Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 722
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Trace Elem Med Biol ; 84: 127450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643593

ABSTRACT

Diabetes mellitus (DM) is a complex, chronic metabolic disorder characterized by impaired regulation of blood glucose levels. Zinc (Zn) is an essential trace elements that plays a role in various physiological processes within the body, including those related to diabetes. The current study was investigated the effect of Zn supplementation on hemorheological parameters in a rat model of DM. After induction of DM, 32 male Wistar albino rats were divided into four groups: control, Zn, DM, and Zn+DM. Whole blood viscosity (WBV) was determined by using digital cone and plate viscometer and plasma viscosity (PV) was determined by a Coulter Harkness capillary viscometer. The rats in the DM Group showed a decrease in both Zn levels and body weight, as well as an increase in glucose levels when compared to the control group. Diabetic rats supplemented with Zn displayed lower blood glucose levels and higher concentrations of Zn compared to the DM Group. The higher PV and lower hematocrit level were measured in DM Group than control group and lower PV, higher hematocrit level were measured in Zn+DM group than DM Group. The WBV was measured at four different shear rates (57.6-115.2 - 172.8-230.4 s -1). A statistically significant increase was observed in the DM group compared to the control group. Additionally, a statistically significant decrease was observed in the Zn+DM Group compared to the DM Group at a shear rate of 230.4 s-1. Erythrocyte rigidity index (Tk) and oxygen delivery index (ODI) were computed under conditions of high shear rate. The rats in the DM group exhibited a reduction in ODI and an elevation in Tk in comparison to the control group. Conversely, the diabetic rats supplemented with Zn exhibited decreased Tk and increased ODI compared to the DM Group. Zn supplementation seems to have a potential beneficial effect for protecting adverse affect of diabetes on hemorheogical parameters and for maintaining vascular health.


Subject(s)
Diabetes Mellitus, Experimental , Hemorheology , Rats, Wistar , Zinc , Animals , Zinc/blood , Zinc/pharmacology , Male , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Rats , Hemorheology/drug effects , Blood Glucose/metabolism , Blood Viscosity/drug effects , Disease Models, Animal , Body Weight/drug effects , Dietary Supplements
2.
Medicina (Kaunas) ; 59(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37893448

ABSTRACT

Background and Objectives: Diabetes can cause various vascular complications. The Compounded Danshen-Dripping-Pill (CDDP) is widely used in China. This study aimed to analyze the effectiveness and safety of CDDP in the blood viscosity (BV) with type 2 diabetes mellitus (T2DM). Materials and Methods: We conducted a systematic search of seven databases from their inception to July 2022 for randomized controlled trials that used CDDP to treat T2DM. To evaluate BV, we measured low shear rate (LSR), high shear rate (HSR), and plasma viscosity (PV). Homocysteine and adiponectin levels were also assessed as factors that could affect BV. Results: We included 18 studies and 1532 patients with T2DM. Meta-analysis revealed that CDDP significantly reduced LSR (mean difference [MD] -2.74, 95% confidence interval [CI] -3.77 to -1.72), HSR (MD -0.86, 95% CI -1.08 to -0.63), and PV (MD -0.37, 95% CI -0.54 to -0.19) compared to controls. CDDP also reduced homocysteine (MD -8.32, 95% CI -9.05 to -7.58), and increased plasma adiponectin (MD 2.72, 95% CI 2.13 to 3.32). Adverse events were reported less frequently in the treatment groups than in controls. Conclusions: CDDP is effective in reducing BV on T2DM. However, due to the poor design and quality of the included studies, high-quality, well-designed studies are required in the future.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Humans , Diabetes Mellitus, Type 2/complications , Cardiotonic Agents , Blood Viscosity , Adiponectin , Drugs, Chinese Herbal/adverse effects , Cardiovascular Diseases/complications , Homocysteine
3.
Clin Hemorheol Microcirc ; 78(1): 41-47, 2021.
Article in English | MEDLINE | ID: mdl-33523046

ABSTRACT

Low plasma estrogens, vitamin D deficiency, obesity, diabetes, cardiovascular diseases, thromboembolism, and impaired microcirculation are linked to the severity of covid-19. Studies have suggested that these comorbidities also are related to erythrocyte factors linked to increased blood viscosity in microcirculation such as erythrocyte aggregation and erythrocyte deformability. Increased blood viscosity in microcirculation can lead to a decrease in oxygenation and nutrition of tissues. Therefore erythrocyte aggregation and erythrocyte deformability may be involved in covid-19 severity, leading to tissue hypoxia and a decrease of drug concentration in affected organs. If this relationship is demonstrated, erythrocytes factors can be used to monitor treatments for improve microcirculatory fluidity that may decrease covid-19 severity. Lifestyle improvement and treatments such as vitamin D and estrogens supplementation are some possible approaches to improve microcirculation and covid-19 prevention and treatment.


