits.


Subject(s)
DNA, Bacterial/genetics , Gastrointestinal Microbiome/drug effects , Obesity/prevention & control , Oleic Acid/administration & dosage , Resistant Starch/administration & dosage , Actinobacteria/classification , Actinobacteria/drug effects , Actinobacteria/genetics , Actinobacteria/isolation & purification , Animals , Bacteroidetes/classification , Bacteroidetes/drug effects , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Butyrates/metabolism , Cholesterol, LDL/metabolism , Diet, High-Fat/adverse effects , Firmicutes/classification , Firmicutes/drug effects , Firmicutes/genetics , Firmicutes/isolation & purification , Gastrointestinal Microbiome/genetics , Gene Expression , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Liver/drug effects , Liver/metabolism , Male , Obesity/etiology , Obesity/genetics , Obesity/microbiology , Phylogeny , Proteobacteria/classification , Proteobacteria/drug effects , Proteobacteria/genetics , Proteobacteria/isolation & purification , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
9.
Int J Syst Evol Microbiol ; 70(6): 3749-3754, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32519941

ABSTRACT

Three strains representing the previously uncultured human oral Tannerella taxon HMT-286 were recently isolated from the subgingival plaque of a patient with chronic periodontitis. The phenotypic and genetic features of strain SP18_26T were compared to those of the type species of Tannerella, Tannerella forsythia. A genome size of 2.97 Mbp (G+C content 56.5 mol%) was previously reported for SP18_26T, compared to a size of 3.28 Mbp (47.1 mol%) in T. forsythia ATCC 43037T. 16S rRNA gene sequence comparisons also revealed 94.3 % sequence identity with T. forsythia ATCC 43037T. Growth was stimulated by supplementation of media with N-acetyl muramic acid, as seen with T. forsythia, but the cells displayed a distinctive snake-like morphology. Fatty acid methyl ester analysis revealed a profile differing from T. forsythia, chiefly in the amount of 3-OH-16 : 0 (four-fold lower in SP18_26T). Overall, metabolic enzyme activity also differed from T. forsythia, with enzyme activity for indole present, but the complement of glycoside hydrolase enzyme activity was smaller than T. forsythia, for example, lacking sialidase and N-acetyl-ß-glucosaminidase - evidence backed up by analysis of its gene content. On the basis of these results, a new species Tannerella serpentiformis is proposed for which the type strain is SP18_26T (=DSM 102894T=JCM 31303T).


Subject(s)
Bacteroidetes/classification , Mouth/microbiology , Phylogeny , Bacterial Typing Techniques , Bacteroidetes/isolation & purification , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Female , Humans , London , Muramic Acids , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
BMC Res Notes ; 13(1): 94, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32093782

ABSTRACT

OBJECTIVES: The silkworm Bombyx mori (B. mori) is an important domesticated lepidopteran model for basic and applied research. They produce silk fibres that have great economic value. The gut microbiome plays an important role in the growth of organisms. Spermidine (Spd) is shown to be important for the growth of all living cells. The effect of spermidine feeding on the gut microbiome of 5th instar B. mori larvae was checked. The B. mori gut samples from control and spermidine fed larvae were subjected to next-generation sequencing analysis to unravel changes in the bacterial community upon spermidine supplementation. DATA DESCRIPTION: The changes in gut bacteriota after spermidine feeding is not studied before. B. mori larvae were divided into two groups of 50 worms each and were fed with normal mulberry leaves and mulberry leaves fortified with 50 µM spermidine. The gut tissues were isolated aseptically and total genomic DNA was extracted, 16S rRNA region amplified and sequenced using Illumina platform. The spermidine fed gut samples were shown to have abundance and diversity of the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria.


