Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 321
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Molecules ; 28(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38138590

ABSTRACT

BS1801 is a selenium-containing drug candidate with potential for treating liver and lung fibrosis. To fully elucidate the biotransformation of BS1801 in animals and provide sufficient preclinical drug metabolism data for human mass balance study, the metabolism of BS1801 in rats was investigated. We used radiolabeling techniques to investigate the mass balance, tissue distribution, and metabolite identification of BS1801 in Sprague-Dawley/Long-Evans rats after a single oral dose of 100 mg/kg (100 µCi/kg) [14C]BS1801: 1. The mean recovery of radioactive substances in urine and feces was 93.39% within 168 h postdose, and feces were the main excretion route. 2. Additionally, less than 1.00% of the dose was recovered from either urine or bile. 3. BS1801-related components were widely distributed throughout the body. 4. Fifteen metabolites were identified in rat plasma, urine, feces, and bile, and BS1801 was detected only in feces. 5. BS1801-M484, the methylation product obtained via a N-Se bond reduction in BS1801, was the most abundant drug-related component in plasma. The main metabolic pathways of BS1801 were reduction, amide hydrolysis, oxidation, and methylation. Overall, BS1801 was distributed throughout the body, and excreted mainly as an intact BS1801 form through feces. No differences were observed between male and female rats in distribution, metabolism, and excretion of BS1801.


Subject(s)
Selenium , Rats , Male , Female , Humans , Animals , Rats, Sprague-Dawley , Selenium/analysis , Rats, Long-Evans , Bile/chemistry , Liver/metabolism , Biotransformation , Feces/chemistry , Administration, Oral
2.
Chem Biodivers ; 20(3): e202201109, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36760194

ABSTRACT

Bear bile powder (BBP) is a rare animal-derived traditional Chinese medicine, and it has been widely used to treat visual disorders and hepatobiliary diseases in East Asia. However, there is still a lack of reliable quality control methods for BBP. This study was designed to establish a comprehensive quality map of BBP based on bile acids. High-performance liquid chromatography coupled with charged aerosol detector (HPLC-CAD) was used for fingerprint establishment and quantitative analysis of BBP. The similarities of HPLC-CAD chromatograms for 50 batches of BBP were more than 0.95, while the similarities of reference chromatograms between 6 other animal bile and BBP were low than 0.7. Additionally, five bile acids in BBP, including tauroursodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid, ursodesoxycholic acid, and chenodeoxycholic acid, were simultaneously quantified. This method has been validated with good regression as well as satisfactory precision, sensitivity, stability, repeatability, and accuracy. Using this method, the contents of five bile acids in BBP samples from five producing areas were determined and compared. Furthermore, Fisher linear discriminant analysis was performed to discriminate the geographic origins of BBP. The result demonstrated that HPLC-CAD fingerprint combined with multi-components quantification is an effective and reliable method for quality control of BBP, it could be a meaningful reference for the quality evaluation of medicinal bile.


Subject(s)
Drugs, Chinese Herbal , Ursidae , Animals , Bile/chemistry , Bile Acids and Salts/analysis , Chemometrics , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Powders/analysis , Ursidae/metabolism
3.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4469-4479, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36046877

ABSTRACT

This study was designed to determine the metabolites of Yiqi Baoyuan Prescription(YQBYP) in rats. The ultra-high performance liquid chromatography coupled to time-of-flight mass spectrometry(UPLC-TOF-MS) and mass defect filter(MDF) were employed to analyze the metabolites of YQBYP in rat plasma, bile, urine and feces. Chromatographic separation was conducted on Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 µm) under gradient elution with 0.1% formic acid aqueous solution(A)-acetonitrile(B), and the column temperature was 30 ℃. Electrospray ion(ESI) source was used under positive and negative ion modes, with capillary voltage of 3.0 kV and mass scanning range of m/z 100-1 000. In this experiment, 9 prototype components and 36 metabolites were identified in rat plasma, bile, urine and feces samples. The results showed that the main metabolic pathways of YQBYP in rats involved methylation, demethylation, oxidation, and other phase Ⅰ reactions as well as glucuronidation, sulfation, and other phase Ⅱ reactions. This study provided scientific basis for clarifying the therapeutic material basis of YQBYP and product development.