Subject(s)
COVID-19/blood , Erythrocytes/physiology , Microcirculation/physiology , Blood Viscosity , COVID-19/physiopathology , COVID-19/therapy , Erythrocyte Aggregation , Erythrocyte Deformability , Erythrocytes/pathology , Humans , SARS-CoV-2/isolation & purification
4.
Biomed Pharmacother ; 132: 110899, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33096352

ABSTRACT

Lagopsis supina (Steph.) IK. -Gal. ex Knorr. has been used for centuries as an empiric treatment for blood stasis syndrome in China without scientific validation. The aim of this study was to evaluate for the first time the chemical profiling, efficacy and mechanism of L. supina ethanol extract (LS) and its four fractions (LSA∼D) in Dextran 500-induced acute blood stasis model rats. Oral administration of LS (229.0∼916.0 mg/kg) and LSC (17.6∼70.4 mg/kg) once daily for seven consecutive days significantly improved microcirculation hemodynamics function (blood flow, blood concentration and blood flow velocity), hemorheological parameters (whole blood viscosity, whole blood reduced viscosity, plasma viscosity, platelet aggregation rate, hematokrit, erythrocyte assembling index and erythrocyte deformation index), and coagulation parameters (thrombin time, prothrombin time, activated partial thromboplastin time, fibrinogen and antithrombin III). Furthermore, their markedly down-regulated thromboxane B2 and 6-keto-prostaglandin F1α levels. In addition, it significantly decreased tissue-type plasminogen activator (t-PA), urokinasetype plasminogen activator (u-PA) and plasminogen activator inhibitor-1 (PAI-1) levels, as well as PAI-1/t-PA and PAI-1/u-PA rations. In parallel, 51 chemical constituents were identified from LS based on ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-qTOF-MS/MS), and quantitative analysis showed that the two major constituents of stachysoside A and acteoside were present in 0.90 ± 0.01 and 1.36 ± 0.01 mg/g of the L. supina whole plant, respectively. These findings suggest that LS and LSC possess prominent anti-blood stasis effect on rats by modulating the anti-coagulation, anti-platelet activation and anti-fibrinolysis, and supports the traditional folk use of this plant.


Subject(s)
Anticoagulants/pharmacology , Antifibrinolytic Agents/pharmacology , Blood Coagulation/drug effects , Chromatography, High Pressure Liquid , Hemodynamics/drug effects , Lamiaceae , Plant Extracts/pharmacology , Platelet Activation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Tandem Mass Spectrometry , Animals , Anticoagulants/isolation & purification , Antifibrinolytic Agents/isolation & purification , Biomarkers/blood , Blood Flow Velocity , Blood Viscosity , Fibrinolysis/drug effects , Lamiaceae/chemistry , Microcirculation , Plant Extracts/isolation & purification , Platelet Aggregation Inhibitors/isolation & purification , Rats, Sprague-Dawley
5.
Biomed Pharmacother ; 130: 110538, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32731133

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Panacis majoris Rhizoma, which is a member of herbal medicine, is known for many years to remove blood stasis, promote blood circulation, and enrich the blood. The active ingredients of this plant are mainly attributed to saponins. AIM OF THE STUDY: The total saponins from Panacis majoris Rhizoma (TSPJ), and the degradation products of TSPJ (DTSPJ), were designed in this study to compare the protective effects on myocardial ischemia-reperfusion injury, and the aim of this approach is to discover more effective agents for the treatment of ischemic heart diseases. We analyzed the main constituents of TSPJ and DTSPJ, aiming to make clear which saponins played important roles in this protective effect, and also investigated the possible mechanisms. MATERIALS AND METHODS: DTSPJ was prepared by the method of alkaline hydrolysis. High performance liquid chromatography (HPLC) were used to analyze the main chemical constituents of TSPJ and DTSPJ, which were isolated by chromatographic techniques and identified by comparison with the Nuclear Magnetic Resonance (NMR) data in reported literature. Male Wistar rats were randomized to sham-operated group, ischemia-reperfusion group, three TSPJ (50, 100 and 200 mg/kg) groups, three DTSPJ (50, 100 and 200 mg/kg) groups, and isosorbide dinitrate tablet (5.0 mg/kg) group. The rats in all groups were intragastrically administrated once per day for three successive days. The establishment of the model of myocardial ischemia-reperfusion injury was used the following method: firstly, the left coronary artery of experimental rat was ligated for 30 min and then reperfused for 120 min. Then the myocardial infarct size, hemorheological and biochemical parameters, whole blood viscosity, plasma viscosity, platelet adhesion rate, platelet aggregation and histopathology changes were assessed. RESULTS: Five C3,C28-bidesmosidic oleanane-type saponins and ginsenoside Rd were the main constituents of TSPJ, and their total content in TSPJ was 79.2 %. The main constituents of DTSPJ were five C3-monodesmosidic oleanane-type saponins and ginsenoside Rd, and their total content in DTSPJ was 72.6 %. The HPLC analysis revealed that the five C3,C28-bidesmosidic oleanane-type saponins in TSPJ were completely turned into five C3-monodesmosidic oleanane-type saponins in DTSPJ through the method of alkaline hydrolysis, but ginsenoside Rd remained unchanged. Both TSPJ and DTSPJ could significantly reduced myocardial infarct size, and improved heart function, and lowered the activities of aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and creatine kinase isoenzymes (CK-MB), and malonyldialdehyde (MDA) content, as well as the levels of whole blood viscosity, plasma viscosity, platelet adhesion rate, and platelet aggregation; on the contrary, both the level of glutathione peroxidase (GSH-Px) and the activity of superoxide dismutase (SOD) were notablely increased. The results of histopathological examination further supported the cardioprotective effects of TSPJ and DTSPJ. CONCLUSION: Both TSPJ and DTSPJ can guard cardiomyocytes against myocardial ischemia-reperfusion injury. The underlying mechanisms may be closely related to its enhancing anti-oxidative properties, modifying blood viscosity, and inhibiting platelet aggregation and platelet adhesion. As a whole, the protection of DTSPJ against myocardial ischemia-reperfusion injury was a little stronger than those of TSPJ. The results display the prospect of DTSPJ as a drug candidate for treating ischemic heart disease.