Subject(s)
Bacteria/genetics , Bombyx/microbiology , Gastrointestinal Microbiome/drug effects , Plant Preparations/pharmacology , RNA, Ribosomal, 16S/genetics , Spermidine/pharmacology , Actinobacteria/classification , Actinobacteria/genetics , Animals , Bacteria/classification , Bacteroidetes/classification , Bacteroidetes/genetics , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Firmicutes/classification , Firmicutes/genetics , Gastrointestinal Microbiome/genetics , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Larva/microbiology , Morus/chemistry , Plant Leaves/chemistry , Proteobacteria/classification , Proteobacteria/genetics
11.
Sci Rep ; 9(1): 18408, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804618

ABSTRACT

Microorganisms play important roles in soil improvement. Therefore, clarifying the contribution of environmental factors in shaping the microbial community structure is beneficial to improve soil fertility in karst rocky desertification areas. Here, the bacterial community structures of eight rhizospheric soil samples collected from perennial fruit plantations were analysed using an Illumina HiSeq2500 platform. The diversity and abundance of bacteria in rocky desertification areas were significantly lower than those in non-rocky desertification areas, while the bacterial community structure was not significantly different between root surface and non-root surface soils in the same rhizospheric soil samples. Proteobacteria predominated in rocky desertification areas, while Actinobacteria predominated in non-rocky desertification areas. Correlation analysis revealed that water-soluble phosphorus content (r2 = 0.8258), latitude (r2 = 0.7556), altitude (r2 = 0.7501), and the age of fruit trees (r2 = 0.7321) were positively correlated with the bacterial community structure, while longitude, pH, and total phosphorus content did not significantly influence the soil bacterial community structure. As water-soluble phosphorus content is derived from insoluble phosphorus minerals, supplementing phosphorus-solubilising bacteria to soils in rocky desertification areas is a feasible strategy for accelerating the dissolution of insoluble phosphorus minerals and improving agricultural production and environment ecology.


Subject(s)
Microbiota/genetics , Soil Microbiology , Soil/chemistry , Trees/microbiology , Acidobacteria/classification , Acidobacteria/genetics , Acidobacteria/isolation & purification , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Agriculture/methods , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , China , Chloroflexi/classification , Chloroflexi/genetics , Chloroflexi/isolation & purification , Conservation of Natural Resources/legislation & jurisprudence , DNA, Bacterial/genetics , Firmicutes/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Humans , Hydrogen-Ion Concentration , Phosphorus/chemistry , Phosphorus/metabolism , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , Rhizosphere , Trees/physiology , Water/metabolism
12.
Environ Pollut ; 255(Pt 1): 113190, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31541828

ABSTRACT

Microbial diversity in machine oil contaminated soil was determined by high-throughput amplicon sequencing technology. The diversity of culturable microbes in the contaminated soil was further characterized using polymerase chain reaction method. Proteobacteria and Bacteroidetes were the most dominant phyla and occupied 52.73 and 16.77%, respectively, while the most abundant genera were Methylotenera (21.62%) and Flavobacterium (3.06%) in the soil. In the culturable microbes, the major phyla were Firmicutes (46.15%) and Proteobacteria (37.36%) and the most abundant genera were Bacillus (42.86%) and Aeromonas (34.07%). Four isolated microbes with high machine oil degradation efficiency were selected to evaluate their characteristics on the oil degradation. All of them reached their highest oil degradation rate after 7 days of incubation. Most of them significantly increased their oil degradation rate by additional carbon or organic nitrogen source in the incubation medium. The oil degradation rate by combination of the four microbes at the same inoculation level was also higher than the rate from each individual microbe. The protocol and findings of this study are very useful for developing micro-bioremediation method to eliminate machine oil contaminants from soil.


Subject(s)
Bacteroidetes/metabolism , Oils/analysis , Petroleum/analysis , Proteobacteria/metabolism , Soil Pollutants/analysis , Soil/chemistry , Bacteroidetes/classification , Bacteroidetes/isolation & purification , Biodegradation, Environmental , Carbon/analysis , Lubricants/analysis , Nitrogen/analysis , Proteobacteria/classification , Proteobacteria/isolation & purification , Soil Microbiology
13.
Article in English | MEDLINE | ID: mdl-31334136