Subject(s)
Bile , Prescriptions , Administration, Oral , Animals , Bile/chemistry , Chromatography, High Pressure Liquid/methods , Feces/chemistry , Rats , Rats, Sprague-Dawley
4.
Anal Chim Acta ; 1221: 340152, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35934382

ABSTRACT

The aqueous solution extracted from raw bile juice is composed primarily of bile salts, with lower levels of bilirubin and its derivatives. Among them, the bilirubin and bilirubin-derived metabolites are the only surface-enhanced Raman scattering (SERS)-active components. An analytical scheme indirectly responsive and able to utilize all bile components, including SERS-inactive bile salts, was explored for SERS-based discrimination of gallbladder (GB) polyp and GB cancer. Initially, the surface of a SERS substrate (Au nanodendrite on Ni foil (AuND@NiF)) was covered with an alkanethiol molecule to generate a SERS signal and attract bile components by mutual interaction. For more effective recognition of bile components, 4 independent substrates covered with 4 different alkanethiols with various functional groups (SH(CH2)2CH3, SH(CH2)2NH2, SH(CH2)2COOH, and SH(CH2)2OH) were prepared. The SERS peaks of each substrate clearly varied on interaction with pure bile components as well as aqueous bile samples, and the SERS peaks in each substrate were individually characteristic. When the principal component (PC) scores of spectra obtained using the SH(CH2)2CH3- and SH(CH2)2OH-covered substrates were combined, the k-Nearest Neighbor-based discrimination accuracy was 100%, superior to those (90.6-96.9%) using individual substrates. The use of complementary bile component-induced spectral information provided by the two substrates was responsible for accurate discrimination. On the other hand, when bare AuND@NiF recognizing only SERS-active bilirubin derivatives was used, discrimination was unsatisfactory (accuracy: 75.0%).


Subject(s)
Gallbladder Neoplasms , Metal Nanoparticles , Bile/chemistry , Bile Acids and Salts/analysis , Bilirubin/analysis , Feasibility Studies , Gallbladder Neoplasms/diagnosis , Humans , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman , Water/analysis
5.
Rapid Commun Mass Spectrom ; 36(15): e9326, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35582902

ABSTRACT

RATIONALE: Bear bile powder (BBP) is a widely used traditional Chinese medicine (TCM), and bile acids (BAs) are the main active components in BBP. Due to the scarcity of BBP resources, adulterations often occur in the market. Conventional methods to distinguish them are usually complicated and time-consuming. To enhance effectiveness and accuracy, a rapid and rough analytical method is desperately needed. METHODS: In this study, a rapid strategy using chip-based nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) was established to distinguish BBP from other sources of bile powder (BP). In addition, the results were further verified by ultra-high-performance liquid chromatography combined with high-resolution mass spectrometry (UPLC/MS). RESULTS: The precision of the chip-based nano-ESI-MS/MS method was validated to be acceptable with relative standard deviation (RSD) <15%. The distinction between BBP and other sources of BP, including common adulterants of pig bile powder (PBP), cattle bile powder (CBP), sheep bile powder (SBP), and chicken bile powder (CkBP), can be observed in the spectra. By using orthogonal partial least-squares discriminant analysis (OPLS-DA), more potential m/z markers were investigated. A BAs-related m/z marker of 498.3 was discovered as a typical differential molecular ion peak and was identified as tauroursodeoxycholic acid (TUDCA) and taurochenodeoxycholic acid (TCDCA) in BBP. CONCLUSIONS: The proposed strategy has simple sample pretreatment steps and significantly shortened analysis time. As an emerging technology, chip-based nano-ESI-MS not only provides a reference for the rapid distinction of adulterated Chinese medicines, but also provides some insights into the identification of other chemicals and foods.


Subject(s)
Bile , Ursidae , Animals , Bile/chemistry , Bile Acids and Salts/analysis , Cattle , Chromatography, High Pressure Liquid/methods , Powders/analysis , Sheep , Spectrometry, Mass, Electrospray Ionization/methods , Swine , Tandem Mass Spectrometry/methods
6.
J Ethnopharmacol ; 289: 115063, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35149130