Subject(s)
Myocardial Reperfusion Injury/drug therapy , Panax/chemistry , Rhizome/chemistry , Saponins/pharmacology , Animals , Blood Viscosity/drug effects , Chromatography, High Pressure Liquid , Ginsenosides/chemistry , Ginsenosides/pharmacology , Hemodynamics/drug effects , Magnetic Resonance Spectroscopy , Male , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocytes, Cardiac/drug effects , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacology , Platelet Aggregation/drug effects , Rats , Rats, Wistar
6.
J Ethnopharmacol ; 261: 113078, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32534118

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperviscosity syndrome (HVS) is a major risk factor for thrombotic diseases. Rhubarb, well-known as a traditional Chinese medicine, exhibits multiple pharmacological activities, especially for promoting blood circulation to remove blood stasis (PBRB), which has been become a functional health food for decreasing the risk of cardiovascular diseases. However, due to the complexity of rhubarb components, it is still difficult to clarify the specific targets of effective substances in PBRB, and the pharmacodynamic mechanism needs to be further probed. MATERIALS AND METHODS: The "compound-target-cell-disease" network analysis was initially used to predict potential targets and bioactive compounds. The effect of rhubarb for the treatment of HVS was examined by histopathology and biochemical assays based on the HVS rat model. RESULTS: Through the "compound-target-cell-disease" network analysis, eight potential therapeutic targets were eventually screened out, and platelets were predicted as the main effector cells of rhubarb in PBRB. Among targets coagulation factor II (prothrombin, F2) and fibrinogen gamma chain (FGG) were closely related to platelets, and five compounds associated with F2 and FGG were predicted including emodin-8-O-beta-D-glucopyranoside (Emo), physcion-8-O-beta-D-glucopyranoside (Phy), procyanidin B-5,3'-O-gallate, torachrysone-8-O-beta-D-(6'-oxayl)-glucoside and epicatechin. Furthermore, thoracic aorta histopathology and biochemical examinations showed middle dose of rhubarb (0.42 g/kg/day) significantly ameliorated pathological changes, hemorheology parameters, as well as levels of representative biomarkers such as plasma P-selectin (P-sel) and thromboxane (TXB2) in platelet activation compared to HVS rat model, whose effects were comparable to the positive drug aspirin or even better. Finally, it was further validated F2 and FGG as the major effective targets of rhubarb as well as its two active ingredients Emo and Phy in PBRB. CONCLUSIONS: This study may provide an innovative way and scientific information to further understand the main effective components of rhubarb and its mechanisms about targets of F2 and FGG in PBRB, especially the new therapeutic target FGG, which also provide a basis for establishing a quality control for rhubarb by bioassays that could correlate the clinical efficacy and its mechanism.


Subject(s)
Blood Platelets/drug effects , Blood Viscosity/drug effects , Hematologic Diseases/drug therapy , Plant Extracts/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Rheum , Systems Biology , Animals , Aspirin/pharmacology , Blood Platelets/metabolism , Disease Models, Animal , Fibrinogen/metabolism , Hematologic Diseases/blood , Hematologic Diseases/pathology , Male , Plant Extracts/isolation & purification , Platelet Aggregation Inhibitors/isolation & purification , Prothrombin/metabolism , Rats, Sprague-Dawley , Rheum/chemistry , Signal Transduction , Syndrome
7.
Hypertens Res ; 43(10): 1068-1078, 2020 10.
Article in English | MEDLINE | ID: mdl-32382155

ABSTRACT

c-Jun N-terminal kinases (JNKs) are involved in the myocardial and aortic remodeling, increased arterial tone, and arterial blood pressure elevation associated with hypertension. The aim of the present study was to investigate the antihypertensive effect of a new JNK inhibitor, 1H-indeno[1,2-b]quinoxalin-11-one oxime sodium salt (IQ-1S), on spontaneously hypertensive rats (SHRs). Experiments were performed using normotensive Wistar-Kyoto (WKY) rats and SHRs. Experimental groups of SHRs received IQ-1S intragastrically for 6 weeks in daily doses of 5 and 50 mg/kg; experimental groups of WKY rats received 50 mg/kg IQ-1S according to the same regimen. The IQ-1S administration regimen induced decreases in systolic blood pressure, mean arterial blood pressure, total peripheral resistance, blood viscosity, hematocrit, myocardial cell cross-sectional area, and aortic wall thickness in SHRs vs untreated SHRs. There were no significant differences in systolic blood pressure values between the control and experimental groups of WKY rats during the treatment period. A concentration-dependent decrease in the tone of carotid arterial rings isolated from SHRs was observed after JNK inhibitor application in vitro. Application of the JNK inhibitor diminished endothelin-1 secretion by human umbilical vein endothelial cells in vitro. The main mechanisms of the antihypertensive effect of IQ-1S included the attenuation of blood viscosity due to decreased hematocrit, a vasodilatory effect on arterial smooth muscle cells, and a decrease in endothelin-1 production by endothelial cells.