ABSTRACT

Oral supplemented nutraceuticals derived from food sources are surmised to improve the human health through interaction with the gastrointestinal bacteria. However, the lack of fundamental quality control and authoritative consensus (e.g., formulation, route of administration, dose, and dosage regimen) of these non-medical yet bioactive compounds are one of the main practical issues resulting in inconsistent individual responsiveness and confounded clinical outcomes of consuming nutraceuticals. Herein, we studied the dose effects of widely used food supplement, microalgae spirulina (Arthrospira platensis), on the colonic microbiota and physiological responses in healthy male Balb/c mice. Based on the analysis of 16s rDNA sequencing, compared to the saline-treated group, oral administration of spirulina once daily for 24 consecutive days altered the diversity, structure, and composition of colonic microbial community at the genus level. More importantly, the abundance of microbial taxa was markedly differentiated at the low (1.5 g/kg) and high (3.0 g/kg) dose of spirulina, among which the relative abundance of Clostridium XIVa, Desulfovibrio, Eubacterium, Barnesiella, Bacteroides, and Flavonifractor were modulated at various degrees. Evaluation of serum biomarkers in mice at the end of spirulina intervention showed reduced the oxidative stress and the blood lipid levels and increased the level of appetite controlling hormone leptin in a dose-response manner, which exhibited the significant correlation with differentially abundant microbiota taxa in the cecum. These findings provide direct evidences of dose-related modulation of gut microbiota and physiological states by spirulina, engendering its future mechanistic investigation of spirulina as potential sources of prebiotics for beneficial health effects via the interaction with gut microbiota.


Subject(s)
Cecum/drug effects , Colon/drug effects , Dietary Supplements/analysis , Gastrointestinal Microbiome/drug effects , Spirulina/chemistry , Animals , Bacteroides/classification , Bacteroides/genetics , Bacteroides/isolation & purification , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Cecum/microbiology , Clostridiales/classification , Clostridiales/genetics , Clostridiales/isolation & purification , Clostridium/classification , Clostridium/genetics , Clostridium/isolation & purification , Colon/microbiology , Complex Mixtures/administration & dosage , Desulfovibrio/classification , Desulfovibrio/genetics , Desulfovibrio/isolation & purification , Dose-Response Relationship, Drug , Eubacterium/classification , Eubacterium/genetics , Eubacterium/isolation & purification , Feces/microbiology , Gastrointestinal Microbiome/genetics , Leptin/blood , Lipids/blood , Male , Mice , Mice, Inbred BALB C , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
Int J Syst Evol Microbiol ; 69(3): 816-820, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30694172

ABSTRACT

A Gram-stain-negative, rod-shaped (0.2-0.4 µm×1.2-1.7 µm), endophytic bacterium, designated HBUM179779T, was isolated from the stem of a medicinal plant,Gynura bicolor, collected from Pixian county in Sichuan province, China. The strain did not produce endospores and its cells could secrete mucus. The predominant menaquinone was MK-7. The polar lipids were phosphatidylethanolamine, phosphatidylinositolmannosides, two unknown aminolipids, two unknown glycolipids and an unknown phospholipid. Branched fatty acids (iso-) and hydroxy fatty acids were the main fatty acids, which mainly included iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HBUM179779T fell within the family Chitinophagaceae, and its closest neighbour was Pseudoflavitalea rhizosphaerae T16R-265T (94.46 %). However, strain HBUM179779T did not make a coherent clade with members of the recognized organisms. The average nucleotide identity value between strain HBUM179779T and Pseudoflavitalea rhizosphaerae T16R-265T was 67.1 %. On the basis of the phylogenetic and phenotypic characteristics of this bacterium, a novel genus and species, Gynurincola endophyticus gen. nov., sp. nov., is proposed. The type strain is HBUM179779T (=CGMCC 1.15525T=NBRC 112424T).


Subject(s)
Asteraceae/microbiology , Bacteroidetes/classification , Phylogeny , Plant Stems/microbiology , Bacterial Typing Techniques , Bacteroidetes/isolation & purification , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , Plants, Medicinal/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
15.
Int J Biol Macromol ; 124: 931-937, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30503788