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: According to the Tang Dynasty classics Dietetic Material Medica and the Ming Dynasty classics Compendium of Materia Medica records, bear bile powder (BBP) has been used to treat a variety of diseases, such as febrile seizures, the pathogenesis of which is associated to neuroinflammation. However, the mechanism of BBP on alleviating neuroinflammation remains unclear. AIMS OF THE STUDY: Microglia can be activated by peripheral lipopolysaccharide (LPS) and play an important role in the pathogenesis of neuroinflammation. The purpose of this study is to investigate the effects and mechanism of BBP in inhibiting LPS-induced microglia inflammation in vitro and in vivo. MATERIALS AND METHODS: The anti-microglia inflammatory effects and mechanism of BBP were assessed in LPS-treated BV2 microglial cells and in LPS-treated mice. The mRNA expression levels of the inflammatory factor and the protein expressions of cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), takeda G-protein coupled receptor 5 (TGR5), nuclear factor-κB (NF-κB), inhibitor of NF-κB (IκBɑ), protein kinase B (AKT) in BV2 cells, mouse hippocampus and cortex were detected. The NF-κB transcription activity and NF-κB nuclear translocation were observed. RESULTS: Our findings showed that BBP reduces branched process retraction and NO in LPS-treated BV2 cells, inhibits the protein expression of ionized calcium binding adaptor molecule 1 in the hippocampus of LPS-treated mice. Moreover, we observed that BBP decreases tumor necrosis factor α, interleukin (IL)-6 and IL-1ß mRNA levels, deceases iNOS and COX-2 protein levels, increases TGR5 protein levels, suppresses the phosphorylation of AKT, NF-κB and IκBɑ protein in microglia both in vitro and in vivo. Further, we found that triamterene, the inhibitor of TGR5, abolishes the effects of BBP in LPS- treated BV2 cells. CONCLUSION: BBP inhibits LPS-induced microglia activation, and the mechanism of its action is partly through TGR5/AKT/NF-κB signaling pathway.


Subject(s)
Bile/chemistry , Biological Products/pharmacology , Medicine, Chinese Traditional , Neuroinflammatory Diseases/drug therapy , Animals , Cell Line , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , NF-kappa B/metabolism , Powders , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Ursidae
7.
Pharmacol Res ; 175: 105981, 2022 01.
Article in English | MEDLINE | ID: mdl-34798264

ABSTRACT

Inchinkoto (ICKT) is a popular choleretic and hepatoprotective herbal medicine that is widely used in Japan. Geniposide, a major ingredient of ICKT, is metabolized to genipin by gut microbiota, which exerts a choleretic effect. This study investigates the relationship between stool genipin-producing activity and diversity of the clinical effect of ICKT in patients with malignant obstructive jaundice. Fifty-two patients with malignant obstructive jaundice who underwent external biliary drainage were included. ICKT was administered as three packets per day (7.5 g/day) for three days and 2.5 g on the morning of the fourth day. Stool samples were collected before ICKT administration and bile flow was monitored on a daily basis. The microbiome, genipin-producing activity, and organic acids in stools were analyzed. The Shannon-Wiener (SW) index was calculated to evaluate gut microbiome diversity. The stool genipin-producing activity showed a significant positive correlation with the SW index. Stool genipin-producing activity positively correlated with the order Clostridia (obligate anaerobes), but negatively correlated with the order Lactobacillales (facultative anaerobes). Moreover, stool genipin-producing activity was positively correlated to the concentration valeric acid, but negatively correlated to the concentration of lactic acid and succinic acid. The change of bile flow at 2 and 3 days after ICKT administration showed significant positive correlation with genipin-producing activity (correlation coefficient, 0.40 and 0.29, respectively, P < 0.05). An analysis of stool profile, including stool genipin-producing activity, may predict the efficacy of ICKT. Modification of the microbiome may be a target to enhance the therapeutic effect of ICKT.


Subject(s)
Cholagogues and Choleretics/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Feces/chemistry , Gastrointestinal Microbiome/drug effects , Iridoids/metabolism , Jaundice, Obstructive/drug therapy , Adult , Aged , Aged, 80 and over , Bile/chemistry , Carboxylic Acids/metabolism , Clostridium/genetics , Clostridium/metabolism , Female , Gastrointestinal Microbiome/genetics , Humans , Jaundice, Obstructive/microbiology , Lactobacillales/genetics , Lactobacillales/metabolism , Male , Middle Aged , Neoplasms/drug therapy , Neoplasms/microbiology , Treatment Outcome
8.
Chin J Integr Med ; 28(10): 918-923, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33609233