Subject(s)
Hypertension/drug therapy , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Oximes/therapeutic use , Quinoxalines/therapeutic use , Animals , Aorta, Thoracic/drug effects , Blood Viscosity/drug effects , Drug Evaluation, Preclinical , Heart/drug effects , Hematocrit , Hemodynamics/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Male , Oximes/pharmacology , Quinoxalines/pharmacology , Rats, Inbred SHR , Rats, Inbred WKY
8.
Ann Clin Biochem ; 57(3): 249-252, 2020 05.
Article in English | MEDLINE | ID: mdl-32252535

ABSTRACT

BACKGROUND: Plasma viscosity is an important biomarker both in diagnostics and treatment monitoring of plasma cell dyscrasias and other disorders with hyperviscosity syndrome as a clinical manifestation. Here, we investigate the performance of a new microfluidic-based viscometer for clinical use, establish a new reference range to be used with this instrument and determine the importance of sampling temperature. METHODS: The microVisc™ viscometer was evaluated for within-run and between-run imprecision and bias using standardized reference material (Paragon controls) and Seronorm™ control material. The reference range was established for the adult population using EDTA-plasma from 120 healthy blood donors. Sampling temperature was investigated by drawing and transporting blood at room temperature and 37°C and comparing the viscosity between the two sampling methods. RESULTS: The microfluidic-based viscometer performed well, and imprecision was comparable to ReoRox® G2 free oscillation rheometer. A new reference range for the adult Danish population was established as 1.2-1.5 mPa s at 37°C. Furthermore, sampling temperature at room temperature and 37°C was investigated, and there was no difference in results obtained. CONCLUSIONS: MicroVisc™ is suitable for measuring plasma viscosity in a clinical setting and results can be evaluated using the established reference range. Blood sampling for viscosity analysis can be performed as a standard procedure at room temperature.


Subject(s)
Blood Viscosity , Microfluidics/instrumentation , Blood Donors , Diagnostic Tests, Routine , Female , Humans , Male , Reference Values
9.
Diagn Interv Radiol ; 26(3): 241-244, 2020 May.
Article in English | MEDLINE | ID: mdl-32071032

ABSTRACT

PURPOSE: We aimed to illustrate the benefits of using warmed glue for viscosity reduction via the triaxial microballoon system for the treatment of various vascular disorders. METHODS: Seven patients who underwent 10 treatment sessions for hemoptysis, type II endoleak, post-pancreatic surgical bleeding, spontaneous retroperitoneal bleeding, or ovarian tumor bleeding were evaluated based on technical and clinical outcomes. In the procedure, the triaxial system, consisting of a 4.5-Fr guiding catheter, a 2.8-Fr microballoon catheter, and a 1.9-Fr no-taper microcatheter, was advanced into the target lesion. Glue (33% n-butyl cyanoacrylate mixed with Lipiodol) warmed to 40°C was injected under balloon occlusion. RESULTS: The common hepatic, right bronchial, intercostals, internal mammary, costocervical, lateral thoracic, superior thoracic, thoracoacromial, inferior thyroid, iliolumbar, lumbar, internal pudendal arteries, and branch of the inferior mesenteric artery were successfully embolized; 100% technical success and 100% clinical success were obtained after each session. CONCLUSION: Our modified balloon-occluded glue embolization may lead to better handling with more distal glue penetration capability.


Subject(s)
Adhesives/therapeutic use , Balloon Occlusion/instrumentation , Embolization, Therapeutic/methods , Vascular Diseases/therapy , Aged , Aged, 80 and over , Arteries , Blood Viscosity/drug effects , Catheters , Contrast Media/administration & dosage , Contrast Media/therapeutic use , Enbucrilate/chemistry , Enbucrilate/therapeutic use , Endoleak/therapy , Ethiodized Oil/administration & dosage , Ethiodized Oil/therapeutic use , Female , Hemoptysis/therapy , Hemorrhage/etiology , Hemorrhage/therapy , Humans , Male , Middle Aged , Retrospective Studies , Safety , Treatment Outcome , Vascular Diseases/pathology
10.
Molecules ; 25(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31906332

ABSTRACT

Astragalin, isolated from flowers of Rosa chinensis Jacq., is a kind of flavonoid, with anti-inflammatory, antioxidant, antiviral, analgesic, antibacterial, antiallergic, and antihepatotoxic effects. However, no studieson the procoagulant effect of astragalin have been reported. This study aimed to investigate the procoagulant activity of astragalin and its mechanism. Its procoagulant effect was investigated by activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT), and fibrinogen (FIB) in vitro, and a rat model established by heparin sodium was used to evaluate the mechanism for the procoagulant effect in vivo. The results showed that astragalin had good procoagulant effects compared with the control group in vitro. Compared with the model group in vivo, astragalin could shorten the coagulation time and significantly increase the number of platelets. Meanwhile, astragalin could significantly reduce the effectual time of PT and APTT and increase the content of FIB. The contents of 6-keto-PGF1α and eNOS significantly decreased. Astragalin could increase whole blood viscosity (WBV), plasma viscosity (PV), erythrocyte sedimentation rate (ESR) and packedcell volume (PCV). All of the above revealed that astragalin had good procoagulant effects by promoting the intrinsic and extrinsic coagulation system.