ABSTRACT

Panax ginseng is a traditional medicinal plant used in most Asian countries to cure many diseases. The benefits of ginseng are due to its primary active component, polysaccharides. Gut microbiota dysbiosis is a worldwide problem associating with antibiotic use. The objective of this study was to investigate the effects of ginseng polysaccharides (WGP) on the diversity of the gut microbiota in mice with antibiotic-associated diarrhea. Compared to diarrhea mice, WGP significantly changed the composition and diversity of the gut microbiota. Specifically, WGP increased the relative abundance of the phylum Firmicutes and decreased the relative abundance of the phyla Bacteroidetes, Proteobacteria and Actinobacteria. At the genus level, WGP increased the relative abundance of Lactobacillus, Lactococcus, and Streptococcus, but decreased the relative abundance of Bacteroides. The key phylotype of beneficial bacteria in the gut microbiota that responded to WGP was Lactobacillus. In addition, WGP also reversed carbohydrate, amino acid and energy metabolism to normal levels, thereby promoting the recovery of the mucosal structure. Taken collectively, our results indicate that WGP altered the composition and diversity of the gut microbiota in mice with antibiotic-associated diarrhea, restored the gut microbiota, balanced metabolic processes, and promoted the recovery of the mucosa.


Subject(s)
Antidiarrheals/pharmacology , Diarrhea/drug therapy , Dysbiosis/drug therapy , Gastrointestinal Microbiome/drug effects , Panax/chemistry , Polysaccharides/pharmacology , Actinobacteria/classification , Actinobacteria/drug effects , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Amino Acids/metabolism , Animals , Anti-Bacterial Agents/administration & dosage , Antidiarrheals/isolation & purification , Bacteroidetes/classification , Bacteroidetes/drug effects , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , Carbohydrate Metabolism/drug effects , Diarrhea/chemically induced , Diarrhea/metabolism , Diarrhea/microbiology , Dysbiosis/chemically induced , Dysbiosis/metabolism , Dysbiosis/microbiology , Energy Metabolism/drug effects , Firmicutes/classification , Firmicutes/drug effects , Firmicutes/isolation & purification , Firmicutes/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/microbiology , Lincomycin/administration & dosage , Male , Mice , Mice, Inbred BALB C , Phylogeny , Plant Extracts/chemistry , Polysaccharides/isolation & purification , Proteobacteria/classification , Proteobacteria/drug effects , Proteobacteria/isolation & purification , Proteobacteria/metabolism
16.
Nutrients ; 10(3)2018 Mar 10.
Article in English | MEDLINE | ID: mdl-29534465

ABSTRACT

Nutritional supplements are popular among athletes to improve performance and physical recovery. Protein supplements fulfill this function by improving performance and increasing muscle mass; however, their effect on other organs or systems is less well known. Diet alterations can induce gut microbiota imbalance, with beneficial or deleterious consequences for the host. To test this, we performed a randomized pilot study in cross-country runners whose diets were complemented with a protein supplement (whey isolate and beef hydrolysate) (n = 12) or maltodextrin (control) (n = 12) for 10 weeks. Microbiota, water content, pH, ammonia, and short-chain fatty acids (SCFAs) were analyzed in fecal samples, whereas malondialdehyde levels (oxidative stress marker) were determined in plasma and urine. Fecal pH, water content, ammonia, and SCFA concentrations did not change, indicating that protein supplementation did not increase the presence of these fermentation-derived metabolites. Similarly, it had no impact on plasma or urine malondialdehyde levels; however, it increased the abundance of the Bacteroidetes phylum and decreased the presence of health-related taxa including Roseburia, Blautia, and Bifidobacterium longum. Thus, long-term protein supplementation may have a negative impact on gut microbiota. Further research is needed to establish the impact of protein supplements on gut microbiota.


Subject(s)
Athletes , Dietary Proteins/adverse effects , Dietary Supplements/adverse effects , Dysbiosis/etiology , Gastrointestinal Microbiome , Physical Endurance , Sports Nutritional Physiological Phenomena , Adult , Animals , Bacteroidetes/classification , Bacteroidetes/growth & development , Bacteroidetes/isolation & purification , Bifidobacterium longum/classification , Bifidobacterium longum/growth & development , Bifidobacterium longum/isolation & purification , Biomarkers/analysis , Biomarkers/blood , Biomarkers/urine , Cattle , Clostridiales/classification , Clostridiales/growth & development , Clostridiales/isolation & purification , Double-Blind Method , Dysbiosis/blood , Dysbiosis/microbiology , Dysbiosis/urine , Feces/chemistry , Feces/microbiology , Humans , Male , Molecular Typing , Physical Conditioning, Human , Pilot Projects , Protein Hydrolysates/adverse effects , Spain , Whey Proteins/adverse effects
17.
Microbiologyopen ; 7(2): e00550, 2018 04.
Article in English | MEDLINE | ID: mdl-29057585

ABSTRACT

The effect of pressure and temperature on microbial communities of marine environments contaminated with petroleum hydrocarbons is understudied. This study aims to reveal the responses of marine bacterial communities to low temperature, high pressure, and contamination with petroleum hydrocarbons using seawater samples collected near an offshore Brazilian platform. Microcosms containing only seawater and those containing seawater contaminated with 1% crude oil were subjected to three different treatments of temperature and pressure as follows: (1) 22°C/0.1 MPa; (2) 4°C/0.1 MPa; and (3) 4°C/22 MPa. The effect of depressurization followed by repressurization on bacterial communities was also evaluated (4°C/22 MPaD). The structure and composition of the bacterial communities in the different microcosms were analyzed by PCR-DGGE and DNA sequencing, respectively. Contamination with oil influenced the structure of the bacterial communities in microcosms incubated either at 4°C or 22°C and at low pressure. Incubation at low temperature and high pressure greatly influenced the structure of bacterial communities even in the absence of oil contamination. The 4°C/22 MPa and 4°C/22 MPaD treatments resulted in similar DGGE profiles. DNA sequencing (after 40 days of incubation) revealed that the diversity and relative abundance of bacterial genera were related to the presence or absence of oil contamination in the nonpressurized treatments. In contrast, the variation in the relative abundances of bacterial genera in the 4°C/22 MPa-microcosms either contaminated or not with crude oil was less evident. The highest relative abundance of the phylum Bacteroidetes was observed in the 4°C/22 MPa treatment.


Subject(s)
Bacteroidetes/metabolism , Hydrocarbons/adverse effects , Microbiota/drug effects , Petroleum Pollution/adverse effects , Petroleum/adverse effects , Proteobacteria/metabolism , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Bacteroidetes/classification , Bacteroidetes/genetics , Cold Temperature , High-Throughput Nucleotide Sequencing , Microbiota/physiology , Proteobacteria/classification , Proteobacteria/genetics , RNA, Ribosomal, 16S/genetics , Seawater/microbiology
18.
Int J Syst Evol Microbiol ; 68(1): 149-154, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29134929

ABSTRACT

A Gram-reaction-negative, strictly aerobic, non-motile and rod-shaped bacterium, designated strain BXN5-31T, was isolated from soil of a ginseng field, and its taxonomic position was investigated using a polyphasic approach. Strain BXN5-31T grew at 18-37 °C and at pH 6.0-8.0 on R2A medium. Based on 16S rRNA gene sequence similarity, strain BXN5-31T was shown to belong to the genus Mucilaginibacter and was closely related to Mucilaginibactersoyangensis HME6664T, Mucilaginibacterximonensis XM-003T and Mucilaginibacterpuniceus WS71T. The DNA G+C content was 43.6 %. The predominant respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c). The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The DNA-DNA hybridization values between strain BXN5-31T and three reference strains (M. soyangensis HME6664T, M. ximonensis XM-003T and M. puniceus WS71T) were 9.4±1.9, 8.2±1.3 and 5.7±0.7 %, respectively. The DNA G+C content and chemotaxonomic data supported the affiliation of strain BXN5-31T to the genus Mucilaginibacter. Moreover, the physiological and biochemical results and low level of DNA-DNA relatedness allowed the phenotypic and genotypic differentiation of strain BXN5-31T from recognized species of the genus Mucilaginibacter. The isolate therefore represents a novel species, for which the name Mucilaginibacter panaciglaebae sp. nov. is proposed. The type strain is BXN5-31T (=KACC 14957T=JCM 17085T).


Subject(s)
Bacteroidetes/classification , Panax/microbiology , Phylogeny , Soil Microbiology , Bacterial Typing Techniques , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
19.
Genome Biol Evol ; 9(6): 1803-1815, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28854637

ABSTRACT

Insect species in the Auchenorrhyncha suborder (Hemiptera) maintain ancient obligate symbioses with bacteria that provide essential amino acids (EAAs) deficient in their plant-sap diets. Molecular studies have revealed that two complementary symbiont lineages, "Candidatus Sulcia muelleri" and a betaproteobacterium ("Ca. Zinderia insecticola" in spittlebugs [Cercopoidea] and "Ca. Nasuia deltocephalinicola" in leafhoppers [Cicadellidae]) may have persisted in the suborder since its origin ∼300 Ma. However, investigation of how this pair has co-evolved on a genomic level is limited to only a few host lineages. We sequenced the complete genomes of Sulcia and a betaproteobacterium from the treehopper, Entylia carinata (Membracidae: ENCA), as the first representative from this species-rich group. It also offers the opportunity to compare symbiont evolution across a major insect group, the Membracoidea (leafhoppers + treehoppers). Genomic analyses show that the betaproteobacteria in ENCA is a member of the Nasuia lineage. Both symbionts have larger genomes (Sulcia = 218 kb and Nasuia = 144 kb) than related lineages in Deltocephalinae leafhoppers, retaining genes involved in basic cellular functions and information processing. Nasuia-ENCA further exhibits few unique gene losses, suggesting that its parent lineage in the common ancestor to the Membracoidea was already highly reduced. Sulcia-ENCA has lost the abilities to synthesize menaquinone cofactor and to complete the synthesis of the branched-chain EAAs. Both capabilities are conserved in other Sulcia lineages sequenced from across the Auchenorrhyncha. Finally, metagenomic sequencing recovered the partial genome of an Arsenophonus symbiont, although it infects only 20% of individuals indicating a facultative role.


Subject(s)
Bacteroidetes/genetics , Betaproteobacteria/genetics , Genome, Bacterial , Genome, Insect , Hemiptera/genetics , Hemiptera/microbiology , Symbiosis , Amino Acids/metabolism , Animals , Bacteroidetes/classification , Bacteroidetes/physiology , Betaproteobacteria/classification , Betaproteobacteria/physiology , Evolution, Molecular , Genomics , Hemiptera/classification , Hemiptera/physiology , Phylogeny
20.
Curr Microbiol ; 74(12): 1382-1388, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28821948

ABSTRACT

A Gram-reaction-negative, aerobic, nonmotile, nonspore-forming, and rod-shaped bacterial strain designated Gsoil 3017T was isolated from soil of ginseng field and investigated by phenotypic and phylogenetic analyses. Strain Gsoil 3017T grew at 10-37 °C (optimal growth at 30 °C) and at pH 5.5-8.0 (optimal growth at pH 7) on R2A and nutrient agar without additional NaCl as a supplement. Strain Gsoil 3017T possessed ß-glucosidase activity, which was responsible for its ability to transform ginsenosides Rb1, Rc, and Rd (the three dominant active components of ginseng) to F2 and C-K, respectively. Based on 16S rRNA gene phylogeny, the novel strain represents a new branch within the genus Mucilaginibacter family Sphingobacteriaceae, and clusters with Mucilaginibacter frigoritolerans FT22T (95.6%) and Mucilaginibacter gotjawali SA3-7T (95.6%). The G+C content of the genomic DNA was 48.7%. The predominant respiratory quinone was MK-7, and the major fatty acids were iso-C15:0, iso-C17:0 3-OH, and summed feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c). The major polar lipid was phosphatidylethanolamine. Strain Gsoil 3017T could be differentiated genotypically and phenotypically from other type strains of the genus Mucilaginibacter. The isolate therefore represents a novel species, for which the name Mucilaginibacter ginsenosidivorans sp. nov. is proposed, with the type strain Gsoil 3017T (=KACC 14954T = JCM 17081T).


Subject(s)
Bacteroidetes/classification , Bacteroidetes/isolation & purification , Soil Microbiology , Aerobiosis , Bacterial Typing Techniques , Bacteroidetes/genetics , Bacteroidetes/physiology , Base Composition , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Hydrogen-Ion Concentration , Panax/growth & development , Phospholipids/analysis , Phylogeny , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride/metabolism , Temperature , beta-Glucosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL