Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Mar Drugs ; 19(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34940681

ABSTRACT

Marine biofouling is a natural process that represents major economic, environmental, and health concerns. Some booster biocides have been used in biofouling control, however, they were found to accumulate in environmental compartments, showing negative effects on marine organisms. Therefore, it is urgent to develop new eco-friendly alternatives. Phenyl ketones, such as benzophenones and acetophenones, have been described as modulators of several biological activities, including antifouling activity (AF). In this work, acetophenones were combined with other chemical substrates through a 1,2,3-triazole ring, a strategy commonly used in Medicinal Chemistry. In our approach, a library of 14 new acetophenone-triazole hybrids was obtained through the copper(I)-catalyzed alkyne-azide cycloaddition "click" reaction. All of the synthesized compounds were evaluated against the settlement of a representative macrofouling species, Mytilus galloprovincialis, as well as on biofilm-forming marine microorganisms, including bacteria and fungi. The growth of the microalgae Navicula sp. was also evaluated after exposure to the most promising compounds. While compounds 6a, 7a, and 9a caused significant inhibition of the settlement of mussel larvae, compounds 3b, 4b, and 7b were able to inhibit Roseobacter litoralis bacterial biofilm growth. Interestingly, acetophenone 7a displayed activity against both mussel larvae and the microalgae Navicula sp., suggesting a complementary action of this compound against macro- and microfouling species. The most potent compounds (6a, 7a, and 9a) also showed to be less toxic to the non-target species Artemia salina than the biocide Econea®. Regarding both AF potency and ecotoxicity activity evaluation, acetophenones 7a and 9a were put forward in this work as promising eco-friendly AF agents.


Subject(s)
Acetophenones/pharmacology , Biofouling/prevention & control , Disinfectants/pharmacology , Triazoles/pharmacology , Acetophenones/chemistry , Animals , Aquatic Organisms , Biofilms/drug effects , Bivalvia/drug effects , Disinfectants/chemistry , Larva/drug effects , Microalgae/drug effects , Structure-Activity Relationship , Triazoles/chemistry
2.
Ecotoxicology ; 29(7): 941-958, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32350641

ABSTRACT

Since it has been demonstrated that urban effluents can have adverse effects on aquatic organisms, a multibiomarker study was used to evaluate the effects of wastewater treatment plant (WWTP) effluents discharged into the marine and freshwater environments on clams in Cádiz, Spain. One bioassay was performed in the Bay of Cádiz, exposing Ruditapes philippinarum (marine) to a reference site as well as two sites close to WWTP discharges for 14 days. A second bioassay was performed in the Guadalete River, exposing Corbicula fluminea (fresh water) to three sites for 21 days. The biomarkers analysed included defence mechanisms and various toxic effects. Results indicated that WWTP effluents activated defence mechanisms and induced toxic effects in clams exposed to both environments, thus indicating bioavailability of contaminants present in water. Elevated enzymatic activity was found in clams deployed in La Puntilla and El Trocadero compared to control clams and those exposed to the reference site, and 96% of clams deployed at G2 in the Guadalete River died before day 7. Clams exposed to G1 and G3 indicated significant differences in all biomarkers analysed with respect to control clams (p < 0.05). Both species were sensitive to contaminants present in studied sites. This is the first time that these species were used in cages to assess the environmental risk of wastewater effluent discharges in freshwater and marine column environments. The multibiomarker approach provided important ecotoxicological information and is useful for the assessment of the bioavailability and effect of contaminants from WWTP effluents on marine and fresh water invertebrates.


Subject(s)
Bivalvia/drug effects , Wastewater/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/analysis , Corbicula/drug effects , Fresh Water , Seawater , Spain , Waste Disposal, Fluid
3.
Environ Toxicol Chem ; 38(11): 2480-2485, 2019 11.
Article in English | MEDLINE | ID: mdl-31415101

ABSTRACT

Manganese (Mn) might stimulate the valve closure reflex in the freshwater bivalve Anodontites trapesialis, leading to metabolic suppression, whereas zinc (Zn) is not able to modify this behavior. To investigate this particular response, we exposed A. trapesialis specimens to Mn (0.5 mg L-1 ) and Zn (1.0 mg L-1 ) alone, and to their mixture, to measure further endpoints in different clam tissues: glycogen level in gills, and calcium (Ca2+ ), sodium (Na+ ), and chloride (Cl- ) concentrations in the hemolymph. Furthermore, we used cutting-edge technology, proteomics, to evaluate modifications in protein patterns under the 3 exposure tests. The main results highlighted that only Mn caused a clear drop in glycogen levels in gills, an increase in Ca2+ and Na+ , and a simultaneous decrease in Cl- concentration in the hemolymph. The proteomic analysis confirmed that Mn promoted more effects in A. trapesialis than the other tested conditions, because the number of proteins modulated was higher than the results obtained after exposure to Zn and the mixture. Moreover, 11 of the 12 modulated proteins were down-expressed. These results consolidate the hypothesis that Mn might suppress gill metabolic rate in A. trapesialis. Environ Toxicol Chem 2019;38:2480-2485. © 2019 SETAC.


Subject(s)
Bivalvia/drug effects , Bivalvia/metabolism , Endpoint Determination , Gills/metabolism , Manganese/toxicity , Zinc/toxicity , Animals , Electrophoresis, Gel, Two-Dimensional , Fish Proteins/metabolism , Fresh Water/chemistry , Gills/drug effects , Glycogen/metabolism , Hemolymph/drug effects , Ions/metabolism , Osmolar Concentration , Proteomics , Water Pollutants, Chemical/toxicity
4.
Aquat Toxicol ; 208: 146-156, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30677710

ABSTRACT

The presence of pharmaceuticals in the aquatic ecosystem has become a topic of growing interest in recent years. In this study, the marine clam Ruditapes philippinarum was exposed during 14 days to concentrations close to those found in the environment: (15 µg L-1) of carbamazepine (CBZ), diclofenac (DCF) and ibuprofen (IBU), three pharmaceuticals widely used worldwide and commonly found within the aquatic environment. Additionally, exposure was followed by a depuration phase (7 days). A battery of biomarkers (superoxide dismutase SOD, catalase CAT, glutathione reductase GR, total glutathione peroxidase T-GPx, glutathione transferase GST, lipid peroxidation LPO, acetylcholinesterase AChE and metallothionein MT) was evaluated throughout the exposure and depuration. The Integrated Biomarker Response index was calculated with all selected biomarkers and used as a complementary tool in the evaluation of the organisms' health status. Exposure induced changes in the clams' biochemical responses that led to the hypothesis of the harmful role of the pharmaceuticals resulting in negative effects (changes in enzyme activities, LPO and MT levels, related to ROS production) particularly after short-term exposure. However, the clams showed the ability to cope with these imbalances by recovering their general oxidative status by the end of exposure.


Subject(s)
Biomarkers/metabolism , Bivalvia/drug effects , Carbamazepine/toxicity , Diclofenac/toxicity , Ibuprofen/toxicity , Acetylcholinesterase/metabolism , Animals , Gills/drug effects , Gills/metabolism , Humans , Lipid Peroxidation/drug effects , Metallothionein/metabolism , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity
5.
Article in English | MEDLINE | ID: mdl-30528702

ABSTRACT

Antioxidant enzymes play essential roles against oxidative stress caused by 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), which is ubiquitous in marine environment and organisms. However, research on antioxidant responses to BDE-47 in marine bivalves is scarce. In this study, we identified the full-length cDNA of catalase (CAT), and glutathione peroxidase (GPx) in the clam Mactra veneriformis. Subsequently, the responses of CAT, GPx, and copper, zinc-superoxide dismutase (Cu, Zn-SOD) were investigated in the clams exposed to 0.1, 1, and 10 µg/L BDE-47 for 7 days, and then depurated in natural seawater for 3 days. MvCAT and MvGPx contained conserved sequences. The deduced amino acid sequences shared high similarity with CATs and GPxs in other mollusks. M. veneriformis accumulated BDE-47 in a dose-dependent manner and eliminated BDE-47 poorly. BDE-47 induced a time- and dose-dependent increase of malondialdehyde content. Both the dose and the duration had significant effect on mRNA expressions and activities of the three antioxidants. Cu, Zn-SOD responded to BDE-47 earlier than CAT and GPx. The antioxidant responses could recover after depuration. These results suggested that M. veneriformis could accumulate BDE-47 efficiently. Antioxidant enzymes were triggered to counter the oxidative stress generated by BDE-47. Cu, Zn-SOD acted as the first defense against oxidative stress, while CAT and GPx intervened later. This study is therefore helpful in understanding the antioxidant responses to PBDEs in marine bivalves.


Subject(s)
Antioxidants/metabolism , Bivalvia/drug effects , Halogenated Diphenyl Ethers/toxicity , Water Pollutants, Chemical/toxicity , Amino Acid Sequence , Animals , Antioxidants/chemistry , Base Sequence , Bivalvia/metabolism , Catalase/genetics , Catalase/metabolism , DNA, Complementary , Gene Expression Regulation, Enzymologic/drug effects , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism
6.
Ecotoxicol Environ Saf ; 164: 21-31, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30092389