ABSTRACT

OBJECTIVE: To compare the therapeutic effect of different animal bile powders on lipid metabolism disorders induced by high-fat diet in rats, and analyze the bioactive components of each animal bile powder. METHODS: Sixty Sprague-Dawley rats were randomly divided into 6 groups (n=10): normal diet control group, high-fat diet model group, high-fat diet groups orally treated with bear, pig, cow and chicken bile powders, respectively. Serum biochemical markers from the abdominal aorta in each group were analyzed. Changes in the body weight and liver weight were recorded. Pathohistological changes in the livers were examined. High performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was used to determine the composition of bioactive components in each animal bile powder. RESULTS: Treatment with different types of animal bile powders had different inhibitory effects on high-fat diet-induced increase of body weight and/or liver weight in rats, most notably in bear and pig bile powders (P<0.05). High-fat diet induced lipid metabolism disorder in rats, which could be reversed by treatment with all kinds of bile powders. Bear bile and chicken bile showed the most potent therapeutic effect against lipid metabolism disorder. Cow and bear bile effectively alleviated high-fat diet induced liver enlargement and discoloration, hepatocyte swelling, infiltration of inflammatory cells and formation of lipid vacuoles. Bioactive component analysis revealed that there were significant differences in the relative content of taurocholic acid, taurodeoxycholic acid and ursodeoxycholic acid among different types of animal bile. Interestingly, a unique component with molecular weight of 496.2738 Da, whose function has not yet been reported, was identified only in bear bile powder. CONCLUSIONS: Different animal bile powders had varying therapeutic effect against lipid metabolism disorders induced by high-fat diet, and bear bile powder demonstrated the most effective benefits. Bioactive compositions were different in different types of animal bile with a novel compound identified only in bear bile powder.


Subject(s)
Lipid Metabolism Disorders , Ursidae , Animals , Bile/chemistry , Bile/metabolism , Biomarkers/metabolism , Body Weight , Cattle , Diet, High-Fat , Female , Lipid Metabolism , Lipid Metabolism Disorders/metabolism , Lipids/analysis , Liver/metabolism , Powders , Rats , Rats, Sprague-Dawley , Swine , Taurodeoxycholic Acid/analysis , Taurodeoxycholic Acid/metabolism , Ursidae/metabolism , Ursodeoxycholic Acid/analysis , Ursodeoxycholic Acid/metabolism
9.
Article in English | MEDLINE | ID: mdl-34688199

ABSTRACT

Traditional Chinese medicine prescriptions are widely believed to exert therapeutic benefits via a multiple-component and multiple-target mode. The systemic profiling of their in vitro chemicalome and in vivo metabolome is of great importance for further understanding their clinical value. Herein, an integrated strategy using ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry was proposed to profile the chemicalome and metabolome of Chai-Gui Decoction. Particularly, an approach combined mass defect filter, characteristic product ion filter, and neutral loss filter was adopted to identify metabolites in plasma, urine, bile, and feces by MetabolitePilot. Consequently, a total of 174 constituents were identified or tentatively characterized and 70 metabolites that related to 21 representative structural components were matched in rat biofluids. Among them, 19 prototypes and 7 metabolites that contributed to flavonoids, monoterpenes, and phenylpropanoids were detected distribution in brain, heart, kidney, liver, lung or spleen. This study provided a generally applicable approach to comprehensive investigation on chemicalome and metabolome of traditional Chinese medicine prescriptions, and offered reasonable guidelines for further screening of quality control indicators of Chai-Gui Decoction.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Metabolomics/methods , Tandem Mass Spectrometry/methods , Animals , Bile/chemistry , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacokinetics , Feces/chemistry , Kidney/chemistry , Kidney/metabolism , Liver/chemistry , Liver/metabolism , Lung/chemistry , Lung/metabolism , Male , Metabolome , Plasma/chemistry , Rats , Rats, Wistar , Spleen/chemistry , Spleen/metabolism
10.
Biomed Chromatogr ; 35(10): e5174, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33998022

ABSTRACT

Polygonum orientale L. is a traditional Chinese medicine having extensive pharmacological activities including antimyocardial ischemia (MI) injury properties. Isoorientin, orientin, vitexin, quercitrin, astragalin and protocatechuic acid are the main compounds in P. orientale extract. The aim of this study was to establish an ultra-performance liquid chromatography-tandem mass spectrometry method for the determination of the content of these compounds in urine, feces and bile samples simultaneously and application of the method in a comparative excretion study in normal and MI model rats after oral administration of P. orientale extract. Chromatographic seperation was conducted on an Agilent Eclipse Plus C18 column with the mobile phase consisting of 0.1% formic acid-acetonitrile and 0.1% formic acid-water. Negative ion multiple reaction monitoring mode was used for quantification. The six compounds had good linearity (r ≥ 0.9921) and acceptable accuracy ranging from 10.10 to -5.82% The relative standard deviations of within-day precision and inter-day precision were <10.45 and 13.44%, respectively. The extraction recovery of the six analytes ranged from 80.31 to 101.47% and the matrix effect was 82.56-102.88%, indicating that the preparations of sample collected form urine, feces and bile were stable throughout analysis. The excretion amount of the six analytes increased in both normal and MI model rats' urine, feces and bile in a 24 h period and became stable between 36 and 48 h after administration. The total excretion rate of six compounds was <5% in urine, feces and bile of normal and MI model rats. The excretion peak period for all compounds in MI rats was slower than that in normal rats. This excretion study provides insights for further application and research on P. orientale.


Subject(s)
Chromatography, High Pressure Liquid/methods , Flavonoids , Myocardial Ischemia/metabolism , Plant Extracts , Polygonum , Animals , Bile/chemistry , Feces/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Limit of Detection , Linear Models , Male , Plant Extracts/administration & dosage , Plant Extracts/pharmacokinetics , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Tandem Mass Spectrometry/methods
11.
Biomed Chromatogr ; 35(6): e5072, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33453065

ABSTRACT

Jin-hong tablets (JHTs), a well-known traditional Chinese patent medicine (TCPM), have been effectively used for the treatment of chronic superficial gastritis (CSG). The metabolic profile of TCPMs is performed to determine their bioactive components. In this study, a five-step strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and metabolynx™ software combined with mass defect filter technique was developed to delineate the metabolic profile of JHT in vivo. As a result, a total of 163 JHT-related xenobiotics (38 prototypes and 125 metabolites) were identified or tentatively characterized in rat biological samples, and the phase I and II metabolism processes mainly included demethylation, hydroxylation, sulfation, and glucuronidation. In addition, after oral administration of JHT, a large amount of alkaloid-related ingredients was detected in rat plasma samples, indicating that alkaloids may play an important role in the treatment of CSG with JHT. This study is beneficial for understanding the JHT's in vivo metabolic profiles and characteristics, which helps to reveal its in vivo effective components and provides a solid basis for further studies on its functional mechanism.


Subject(s)
Alkaloids , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal , Tandem Mass Spectrometry/methods , Administration, Oral , Alkaloids/analysis , Alkaloids/chemistry , Alkaloids/metabolism , Animals , Berberine Alkaloids , Bile/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/metabolism , Feces/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/metabolism , Male , Rats , Rats, Sprague-Dawley , Tablets
12.
J Tradit Chin Med ; 40(6): 999-1006, 2020 12.
Article in English | MEDLINE | ID: mdl-33258352

ABSTRACT

OBJECTIVE: To identify the active ingredients and metabolites in rat bile after Guangtongxiao decoction (GTX) had been administered via the rectal route. METHODS: Drug-containing bile samples were collected via a catheter in the bile duct and could be used 5 h after rectal administration. The main active components and their metabolites in rat bile following rectal administration of GTX were identified and analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. RESULTS: Positive and negative modes were applied to analyze and identify the chemical ingredients in the bioactive fractions of GTX. Eight peaks were identified by comparison with the standard compounds: berberine hydrochloride, dehydrocorydaline, tetrahydropalmatine, corydaline, magnoflorine, magnolol, obacunone and albiflorin. Furthermore, 60 metabolites were detected in rat bile based on mass-fragmentation behaviors, and 21 metabolites were reported for the first time. CONCLUSION: Our findings provide a solid basis for further pharmacologic and pharmacokinetic studies of GTX.


Subject(s)
Bile/chemistry , Drugs, Chinese Herbal/chemistry , Animals , Bile/metabolism , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/metabolism , Male , Molecular Structure , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
13.
Article in English | MEDLINE | ID: mdl-32739790

ABSTRACT

Natural bear bile powder (NBBP) is a famous traditional medicine and has been widely used in clinic. However, access to the sources of bear bile is restricted; hence, it is essential to discover new substitutes for NBBP. Cultured bear bile powder (CBBP) is transformed from chicken bile and contains main ingredients as to NBBP. In the present study, the effect and potential mechanism of action of CBBP on cholestatic liver injury in-naphthylisothiocyanate (ANIT)-induced mouse model was explored using metabolomics. CBBP treatment ameliorated impaired hepatic dysfunction and tissue damage that induced by ANIT. Metabolomics showed there were 28 different metabolites induced by ANIT as compared with control mice, and 18 of which was reversed by CBBP. Pathway analysis revealed that those 18 metabolites are mainly involved in bile acid (BA) biosynthesis and D-glutamine and D-glutamate metabolism. Further LC-MS/MS analysis showed that CBBP and NBBP both reduced serum and liver levels of BAs, but increased their biliary levels. Additionally, CBBP and NBBP upregulated expression of BA efflux transporters, Mrp2, Mrp3, and Mrp4, and metabolic enzymes, Cyp2b10 and Ugt1a1 of liver tissue of cholestatic mice, increased the BA excretion and metabolism. Moreover, CBBP and NBBP treatment upregulated GCLc/GCLm expression, and restored glutathione metabolism. In conclusion, the protective effects of CBBP against cholestatic liver injury were similar to those of NBBP. Mechanistically, both CBBP and NBBP reversed the disruption in homeostasis of BAs and glutathione, alleviating damage to hepatocytes.