Subject(s)
Blood Coagulation/drug effects , Fibrinogen/metabolism , Kaempferols/pharmacology , Platelet Aggregation/drug effects , 6-Ketoprostaglandin F1 alpha/metabolism , Animals , Blood Coagulation Tests , Blood Sedimentation/drug effects , Blood Viscosity/drug effects , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacology , Endothelin-1/metabolism , Female , Flavonoids/metabolism , Flavonoids/pharmacology , Kaempferols/chemistry , Kaempferols/isolation & purification , Kaempferols/metabolism , Male , Nitric Oxide Synthase Type III/metabolism , Partial Thromboplastin Time , Prothrombin Time , Rabbits , Rats , Rats, Sprague-Dawley , Rosaceae/chemistry , Thrombin Time , Thromboxane B2/metabolism
11.
Chin J Integr Med ; 26(4): 292-298, 2020 Apr.
Article in English | MEDLINE | ID: mdl-25537151

ABSTRACT

OBJECTIVE: To establish a novel cardiocentesis method for withdrawing venous blood from the right atrium, and to improve an acute blood stasis rat model using an ice bath and epinephrine hydrochloride (Epi) while considering the 3Rs (reduction, refinement, and replacement) of humane animal experimentation. METHODS: An acute blood stasis model was established in male Sprague-Dawley rats by subcutaneous injection (s.c.) Epi (1.2 mg/kg) administration at 0 h, followed by a 5-min exposure to an ice-bath at 2 h and s.c. Epi administration at 4 h. Control rats received physiological saline. Rats were fasted overnight and treated with Angelicae Sinensis Lateralis Radix (ASLR) and Pheretima the following day. Venous blood was collected using our novel cardiocentesis method and used to test whole blood viscosity (WBV), prothrombin time (PT), activated partial thromboplastin time (APTT), and fibrinogen (FIB) content. RESULTS: The rats survived the novel cardiocentesis technique; WBV value returned to normal while hematological parameters such as hemoglobin level and red blood cell count were restored to >94% of the corresponding values in normal rats following a 14-day recovery. Epi (1.2 mg/kg, s.c.) combined with a 5-min exposure to the ice bath replicated the acute blood stasis rat model and was associated with the highest WBV value. In rats showing acute blood stasis, ASLR treatment [4 g/(kg·d) for 8 days] decreased WBV by 9.98%, 11.09%, 9.34%, 9.00%, 7.66%, and 7.03% (P<0.05), while Pheretima treatment [2.6 g/(kg·d), for 8 days] decreased WBV by 25.49%, 25.94%, 16.28%, 17.76%, 11.07%, and 7.89% (P<0.01) at shear rates of 1, 3, 10, 30, 100, and 180 s-1, respectively. Furthermore, Pheretima treatment increased APTT significantly (P<0.01). CONCLUSIONS: We presented a stable, reproducible, and improved acute blood stasis rat model, which could be applied to screen drugs for promoting blood circulation and eliminating blood stasis.


Subject(s)
Animal Experimentation , Animal Welfare , Blood Coagulation/physiology , Disease Models, Animal , Animals , Blood Coagulation Tests , Blood Viscosity , Male , Partial Thromboplastin Time , Prothrombin Time , Rats , Rats, Sprague-Dawley
12.
J Vet Med Sci ; 81(11): 1616-1620, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31588073

ABSTRACT

It is known that oxidative stress is related to disease in humans and dogs. Many traditional Chinese medicines have been reported to have anti-oxidative effects, but there are no reports that they have anti-oxidative effects in dogs. In this study, we examined the anti-oxidative effects of Juzen-taiho-to, a traditional Chinese medicine, in dogs. Five healthy female beagle dogs (38-41 months of age weighing 8.6-10.7 kg) were orally administered Juzen-taiho-to at 450 mg/kg with food for 28 days. Blood samples were taken from all five dogs on days 0, 7, 14, 21, and 28. Using the blood samples, improvement of the antioxidant level as assessed by the biological antioxidant potential (BAP), reduced oxidative stress level as assessed by derivatives of reactive oxygen metabolites (d-ROMs), and improvement of blood fluidity were examined. Regarding the antioxidant level and blood fluidity, no significant difference was observed, but the oxidative stress level on days 14, 21, and 28 was significantly lower than that on day 0. Thus, Juzen-taiho-to may have anti-oxidative effects in dogs by reducing oxidative stress and be useful for oxidative stress-related diseases in dogs.


Subject(s)
Antioxidants/administration & dosage , Drugs, Chinese Herbal/administration & dosage , Administration, Oral , Animals , Antioxidants/analysis , Blood Viscosity/drug effects , Dogs , Female , Oxidative Stress/drug effects , Reactive Oxygen Species/blood
13.
Zhongguo Zhong Yao Za Zhi ; 44(15): 3349-3357, 2019 Aug.
Article in Chinese | MEDLINE | ID: mdl-31602894

ABSTRACT

Rat model of blood stasis syndrome was prepared by subcutaneous injecting of epinephrine hydrochlorid,then the model rats were administrated by Yunnan Baiyao for 15 days. Blood rheology,coagulation function and histopathology were chosen as indicators to evaluate the successful replication of blood stasis syndrome model and the treatment effect of Yunnan Baiyao. UPLC-Q-TOF-MS was used to rapidly analyze the serum samples of blood stasis syndrome rat after 15 days Yunnan Baiyao treatment,Progenesis QI software was employed to identify the alkaloids components. The results showed that Yunnan Baiyao reduced the plasma viscosity and whole blood viscosity of rats with blood stasis syndrome,prolonged thrombin and prothrombin time,reduced fibrinogen content,and effectively improved pathological state such as inflammatory cell infiltration,blood stasis,congestion and edema of various organs in rats with blood stasis syndrome. Seven alkaloids components from Aconitum kusnezoffii,including karacolidine,senbusine B,isotalatizidine,karakoline,denudatine,talatisamine and chasmanine were found in the rat serum after Yunnan Baiyao treatment. Based on the effectiveness of Yunnan Baiyao in the treatment of blood stasis syndrome induced by epinephrine hydrochloride in rats,alkaloids components from the root of A. kusnezoffii absorbed into blood after Yunnan Baiyao treatment were clarified rapidly and accurately with the help of UPLC-Q-TOF-MS. Karacolidine,senbusine B,isotalatizidine,karakoline,denudatine,talatisamine and chasmanine are the pharmacodynamic material basis of the root of A. kusnezoffii for activating blood circulation and removing blood stasis.


Subject(s)
Aconitum/chemistry , Blood Circulation/drug effects , Drugs, Chinese Herbal/pharmacology , Animals , Blood Viscosity , Prothrombin Time , Rats , Thrombin Time
14.
Photobiomodul Photomed Laser Surg ; 37(6): 342-348, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31188088

ABSTRACT

Objective: This study represents a viable assessment of the effect of the low-level laser (LLL) of 635 nm and ultraviolet (UV) of 265 nm on biophysical properties of blood. Materials and methods: Blood samples were divided into two main groups: one for irradiation by LLL and the other for irradiation by UV. Each group was divided into three aliquots. First aliquot: whole blood was exposed to radiation. The second aliquot: erythrocytes were exposed to radiation and resuspended in autologous plasma. The third aliquot: plasma was exposed to radiation, and erythrocytes were resuspended in it. The following parameters were measured after irradiation by LLL and UV for all aliquots: whole blood viscosity, microscopic aggregation index, deformation index, and Zeta potential. Results: A decrease in whole blood viscosity due to irradiation by LLL was observed. To the contrary, an increase in whole blood viscosity due to irradiation by UV was detected. A significant reduction in erythrocytes' aggregation was observed as a result of LLL and UV radiation. Erythrocytes' deformability was strongly affected by UV radiation, while there was no significant effect from LLL. Another noticeable change observed was an increase in Zeta potential due to UV and a decrease in Zeta potential values, as a result of LLL irradiation. Conclusions: It can be concluded from this study that LLL and UV can be used to change some biological processes, as well as cellular properties.


Subject(s)
Blood/radiation effects , Low-Level Light Therapy/methods , Adult , Blood Viscosity/radiation effects , Dose-Response Relationship, Radiation , Erythrocyte Aggregation/radiation effects , Erythrocyte Deformability/radiation effects , Erythrocytes/radiation effects , Healthy Volunteers , Humans , In Vitro Techniques , Male , Middle Aged , Plasma/radiation effects , Ultraviolet Rays
15.
Zhongguo Zhong Yao Za Zhi ; 44(5): 954-961, 2019 Mar.
Article in Chinese | MEDLINE | ID: mdl-30989855

ABSTRACT

To compare the blood-cooling and hemostasis effects of Rehmanniae Radix before and after carbonizing on rats with blood heat and hemorrhage syndrome. The blood heat and hemorrhage syndrome rat model was established. Indexes including rectal temperature,whole blood viscosity,plasma viscosity,thrombin time(TT),activated partial thromboplastin time(APTT),prothrombin time(PT),fibrinogen content(FIB),red blood cell(RBC),hemoglobin(Hb),hematocrit(HCT),blood platelet count(PLT),mean platelet volume(MPV),serum IL-1,serum IL-6 and lung histopathology were detected to investigate the blood-cooling and hemostasis effects of Rehmanniae Radix and its carbonized products. Compared with the blank control group,the rectal temperature was significantly increased with rise of the high,middle and low whole blood viscosities and plasma viscosity(P<0.05); both the high and low whole blood restore viscosity and the high and low whole blood relative viscosity were increased significantly(P< 0.05); TT,APTT and PT were notably prolonged with the increase in FIB content(P<0.05); RBC,Hb and HCT increased significantly(P< 0.05); concentrations of serum IL-1 and IL-6 were also increased(P< 0.05) in model group. Additionally,obvious hemorrhages in lung and stomach were observed in rats of the model group. Rehmanniae Radix and its carbonized products can significantly reduce rectal temperature,high middle and low whole blood viscosities and plasma viscosity(P<0.05). TT and APTT were shortened,with lower expression of FIB in group of Rehmannia Radix and its carbonized products. Hemorrhages of lung and stomach were improved by Rehmannia Radix and its carbonized products. The results indicated that Rehmannia Radix before and after carbonizing had the hemostasis and blood-cooling effects by promoting coagulation,improving blood rheology and inhibiting expressions of IL-1 and IL-6.