ABSTRACT

Xenobiotics from oil tanker leaks and industrial discharges are amongst the main human impacts to confined coastal areas. We assessed the genotoxic responses to the water-soluble fraction of diesel oil in the polychaete Laeonereis culveri and the bivalve Anomalocardia flexuosa, two widespread benthic species in subtropical estuaries from the Southwestern Atlantic. We hypothesized that the highest responsiveness would be expressed by significantly different biomarkers responses between control and oil-impacted treatments. Responsiveness to diesel oil was investigated using an experimental design with two fixed factors (contaminant percentages and times of exposure). After exposure, we monitored the responses of the oxidative stress enzymes and performed micronuclei tests. Results were congruent for both species. Antioxidant defense of glutathione S-transferase and the induction of micronuclei and nuclear buds, the latter just for the bivalve, were significantly affected by polycyclic aromatic hydrocarbons, with significant increases on the seventh day of exposure and in the higher concentrations, compared to controls groups. We assessed the benefits and drawbacks of using each biomarker in laboratory experiments. Both species are indicators of early, and rapid responses to genotoxic contaminants in subtropical estuarine habitats. We suggest that the micronuclei frequency in A. flexuosa is a simple, fast and cheap test for genotoxicity in oil-impacted areas. Such early biomarkers are needed to develop better protocols for impact assessment and monitoring under real field conditions.


Subject(s)
Bivalvia/drug effects , Petroleum/toxicity , Polychaeta/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Bivalvia/metabolism , Glutathione Transferase/metabolism , Micronucleus Tests , Oxidative Stress/drug effects , Polychaeta/metabolism
7.
Fish Shellfish Immunol ; 80: 325-334, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29920381

ABSTRACT

The NF-E2-related factor 2 (Nrf2) is a master regulator of cellular responses against environmental stresses. In this study we cloned the full-length cDNAs of the RpNrf2 encompassed 2823 bp from the clam Ruditapes philippinarum (R. philippinarum). Sequences alignment and phylogenetic analysis showed that Nrf2 was highly specific in the clams. RpNrf2 expression was detected in gill, digestive gland, mantle and adductor, which the highest transcription level was observed in gill and digestive gland. The gene expressions of RpNrf2, Kelch-like-ECH-associated Protein 1 (Keap1), Cul3-based E3 Ubiquitin Ligase (E3), Glutathione S-transferase (GST-pi), Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPx) in digestive gland was evaluated by real-time PCR after being exposed to benzo(a)pyrene (BaP) (0.25, 1and 4 µg/L) for 15 days, which showed that the expression of Nrf2 significantly increased at day 1 and day 6 after exposure (p < 0.05), and there was a negative relationship between the mRNA levels of Nrf2 and Keap1 that indicates the enhancement of Keap1 expression stimulating Nrf2 degradation. RNA interference experiments were conducted to examine the expression profiles of RpNrf2, antioxidant and detoxification genes (GST-pi, Cu/Zn-SOD, CAT and GPx) and Lipid Peroxidase (LPO) level in digestive gland exposed to BaP. The results showed that the mRNA level of Nrf2 was significantly decreased by 63.2%, and the changes of antioxidant and detoxification genes expression were consistent with the Nrf2 gene suggesting that Nrf2 is required for the induction of antioxidant and detoxification genes. Besides, the LPO levels expressed by malondialdehyde (MDA) contents were significant higher compared with the control group at 72 h post dsRNA-Nrf2 injection. In conclusion, our data demonstrated that Keap1 can sense nucleophilic or oxidative stress factors to regulate the Nrf2 signaling pathway together with E3 and Nrf2 signaling pathway plays an important role in modulating gene expression of antioxidant enzymes in bivalve mollusks.


Subject(s)
Bivalvia/drug effects , Kelch-Like ECH-Associated Protein 1/genetics , NF-E2-Related Factor 2/genetics , Polycyclic Aromatic Hydrocarbons/toxicity , Signal Transduction/drug effects , Water Pollutants, Chemical/toxicity , Animals , Bivalvia/genetics , Catalase/genetics , DNA, Complementary/genetics , Gastrointestinal Tract/metabolism , Gills/metabolism , Glutathione Peroxidase/genetics , Glutathione Transferase/genetics , Lipid Peroxidation , Malondialdehyde/metabolism , Phylogeny , RNA, Messenger/metabolism , Sequence Analysis, DNA , Signal Transduction/genetics , Superoxide Dismutase/genetics , Ubiquitin-Protein Ligases/genetics
8.
Ecotoxicol Environ Saf ; 158: 69-77, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-29660615