Subject(s)
Bile , Biological Products/pharmacology , Cholestasis/metabolism , Metabolome/drug effects , Protective Agents/pharmacology , Animals , Bile/chemistry , Bile/metabolism , Bile Acids and Salts/metabolism , Biological Products/chemistry , Chickens , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Male , Metabolomics/methods , Mice , Mice, Inbred C57BL , Ursidae
14.
Rapid Commun Mass Spectrom ; 34(18): e8823, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32396660

ABSTRACT

RATIONALE: Traditional Chinese medicines (TCMs) attract worldwide attention because of their effects in clinical application recorded in China historical ancient codes and in records, such as 'Treatise on Febrile Diseases'. With the developments of drug analysis and research, evaluating the in vivo substances in TCMs has become of great importance. Scutellariae Radix (SR, named as huang-qing in China), the root of Scutellaria baicalensis Georgi, has shown favorable clinical effects and safety in the treatment of infection diseases; however, its in vivo compounds are unclear and need detailed investigation. METHODS: An ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF MS) method coupled to an integrated strategy involving diagnostic ions, neutral losses and a prediction platform was used to explore the constituents of SR, and their exogenous substances in rats. RESULTS: A total of 118 chemical constituents mainly featuring five chemical structure types (flavone C-glycosides, flavone O-glycosides, free flavones, flavanones and phenylethanoid glycosides) were identified or tentatively characterized in SR, and 175 xenobiotics (68 prototypes and 107 metabolites) were profiled in rat plasma, urine, bile and feces after ingestion of SR. The metabolites were classified into four related chemical groups: flavone C-glycosides, flavone O-glycosides, flavanones and phenylethanoid glycosides. Phase II metabolism reactions, such as glucuronidation and sulfation, were the major metabolic reactions in addition to phase I reactions of hydrolysis and hydrogenation. The corresponding main metabolic features of SR in rats were also elucidated. CONCLUSIONS: The metabolism of SR, as a whole, was systemically revealed for the first time, and our work also provided meaningful information for pharmacokinetics studies and pharmacological analysis of SR in future work.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Flavonoids/analysis , Scutellaria baicalensis/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Bile/chemistry , Feces/chemistry , Male , Rats , Rats, Sprague-Dawley
15.
J Toxicol Environ Health A ; 83(8): 313-329, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32378477

ABSTRACT

Exposure to contaminants might directly affect organisms and alter their associated microbiota. The objective of the present study was to determine the impact of the petroleum-water-accommodated fraction (WAF) from a light crude oil (API gravity 35) on a benthic fish species native from the Gulf of Mexico (GoM). Ten adults of Achirus lineatus (Linnaeus, 1758) were exposed to a sublethal WAF/water solution of 50% v/v for 48 hr. Multiple endpoints were measured including tissue damage, presence of polycyclic aromatic hydrocarbons (PAHs) metabolites in bile and gut microbiota analyses. Atrophy and fatty degeneration were observed in livers. Nodules and inflammation were detected in spleen, and structural disintegration and atrophy in the kidney. In gills hyperplasia, aneurysm, and gills lamellar fusion were observed. PAHs metabolites concentrations in bile were significantly higher in exposed organisms. Gut microbiome taxonomic analysis showed significant shifts in bacterial structure and composition following WAF exposure. Data indicate that exposure to WAF produced toxic effects in adults of A. lineatus, as evidenced by histological alterations and dysbiosis, which might represent an impairment to long-term subsistence of exposed aquatic organisms.