Subject(s)
Blood Coagulation , Drugs, Chinese Herbal/pharmacology , Hemorrhage/drug therapy , Hemostasis , Rehmannia/chemistry , Animals , Blood Viscosity , Body Temperature , Interleukin-1/metabolism , Interleukin-6/metabolism , Partial Thromboplastin Time , Plant Roots , Rats , Thrombin Time
16.
J Ethnopharmacol ; 238: 111813, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-30910578

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Whitmania pigra Whitman (Whitmania pigra, WP), firstly recorded in the Shennong's Herbal Classic and officially listed in the Chinese Pharmacopoeia, is a well-used cardiovascular protective traditional Chinese medicine derived from leeches. Traditional Chinese physicians prefer to prescribe the dried whole body of leech processed under high temperatures. It has been reported that dried WP remains clinically effective. However, the therapeutic mechanism has yet not be clearly elucidated. AIM OF THE STUDY: This study was designed to investigate the protective activity of the extract of WP in a high-molecular-weight dextran-induced blood hyperviscosity rat model, and to explore the role of WP in improving blood hyperviscosity related metabolic disorders and to clarify the possible mechanism of metabolic regulation. MATERIALS AND METHODS: The hemorheological parameters were measured with an automated blood rheology analyzer. Hematoxylin-eosin staining was used to observe the pathological changes in aortic tissues samples. Further, a liquid chromatography-mass-spectrometry (LC-MS)-based untargeted metabolomics approach was applied to characterize the metabolic alterations. RESULTS: WP has evident attenuating effects on blood hyperviscosity and related metabolic disorders, and the influences are distinct from those of aspirin. The results showed that WP had good effects in reducing blood viscosity and ameliorating histopathological changes in the thoracic aorta in a high molecular weight dextran-induced blood hyperviscosity rat model. The middle dose (2.5 g raw material/kg body weight) of WP exhibited effects equivalent to aspirin (100 mg/kg) on hemorheological and histopathological parameters (P > 0.05). However, when using metabolomics profiling, we found that WP could significantly improve blood hyperviscosity-related metabolic disorders and restore metabolites to normal levels; while aspirin showed little effect. With principal component analysis and orthogonal partial least-squares discriminant analysis, WP regulated many more endogenous metabolites than aspirin. With pathway enrichment analysis, the differential endogenous metabolites were involved in cysteine and methionine metabolism, TCA cycle, arachidonic acid metabolism, etc., highlighting the metabolic reprogramming potential of WP against blood hyperviscosity-induced metabolic disorders. CONCLUSIONS: The study suggest that WP has a more potent effect, but a different mechanism, than aspirin in improving either blood hyperviscosity or related metabolic disorders associated with cardio- and cerebrovascular diseases.


Subject(s)
Blood Viscosity/drug effects , Complex Mixtures/pharmacology , Leeches , Animals , Cyclooxygenase 2/genetics , Cystathionine beta-Synthase/genetics , Liver/drug effects , Liver/metabolism , Male , Powders , Rats, Sprague-Dawley
17.
Article in English | MEDLINE | ID: mdl-30594827

ABSTRACT

Danggui-Sini Decoction (DSD) is one of the most widely used traditional Chinese medicine formulae (TCMF) for treating various diseases caused by cold coagulation and blood stasis due to its effect of nourishing blood to warm meridians in clinical use. However, studies of the mechanism of how it dispels blood stasis and its compatible regularity are challenging because of the complex pathophysiology of blood stasis syndrome (BSS) and the complexity of DSD, with multiple active ingredients acting on different targets. Observing variations of endogenous metabolites in rats with BSS after administering DSD may further our understanding of the mechanism of BSS and the compatible regularity of DSD. In this study, to understand the pathogenesis of BSS and assess the compatibility effects of DSD, an ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry-based untargeted metabolomics approach was used. Serum metabolic profiles in rats with BSS that was induced by an ice water bath associated with subcutaneous injection of epinephrine hydrochloride were compared with the intervention groups which were administered with DSD or its compatibility. Using pattern recognition analysis, a clear separation between the BSS model and control group was observed; DSD and its compatibility intervention groups were clustered closer toward the control than the model group, which corroborates results of hemorheology studies. In addition, 20 metabolites were considered as potential biomarkers associated with the development of BSS. Nine metabolites were regulated by DSD in intervening blood stasis, they were considered to be correlated with the effect of nourishing blood to warm meridians. Additionally, the results suggested that the intervention effect of DSD on BSS may involve regulating four pathways, namely, arachidonic acid metabolism, glycerophospholipid metabolism, bile acid biosynthesis, and pyruvate metabolism. Moreover, each functional unit (monarch, minister, and assistant) in DSD regulates different metabolites and metabolic pathways to achieve different effects on dispelling blood stasis; however, their intervention efficacies are inferior to the holistic formula, which may be due to the synergism of the bioactive ingredients in seven herbs of DSD. This study demonstrated that metabolomics is a powerful tool for evaluating the efficacy and compatibility effects of traditional Chinese medicine (TCM).


Subject(s)
Blood Viscosity/drug effects , Drugs, Chinese Herbal/pharmacology , Metabolome/drug effects , Metabolomics/methods , Animals , Biomarkers/blood , Drugs, Chinese Herbal/administration & dosage , Female , Medicine, Chinese Traditional , Metabolic Networks and Pathways , Rats , Rats, Sprague-Dawley
18.
Article in Chinese | WPRIM | ID: wpr-777532

ABSTRACT

To compare the blood-cooling and hemostasis effects of Rehmanniae Radix before and after carbonizing on rats with blood heat and hemorrhage syndrome. The blood heat and hemorrhage syndrome rat model was established. Indexes including rectal temperature,whole blood viscosity,plasma viscosity,thrombin time(TT),activated partial thromboplastin time(APTT),prothrombin time(PT),fibrinogen content(FIB),red blood cell(RBC),hemoglobin(Hb),hematocrit(HCT),blood platelet count(PLT),mean platelet volume(MPV),serum IL-1,serum IL-6 and lung histopathology were detected to investigate the blood-cooling and hemostasis effects of Rehmanniae Radix and its carbonized products. Compared with the blank control group,the rectal temperature was significantly increased with rise of the high,middle and low whole blood viscosities and plasma viscosity(P<0.05); both the high and low whole blood restore viscosity and the high and low whole blood relative viscosity were increased significantly(P< 0.05); TT,APTT and PT were notably prolonged with the increase in FIB content(P<0.05); RBC,Hb and HCT increased significantly(P< 0.05); concentrations of serum IL-1 and IL-6 were also increased(P< 0.05) in model group. Additionally,obvious hemorrhages in lung and stomach were observed in rats of the model group. Rehmanniae Radix and its carbonized products can significantly reduce rectal temperature,high middle and low whole blood viscosities and plasma viscosity(P<0.05). TT and APTT were shortened,with lower expression of FIB in group of Rehmannia Radix and its carbonized products. Hemorrhages of lung and stomach were improved by Rehmannia Radix and its carbonized products. The results indicated that Rehmannia Radix before and after carbonizing had the hemostasis and blood-cooling effects by promoting coagulation,improving blood rheology and inhibiting expressions of IL-1 and IL-6.


Subject(s)
Animals , Rats , Blood Coagulation , Blood Viscosity , Body Temperature , Drugs, Chinese Herbal , Pharmacology , Hemorrhage , Drug Therapy , Hemostasis , Interleukin-1 , Metabolism , Interleukin-6 , Metabolism , Partial Thromboplastin Time , Plant Roots , Rehmannia , Chemistry , Thrombin Time
19.
Article in Chinese | WPRIM | ID: wpr-773711

ABSTRACT

Rat model of blood stasis syndrome was prepared by subcutaneous injecting of epinephrine hydrochlorid,then the model rats were administrated by Yunnan Baiyao for 15 days. Blood rheology,coagulation function and histopathology were chosen as indicators to evaluate the successful replication of blood stasis syndrome model and the treatment effect of Yunnan Baiyao. UPLC-Q-TOF-MS was used to rapidly analyze the serum samples of blood stasis syndrome rat after 15 days Yunnan Baiyao treatment,Progenesis QI software was employed to identify the alkaloids components. The results showed that Yunnan Baiyao reduced the plasma viscosity and whole blood viscosity of rats with blood stasis syndrome,prolonged thrombin and prothrombin time,reduced fibrinogen content,and effectively improved pathological state such as inflammatory cell infiltration,blood stasis,congestion and edema of various organs in rats with blood stasis syndrome. Seven alkaloids components from Aconitum kusnezoffii,including karacolidine,senbusine B,isotalatizidine,karakoline,denudatine,talatisamine and chasmanine were found in the rat serum after Yunnan Baiyao treatment. Based on the effectiveness of Yunnan Baiyao in the treatment of blood stasis syndrome induced by epinephrine hydrochloride in rats,alkaloids components from the root of A. kusnezoffii absorbed into blood after Yunnan Baiyao treatment were clarified rapidly and accurately with the help of UPLC-Q-TOF-MS. Karacolidine,senbusine B,isotalatizidine,karakoline,denudatine,talatisamine and chasmanine are the pharmacodynamic material basis of the root of A. kusnezoffii for activating blood circulation and removing blood stasis.


Subject(s)
Animals , Rats , Aconitum , Chemistry , Blood Circulation , Blood Viscosity , Drugs, Chinese Herbal , Pharmacology , Prothrombin Time , Thrombin Time
20.
Molecules ; 23(9)2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30134517

ABSTRACT

Objective: To perform a preliminary study on the quality evaluation of compound Danshen preparations based on the xCELLigence Real-Time Cell-based Assay (RTCA) system and make a pharmacodynamics verification. Methods: The compound Danshen was discussed as a methodological example, and the bioactivity of the compound Danshen preparations were evaluated by real-time cell electronic analysis technology. Meanwhile, an in vivo experiment on an acute blood stasis rat model was performed in order to verify this novel evaluation through the curative effect of dissipating blood stasis. Results: We determined the cell index (CI) and IC50 of the compound Danshen preparations and produced time/dose-dependent cell response profiles (TCRPs). The quality of the three kinds of compound Danshen preparations was evaluated through the RTCA data. The trend of CI and TCRPs reflected the effect of drugs on the cell (promoting or inhibiting), and it was verified that the results correlated with the biological activity of the drugs using a pharmacodynamics experiment. Conclusion: The RTCA system can be used to evaluate the quality of compound Danshen Preparations, and it can provide a new idea and new method for quantitatively characterizing the biological activity of traditional Chinese medicines (TCMs).


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional/standards , Salvia miltiorrhiza/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Blood Coagulation/drug effects , Blood Viscosity/drug effects , Cell Line , Dose-Response Relationship, Drug , Erythrocyte Indices/drug effects , Humans , Rats
SELECTION OF CITATIONS
SEARCH DETAIL