ABSTRACT

To investigate the effect one of the oil products, domestic heating oil (DHO), on freshwater mollusks, Unio tigridis and Viviparous bengalensis were exposed to three DHO concentrations for each species (5.8, 8.7, and 17.4 ml L-1 for mussels; 6.5, 9.7, and 19.5 mlL-1 for snails, respectively). Antioxidant enzymes (superoxide dismutase, catalase), malondialdehyde, acetylcholinesterase and DNA damage in both species tissues were monitored over 21 days. The results showed that both antioxidant enzymes concentration (SOD and CAT) increased in the lowest DHO concentrations (5.8, and 8.7 ml L-1), and then decreased in the highest concentration (17.4 ml L-1) as the same pattern for Unio tigridis, but this not occurred for Viviparous bengalensis. MDA values recorded significantly increased compared to control. No reduction was observed in AChE concentrations in soft tissues of both mollusks may due to that DHO was a non-neurotoxicant to Unio tigridis and Viviparous bengalensis. The results of DNA damage parameters were showed significant differences (p≤ 0.05) between control and DHO concentrations except lowest concentration for each parameter measured in digestive gland of Unio tigridis. As well as, these significant differences were recorded between control and three concentrations of DHO exposure for comet length, and tail length parameters, and between control and highest oil concentration for tail moment in Viviparous bengalensis. DHO has the ability to prevent the reproduction of Viviparous bengalensis snail relation to control, that is what we considered strong evidence of the toxicity properties of DHO on the reproductive status of this species of snails. SOD, CAT, and MDA were useful biomarkers for evaluating the toxicity of DHO in mussel and snails, and comet assay was a good tool to assess the potential genotoxicity of DHO.


Subject(s)
Antioxidants/metabolism , Environmental Biomarkers , Fuel Oils/toxicity , Heating/methods , Reproduction/drug effects , Snails/drug effects , Unio/drug effects , Animals , Biomarkers/metabolism , Bivalvia/drug effects , Catalase/metabolism , Comet Assay , DNA Damage , Fresh Water , Malondialdehyde/metabolism , Petroleum , Snails/physiology , Superoxide Dismutase/metabolism , Unio/physiology
9.
Arch Environ Contam Toxicol ; 75(2): 306-315, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29470617

ABSTRACT

The relationship between organisms and contaminants may be a two-way interaction: contaminants affecting the biota and the biota affecting the environmental fate and distribution of the contaminants. This may be especially so for sediment-dwelling organisms, because their burrowing and feeding can drastically influence sediment characteristics. The present study looked at the influence of the suspension-feeding stout razor clam Tagelus plebeius on the distribution of crude oil and pyrene in greenhouse mesocosm experiments. Water column turbidity and sediment redox also were monitored during the 15- to 30-day exposures to provide information on the influence of hydrocarbons and the razor clams on environmental conditions. For the experiment with crude oil, sediment was taken from the mesocosms at the end of the experiment, and the hydrocarbon-degradation potential was assessed in incubations with 14C-naphthalene. The experiments used four treatments: hydrocarbons present/absent and razor clams present/absent. Hydrocarbon dosing levels were relatively low (1 mL of oil or 30 mg of pyrene per mesocosm with 22 L of natural sediment and 11 L of seawater). The presence of the razor clams resulted in hydrocarbon concentrations at the sediment surface being 25% lower than in mesocosms without clams. No consistent effects were noted for polycyclic aromatic hydrocarbon (PAH) concentrations in the water column or in subsurface sediment. The naphthalene-degradation potential was elevated for sediment from mesocosms dosed with oil, but the presence of the clams did not affect this potential. The presence of the razor clams resulted in a lowering of water column turbidity, but no effect on sediment redox. The hydrocarbon addition had no effect on turbidity, but sediment redox was lowered. While results show that the presence of the razor clams resulted in a loss of hydrocarbons from the surface sediment, the other results do not provide a clear picture of the underlying mechanisms and the fate of the PAHs lost from the sediment surface. We hypothesize that the loss of surface sediment PAHs was due to burial of surface sediment and possibly bioaccumulation by the clams. While additional research is needed for further insights into underlying mechanisms, the present work demonstrates that the presence of sediment-burrowing suspension feeders decreases hydrocarbon levels in surface sediment. This means that assessments of the impact of an oil spill should pay attention to effects on these organisms and to their influence on the fate and distribution of the spilled oil.


Subject(s)
Bivalvia/physiology , Hydrocarbons/metabolism , Petroleum/analysis , Animals , Biodegradation, Environmental , Bivalvia/drug effects , Bivalvia/metabolism , Geologic Sediments , Hydrocarbons/analysis , Naphthalenes/analysis , Naphthalenes/metabolism , Petroleum/metabolism , Petroleum Pollution , Polycyclic Aromatic Hydrocarbons/analysis , Pyrenes/analysis , Pyrenes/metabolism , Seawater , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
10.
Aquat Toxicol ; 189: 31-41, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28578214

ABSTRACT

Estuaries are highly productive ecosystems subjected to numerous anthropogenic pressures with consequent environmental quality degradation. In this study, multiple biomarker responses [superoxide dismutase (SOD), catalase (CAT), ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) activities, as well as lipid peroxidation (LPO) and DNA damage (DNAd)] were determined in two fish (Dicentrarchus labrax and Pomatoschistus microps) and four macroinvertebrate species (Carcinus maenas, Crangon crangon, Hediste diversicolor and Scrobicularia plana) from the Ria de Aveiro and Tejo estuaries over distinct months. Two sites per estuarine system were selected based on anthropogenic pressures and magnitude of environmental contamination. Antioxidant enzyme activities in fish species suggested a ubiquitous response to oxidative stress, while biotransformation and effect biomarkers exhibited higher spatial and temporal variation. In invertebrate species, biotransformation enzyme activity was clearly less variable than in fish evidencing lower xenobiotic transformation capability. Overall, largest biomarker responses were found in the most contaminated sites (Tejo), yet species-specific patterns were evident. These should be factored in multi-taxa approaches, considering that the differential functional traits of species, such as habitat use, life-stage, feeding or physiology can influence exposure routes and biomarker responses. The Integrated Biomarker Response index highlighted patterns in biomarker responses which were not immediately evident when analyzing biomarkers individually. Overall, results provided insights into the complexity of species responses to contamination in naturally varying estuarine environments. Ultimately, multi-taxa and multi-biomarker approaches provide a comprehensive and complementary view of ecosystem health, encompassing diverse forms of biological integration and exposure routes, and allow the validation of results among markers and species.


Subject(s)
Aquatic Organisms/drug effects , Environmental Monitoring/methods , Estuaries , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/classification , Aquatic Organisms/metabolism , Biomarkers/metabolism , Biotransformation , Bivalvia/drug effects , Bivalvia/metabolism , Brachyura/drug effects , Brachyura/metabolism , Catalase/metabolism , Cytochrome P-450 CYP1A1/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation/drug effects , Perciformes/metabolism , Polychaeta/drug effects , Polychaeta/metabolism , Portugal , Species Specificity , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/metabolism
11.
Nanotoxicology ; 11(1): 1-6, 2017 02.
Article in English | MEDLINE | ID: mdl-27927091

ABSTRACT

Nanotechnology is a much promising field of science and technology with applications in a wide range of areas such as electronics, biomedical applications, energy and cosmetics. Metal-based engineered nanoparticles (ENPs) are common in many technological applications; some of the most common nanoparticles available commercially are silver, gold, copper oxide (CuO), zinc oxide (ZnO) and cadmium sulphide (CdS). The toxicity of metal-based NPs may be either due to their specific physical characteristics as NPs or to the specific toxicity of metals released from NPs under environmental conditions. In this study we evaluated the toxicity effects of a range of ENPs (Ag, Au, CuO, CdS, ZnO) along with a control containing equivalent quantities of dissolved metal on two endobenthic species: the ragworm Hediste diversicolor and the bivalve Scrobicularia plana. A suite of complementary biomarkers was used to reveal toxicity effects. A common challenge in multibiomarkers studies is to go beyond an independent interpretation of each one, and to assess a global response of individuals. The Integrated Biomarker Response (IBR) was calculated for both species exposed to the different metal-based ENPs studied or to their dissolved metal counterpart to provide efficient and easy tools for environmental managers. We evidence that metal-based NPs lead to an overall difference in biological responses from that of their dissolved counterparts. The IBR could thus be considered as an efficient tool to transfer research results to stakeholders with possible implementation for regulatory purposes.


Subject(s)
Bivalvia/drug effects , Environmental Monitoring/methods , Metal Nanoparticles/toxicity , Polychaeta/drug effects , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/analysis , Copper/toxicity , Silver/toxicity , Zinc Oxide/toxicity
12.
Biomed Res Int ; 2016: 1872351, 2016.
Article in English | MEDLINE | ID: mdl-27800488

ABSTRACT

We investigated the functional trait responses to 5 nm metallic silver nanoparticle (AgNPs) exposure in the Lessepsian-entry bivalve B. pharaonis. Respiration rate (oxygen consumption), heartbeat rate, and absorption efficiency were evaluated across an 8-day exposure period in mesocosmal conditions. Basal reference values from not-exposed specimens were statistically compared with those obtained from animals treated with three sublethal nanoparticle concentrations (2 µg L-1, 20 µg L-1, and 40 µg L-1). Our data showed statistically significant effects on the average respiration rate of B. pharaonis. Moreover, complex nonlinear dynamics were observed as a function of the concentration level and time. Heartbeat rates largely increased with no acclimation in animals exposed to the two highest levels with similar temporal dynamics. Eventually, a decreasing trend for absorption efficiency might indicate energetic constraints. In general, these data support the possible impact of engineered nanomaterials in marine environments and support the relevance of functional trait assessment in present and future ecotoxicological studies.


Subject(s)
Bivalvia/drug effects , Energy Metabolism/drug effects , Metal Nanoparticles/administration & dosage , Mytilidae/drug effects , Silver/administration & dosage , Animals , Environment , Heart Rate/drug effects , Respiratory Rate/drug effects
13.
Environ Monit Assess ; 188(12): 672, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27848110

ABSTRACT

Agricultural practices pose threats to biotic diversity in freshwater systems with increasing use of glyphosate-based herbicides for weed control and animal waste for soil amendment becoming common in many regions. Over the past two decades, these particular agricultural trends have corresponded with marked declines in populations of fish and mussel species in the Upper Conasauga River watershed in Georgia/Tennessee, USA. To investigate the potential role of agriculture in the population declines, surface waters and sediments throughout the basin were tested for toxicity and analyzed for glyphosate, metals, nutrients, and steroid hormones. Assessments of chronic toxicity with Ceriodaphnia dubia and Hyalella azteca indicated that few water or sediment samples were harmful and metal concentrations were generally below impairment levels. Glyphosate was not observed in surface waters, although its primary degradation product, aminomethyl phosphonic acid (AMPA), was detected in 77% of the samples (mean = 509 µg/L, n = 99) and one or both compounds were measured in most sediment samples. Waterborne AMPA concentrations supported an inference that surfactants associated with glyphosate may be present at levels sufficient to affect early life stages of mussels. Nutrient enrichment of surface waters was widespread with nitrate (mean = 0.7 mg NO3-N/L, n = 179) and phosphorus (mean = 275 µg/L, n = 179) exceeding levels associated with eutrophication. Hormone concentrations in sediments were often above those shown to cause endocrine disruption in fish and appear to reflect the widespread application of poultry litter and manure. Observed species declines may be at least partially due to hormones, although excess nutrients and herbicide surfactants may also be implicated.


Subject(s)
Agriculture/trends , Aquatic Organisms/drug effects , Environmental Monitoring/methods , Herbicides/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Amphipoda/drug effects , Amphipoda/growth & development , Animals , Aquatic Organisms/growth & development , Bivalvia/drug effects , Bivalvia/growth & development , Cladocera/drug effects , Cladocera/growth & development , Glycine/analogs & derivatives , Glycine/analysis , Glycine/toxicity , Herbicides/toxicity , Manure/analysis , Phosphorus/analysis , Phosphorus/toxicity , Soil/chemistry , Tennessee , Water Pollutants, Chemical/toxicity , Glyphosate
14.
Sci Rep ; 6: 29923, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27436591

ABSTRACT

The aim of this study is to demonstrate the growth-promoting effect of alginate hydrolysates (AHs) on the Manila clam Ruditapes philippinarum, and to verify the physiological change occurring within a living R. philippinarum stimulated by AHs. We show that growth of clams was dramatically promoted by supplementing a diet of the diatom Chaetoceros neogracile with AHs at 4 mg/L. Furthermore, metabolomics indicates that each state of starvation, food satiation, and sexual maturation have a characteristic pattern. In the groups given AHs in addition to C. neogracile in particular, excess carbohydrate was actively utilized for the development of reproductive tissue. In contrast, it appeared that clams in the groups given C. neogracile only were actively growing, utilizing their adequate carbohydrate resources. Meanwhile, the unfed groups have slowed growth because of the lack of an energy source. Hence, supplementation of AHs in addition to the algal diet may be an inexpensive way to shorten the rearing period of R. philippinarum. Moreover, metabolomics can evaluate the growth condition of R. philippinarum in a comprehensive way, and this approach is crucially important for not only the development of a mass culture method but also for the conservation of the clam resource in the field.


Subject(s)
Alginates/pharmacology , Bivalvia/growth & development , Bivalvia/metabolism , Metabolomics , Animal Shells/anatomy & histology , Animal Shells/drug effects , Animals , Bivalvia/drug effects , Citric Acid Cycle/drug effects , Gluconeogenesis/drug effects , Glucuronic Acid/pharmacology , Glycolysis/drug effects , Hexuronic Acids/pharmacology , Hydrolysis , Metabolome/drug effects , Principal Component Analysis
15.
Aquat Toxicol ; 177: 237-49, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27309312

ABSTRACT

We have experimentally investigated the effects of repeated diesel spills on the bivalve Anomalocardia brasiliana, the gastropod Neritina virginea and the polychaete Laeonereis culveri, by monitoring the responses of oxidative stress biomarkers in a subtropical estuary. Three frequencies of exposure events were compared against two dosages of oil in a factorial experiment with asymmetrical controls. Hypotheses were tested to distinguish between (i) the overall effect of oil spills, (ii) the effect of diesel dosage via different exposure regimes, and (iii) the effect of time since last spill. Antioxidant defense responses and oxidative damage in the bivalve A. brasiliana and the polychaete L. culveri were overall significantly affected by frequent oil spills compared to undisturbed controls. The main effects of diesel spills on both species were the induction of SOD and GST activities, a significant increase in LPO levels and a decrease in GSH concentration. N. virginea was particularly tolerant to oil exposure, with the exception of a significant GSH depletion. Overall, enzymatic activities and oxidative damage in A. brasiliana and L. culveri were induced by frequent low-dosage spills compared to infrequent high-dosage spills, although the opposite pattern was observed for N. virginea antioxidant responses. Antioxidant responses in A. brasiliana and L. culveri were not affected by timing of exposure events. However, our results revealed that N. virginea might have a delayed response to acute high-dosage exposure. Experimental in situ simulations of oil exposure events with varying frequencies and intensities provide a useful tool for detecting and quantifying environmental impacts. In general, antioxidant biomarkers were induced by frequent low-dosage exposures compared to infrequent high-dosage ones. The bivalve A. brasiliana and the polychaete L. culveri are more suitable sentinels due to their greater responsiveness to oil and also to their wider geographical distribution.


Subject(s)
Antioxidants/metabolism , Bivalvia/drug effects , Gastropoda/drug effects , Petroleum Pollution/adverse effects , Petroleum/toxicity , Polychaeta/drug effects , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Bivalvia/metabolism , Brazil , Dose-Response Relationship, Drug , Gastropoda/metabolism , Oxidative Stress/drug effects , Polychaeta/metabolism , Random Allocation , Toxicity Tests , Water Pollution, Chemical/adverse effects
16.
Appl Biochem Biotechnol ; 179(5): 805-18, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26956575

ABSTRACT

An attempt has been made to identify the potential seaweed for antifouling property due to the growing need for environmentally safe antifouling systems. The antibacterial, antimicroalgal, and antimussel foot adherence potentials of methanol, dichloromethane, and hexane extracts of the chosen seaweeds such as Padina tetrastromatica, Caulerpa taxifolia, and Amphiroa fragilissima have been compared against copper sulfate. Among the extracts, the maximum antibacterial activities were exhibited by the methanol extract of P. tetrastromatica. The minimum inhibitory concentration (MIC) of the methanolic extract of P. tetrastromatica was found to be 10 and 1 µg/ml against test biofilm bacteria and diatoms, respectively. The antimussel foot adherence assay indicated that the extract had inhibited the foot adherence of the green mussels Perna viridis with the effective concentration (EC50) of 25.51 ± 0.03 µg/ml, and lethal concentration for 50 % mortality (LC50) was recorded at 280.22 ± 0.12 µg/ml. Based on the prolific results, the crude methanolic extract of P. tetrastromatica was subjected to purification using silica gel column and thin-layer chromatography (TLC). Then, the active compounds of the bioassay-guided fraction (F13) were identified using gas chromatography coupled with mass spectroscopy (GC-MS), and it was observed that fatty acids were the major components, which may be responsible for the antifouling properties.


Subject(s)
Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Lipids/isolation & purification , Phaeophyceae/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Bivalvia/drug effects , Bivalvia/growth & development , Lipid Metabolism , Lipids/chemistry , Lipids/pharmacology , Methanol/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seaweed/chemistry
17.
Environ Sci Pollut Res Int ; 23(7): 7060-6, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26884235

ABSTRACT

Diamondoids are polycyclic saturated hydrocarbons that possess a cage-like carbon skeleton approaching that of diamond. These 'nano-diamonds' are used in a range of industries including nanotechnologies and biomedicine. Diamondoids were thought to be highly resistant to degradation, but their presumed degradation acid products have now been found in oil sands process-affected waters (OSPW) and numerous crude oils. Recently, a diamondoid-related structure, 3-noradamantane carboxylic acid, was reported to cause genetic damage in trout hepatocytes under in vitro conditions. This particular compound has never been reported in the environment but led us to hypothesise that other more environmentally relevant diamondoid acids could also be genotoxic. We carried out in vivo exposures (3 days, semi-static) of marine mussels to two environmentally relevant diamondoid acids, 1-adamantane carboxylic acid and 3,5-dimethyladamantane carboxylic acid plus 3-noradamantane carboxylic acid with genotoxic damage assessed using the Comet assay. An initial screening test confirmed that these acids displayed varying degrees of genotoxicity to haemocytes (increased DNA damage above that of controls) when exposed in vivo to a concentration of 30 µmol L(-1). In a further test focused on 1-adamantane carboxylic acid with varying concentrations (0.6, 6 and 30 µmol L(-1)), significant (P < 0.05%) DNA damage was observed in different target cells (viz. gills and haemocytes) at 0.6 µmol L(-1). Such a level of induced genetic damage was similar to that observed following exposure to a known genotoxin, benzo(a)pyrene (exposure concentration, 0.8 µmol L(-1)). These findings may have implications for a range of worldwide industries including oil extraction, nanotechnology and biomedicine.


Subject(s)
Bivalvia/genetics , Carboxylic Acids/toxicity , Gills/drug effects , Water Pollutants, Chemical/toxicity , Animals , Benzo(a)pyrene/toxicity , Bivalvia/drug effects , Comet Assay , DNA Damage , Gills/chemistry , Oil and Gas Fields , Petroleum , Water Pollutants, Chemical/analysis
18.
Environ Toxicol Chem ; 35(8): 2016-28, 2016 08.
Article in English | MEDLINE | ID: mdl-26749266

ABSTRACT

Acute toxicity tests (48-96-h duration) were conducted with larvae of 2 echinoderm species (Strongylocentrotus purpuratus and Dendraster excentricus) and 4 bivalve mollusk species (Crassostrea virginica, Crassostrea gigas, Mytilus galloprovincialis, and Mercenaria mercenaria). Developing larvae were exposed to water-accommodated fractions (WAFs) and chemically enhanced water-accommodated fractions (CEWAFs) of fresh and weathered oils collected from the Gulf of Mexico during the Deepwater Horizon incident. The WAFs (oils alone), CEWAFs (oils plus Corexit 9500A dispersant), and WAFs of Corexit alone were prepared using low-energy mixing. The WAFs of weathered oils had no effect on survival and development of echinoderm and bivalve larvae, whereas WAFs of fresh oils showed adverse effects on larval development. Similar toxicities were observed for weathered oil CEWAFs and WAFs prepared with Corexit alone for oyster (C. gigas and C. virginica) larvae, which were the most sensitive of the tested invertebrate species to Corexit. Mean 10% effective concentration values for total polycyclic aromatic hydrocarbons and dipropylene glycol n-butyl ether (a marker for Corexit) in the present study were higher than all concentrations reported in nearshore field samples collected during and after the Deepwater Horizon incident. The results suggest that water-soluble fractions of weathered oils and Corexit dispersant associated with the Deepwater Horizon incident had limited, if any, acute impacts on nearshore larvae of eastern oysters and clams, as well as other organisms with similar sensitivities to those of test species in the present study; however, exposure to sediments and long-term effects were not evaluated. Environ Toxicol Chem 2016;35:2016-2028. © 2016 SETAC.


Subject(s)
Bivalvia/drug effects , Echinodermata/drug effects , Petroleum Pollution/analysis , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Bivalvia/growth & development , Echinodermata/growth & development , Gulf of Mexico , Larva/drug effects , Seawater/chemistry , Toxicity Tests, Acute , Weather
19.
Acta Biol Hung ; 66(4): 460-3, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26616377

ABSTRACT

A wide range of aquatic plants have been proven to release allelochemicals, of them phenolics and tannin are considered rather widely distributed. Tannins, however, have been demonstrated to have genotoxic capacity. In our study genotoxic potential of Lythrum salicaria L. (Purple Loosestrife, family Lythraceae) was assessed by the mussel micronucleus test, using Unio pictorum. In parallel, total and hydrolysable tannin contents were determined. Results clearly show that the extract had a high hydrolysable tannin content and significant mutagenic effect. As L. salicaria has been long used in traditional medicine for chronic diarrhoea, dysentery, leucorrhoea and blood-spitting, genotoxic potential of the plant should be evaluated not only with regard to potential effects in the aquatic ecosystem, but also assessing its safe use as a medicinal herb.


Subject(s)
Bivalvia/drug effects , Lythrum/chemistry , Micronucleus Tests , Plant Extracts/chemistry , Animals , Phenols/chemistry , Plants, Medicinal/chemistry , Tannins/chemistry
20.
Mar Environ Res ; 110: 19-24, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26254583

ABSTRACT

Several biomarkers were determined to evaluate the effects of the Don Pedro spillage on the digestive gland of the fan mussel Pinna nobilis (Linnaeus, 1758). Two areas in the southeast of Ibiza Island (Western Mediterranean) were selected; one affected by the oil spill (Talamanca) and one did not affected (Espardell). Mussels were sampled one, six and twelve months after the accident. PAH levels were elevated in P. nobilis from the affected area one month after the accident and, although they were decreasing gradually, they were always higher than in the control area. An increase in enzyme activities, reduced glutathione and lipid peroxidation were evidenced one month after the spillage, with no changes in acetylcholinesterase. All biomarkers progressively returned to basal levels one year after the oil spill. In conclusion, the Don Pedro oil spill induced an acute situation of oxidative stress on P. nobilis that were recovered twelve months later.


Subject(s)
Bivalvia/drug effects , Oxidative Stress/drug effects , Petroleum Pollution , Petroleum/toxicity , Water Pollutants, Chemical/adverse effects , Animals , Biomarkers/metabolism , Bivalvia/metabolism , Environmental Monitoring , Spain
SELECTION OF CITATIONS
SEARCH DETAIL