Subject(s)
Flatfishes/microbiology , Microbiota/drug effects , Petroleum/analysis , Petroleum/toxicity , Toxicity Tests , Water Pollutants, Chemical/toxicity , Animals , Bile/chemistry , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity
16.
Article in English | MEDLINE | ID: mdl-32311674

ABSTRACT

Gardeniae Fructus was a traditional Chinese medicine (TCM) containing various biological ingredients including iridoids and crocetins, monocyclic monoterpenes, organic acids, and flavonoids. However, few systematic identification studies of the bioactive components in vivo have been reported. Herein, the ingredients and metabolites of Gardeniae Fructus were investigated using high-performance liquid chromatography coupled with high-sensitivity Q-TOF mass spectrometry. A total of 45 prototype compounds in Gardeniae Fructus extract were tentatively identified. After oral administration, 69 of prototypes and metabolites were identified from mice bile, plasma, urine, and feces, in which, 31 compounds were prototypes, and 38 chemicals were metabolites. The in vivo biotransformation pathways of these metabolites were also proposed including phase I (hydrolysis, hydrogenation, oxidation, loss of O, and ketone formation, decarboxylation) and phase II reactions (glycine, cysteine, glutathione, and glutamine, and sulfate conjugation, and glucuronidation). For the first time, our results had revealed systematic metabolic profiles of ingredients in Gardeniae Fructus extract in vivo of mice and replenished novel knowledge into the explanation of effective material and/or toxicological basis of Gardeniae Fructus which deserves further investigation.


Subject(s)
Bile/metabolism , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Feces/chemistry , Fruit/metabolism , Gardenia/metabolism , Animals , Bile/chemistry , Biotransformation , Chromatography, High Pressure Liquid , Fruit/chemistry , Gardenia/chemistry , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred ICR , Plasma/chemistry , Tandem Mass Spectrometry , Urine/chemistry
17.
Zhongguo Zhong Yao Za Zhi ; 45(5): 1064-1069, 2020 Mar.
Article in Chinese | MEDLINE | ID: mdl-32237447

ABSTRACT

The pig bile powder, bovine bile powder, snake bile, sheep bile, goose bile powder, and bear bile powder were contained by the Chinese Pharmacopoeia. The bile power medicine has a long history in traditional Chinese medicine and definite effect. However, the medicine of bile powder(bile) are similar in morphology. Besides, many medicine lack specific microscopic identification characteristics and chemical characteristics. There is a risk of adulteration, especially when the fake medicine were mixed in authentic medicine, it is difficult to detection. The key to control the quality and ensures the clinical efficacy is the good or bad, true or false of the bile power medicine. The STR typing technology is a method that according to differential typing of PCR amplified lengths to compare and identify individual organisms. Based on the principle of STR typing, the easily, rapid DNA fingerprinting method to identify the bile power and adulteration was established.The original animal or bile powder of pigs, cattle, sheep, chickens, ducks, geese, snakes, bears, fish were collected, the 12 S-L1091/12 S-H1478 and 16 S-L3428/16 S-H3667 was obtained by sifted, the DNA fingerprinting of the bile power and adulteration was obtained by STR typing. Every species has different STR fingerprints, so different species can be identified. Besides, the fingerprints have both the authentic and fake's information, the adulteration of authentic and fake can be identified. Therefore, the method to identify the bile power and adulteration was achieved through the combination of two primers. The DNA fingerprinting method established in this study can also be used for other animal medicine.


Subject(s)
Bile/chemistry , DNA Fingerprinting , Materia Medica/analysis , Animals , Cattle , Chickens , Medicine, Chinese Traditional , Sheep , Swine , Ursidae
18.
Drug Dev Res ; 81(5): 609-619, 2020 08.
Article in English | MEDLINE | ID: mdl-32220026

ABSTRACT

Scutellarin is the major and active constituent of Dengzhan Xixin Injection (DZXX), a traditional Chinese medicine prepared from the aqueous extract of Erigeron breviscapus and widely used for the treatment of various cerebrovascular diseases in clinic. In present study, the possible pharmacokinetic differences of scutellarin after intravenous administration of scutellarin alone or DZXX were explored. Additional, the potential roles of ß-glucuronidase (GLU) and OATP2B1 in drug-drug interaction (DDI) between scutellarin and constituents of DZXX were further evaluated in vitro. The plasma concentration, urinary and biliary excretion of scutellarin in rats after administration of DZXX, were significantly higher than those received scutellarin, while pharmacokinetic profile of Apigenin 7-O-glucuronide (AG) in rats was similar no matter AG or DZXX group. Furthermore, higher concentration in brain and plasma, however, lower level of scutellarin in intestine were observed after intravenous administration of DZXX. Finally, AG and caffeoylquinic acid esters were found to significantly inhibit GLU and OATP2B1 in vitro, which might explain, at least in part, the pharmacokinetic DDI between scutellarin and other chemical constituents in DZXX. The findings provided deep insight into the prescription-formulating principle in DZXX for treating the cerebrovascular diseases.


Subject(s)
Apigenin/pharmacokinetics , Erigeron , Glucuronates/pharmacokinetics , Glucuronidase/metabolism , Organic Anion Transporters/metabolism , Plant Extracts/pharmacokinetics , Animals , Apigenin/blood , Apigenin/urine , Bile/chemistry , Drug Compounding , Drug Interactions , Endocytosis , Glucuronates/blood , Glucuronates/urine , Glucuronidase/antagonists & inhibitors , HEK293 Cells , Humans , Hydrolysis , Injections, Intravenous , Male , Organic Anion Transporters/antagonists & inhibitors , Rats, Sprague-Dawley , Tissue Distribution
19.
Fitoterapia ; 142: 104480, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31927013

ABSTRACT

Oroxylin A (OA), as a natural flavonoid extracted from the root of Scutellaria baicalensis Georgi, is a candidate drug with multiple pharmacological activities. However, pharmacokinetic studies of OA have rarely been reported up to now. The present study aim to conduct a systemic evaluation on the pharmacokinetics, tissue distribution and excretion of OA in rats, with quantification of both OA and its two metabolites, Oroxylin A 7-O-glucuronide (OG) and Oroxylin A sodium sulfonate (OS) by the sensitive and rapid UPLC-MS/MS methods. The results show that OA was rapidly eliminated in vivo after a single-dose (2 mg/kg) i.v. administration of OA. The relative bioavailability of OA in all three i.g. administration groups (40, 120, and 360 mg/kg) were <2%. The AUC0-t values of OA, OG, and OS in rats show an apparent dose-proportionality. OA, OG, and OS all underwent a rapid and widespread tissue distribution after i.g. administration (120 mg/kg) of OA. Except for stomach and intestine, the major distribution tissues of OA and its two metabolites in rats were liver, kidney, respectively. And OA was more widely distributed in tissue than its metabolites. After i.g. administration (120 mg/kg) of OA, it was mainly excreted from the feces, and OG mainly excreted from bile and urine, while OS almost free of excretion. This work present a comprehensive pharmacokinetics information for further investigation of OA and its two metabolites.


Subject(s)
Flavones/metabolism , Flavonoids/metabolism , Flavonoids/pharmacokinetics , Glucuronides/metabolism , Administration, Oral , Ampicillin/analogs & derivatives , Animals , Area Under Curve , Bile/chemistry , Chromatography, Liquid , Feces/chemistry , Female , Flavones/chemistry , Flavones/urine , Flavonoids/chemistry , Flavonoids/urine , Glucuronides/chemistry , Glucuronides/urine , Half-Life , Male , Random Allocation , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Tetracyclines , Tissue Distribution
20.
Rapid Commun Mass Spectrom ; 34(7): e8661, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31732995

ABSTRACT

RATIONALE: Erianin, a bioactive component isolated from Dctidrobium chrysotoxum Lindl, was demonstrated to have many biological properties relevant to cancer prevention and therapy. However, the metabolic profiles of erianin remain unknown. This study was carried out to investigate the metabolic profiles of erianin in rats and humans. METHODS: Erianin was orally administered to rats at a single dose of 50 mg/kg. Urine and bile samples were collected. For in vitro metabolism, erianin was co-incubated with rat or human hepatocytes at 37°C for 2 h. The samples from incubations and rat were analyzed by liquid chromatography combined with electrospray ionization high-resolution mass spectrometry. The data were processed by MetWorks software. The structures of the metabolites were proposed by comparing the mass spectra with that of the parent compound. RESULTS: A total of twenty-four metabolites were detected in vitro and in vivo, including seven phase I and eighteen phase II metabolites. The phase I metabolic pathways of erianin were hydroxylation, demethylation and dehydrogenation. Erianin undergoes metabolic activation to form reactive metabolites quinoid intermediates, which were further trapped by glutathione (GSH) or N-acetylcysteine. The phase II metabolic pathways were glucuronidation, glutathione and N-acetylcysteine conjugation. CONCLUSIONS: The present study provides an overview pertaining to the in vitro and in vivo metabolic profiles of erianin, which is indispensable for us to understand the efficacy and safety of erianin, as well as the herbal medicine D. chrysotoxum.


Subject(s)
Bibenzyls/metabolism , Bibenzyls/urine , Phenol/metabolism , Phenol/urine , Activation, Metabolic , Animals , Bibenzyls/analysis , Bile/chemistry , Bile/metabolism , Cell Line , Chromatography, Liquid , Hepatocytes/metabolism , Humans , Metabolic Networks and Pathways , Phenol/analysis , Rats , Rats, Sprague-Dawley , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL