Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.888
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Neurotoxicology ; 87: 106-119, 2021 12.
Article in English | MEDLINE | ID: mdl-34509511

ABSTRACT

Organophosphate (OP) nerve agents and pesticides are a class of neurotoxic compounds that can cause status epilepticus (SE), and death following acute high-dose exposures. While the standard of care for acute OP intoxication (atropine, oxime, and high-dose benzodiazepine) can prevent mortality, survivors of OP poisoning often experience long-term brain damage and cognitive deficits. Preclinical studies of acute OP intoxication have primarily used rat models to identify candidate medical countermeasures. However, the mouse offers the advantage of readily available knockout strains for mechanistic studies of acute and chronic consequences of OP-induced SE. Therefore, the main objective of this study was to determine whether a mouse model of acute diisopropylfluorophosphate (DFP) intoxication would produce acute and chronic neurotoxicity similar to that observed in rat models and humans following acute OP intoxication. Adult male C57BL/6J mice injected with DFP (9.5 mg/kg, s.c.) followed 1 min later with atropine sulfate (0.1 mg/kg, i.m.) and 2-pralidoxime (25 mg/kg, i.m.) developed behavioral and electrographic signs of SE within minutes that continued for at least 4 h. Acetylcholinesterase inhibition persisted for at least 3 d in the blood and 14 d in the brain of DFP mice relative to vehicle (VEH) controls. Immunohistochemical analyses revealed significant neurodegeneration and neuroinflammation in multiple brain regions at 1, 7, and 28 d post-exposure in the brains of DFP mice relative to VEH controls. Deficits in locomotor and home-cage behavior were observed in DFP mice at 28 d post-exposure. These findings demonstrate that this mouse model replicates many of the outcomes observed in rats and humans acutely intoxicated with OPs, suggesting the feasibility of using this model for mechanistic studies and therapeutic screening.


Subject(s)
Brain/pathology , Isoflurophate/toxicity , Status Epilepticus/chemically induced , Acetylcholinesterase/metabolism , Animals , Brain/drug effects , Brain/enzymology , Cholinesterase Inhibitors/pharmacology , Disease Models, Animal , Electroencephalography , Female , Male , Mice , Mice, Inbred C57BL , Nesting Behavior/drug effects , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/psychology , Open Field Test , Status Epilepticus/pathology , Status Epilepticus/psychology
2.
Chem Commun (Camb) ; 57(53): 6487-6490, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34100043

ABSTRACT

Herein, an electrochemical method for selectively sensing and accurately quantifying monoamine oxidase A (MAO-A) in the cortex and thalamus of a live mouse brain was reported. Using this tool, it was found that MAO-A increased Ca2+ entry into neurons via the TPRM2 channel in the live mouse brain of an AD model.


Subject(s)
Brain/enzymology , Electrochemistry/instrumentation , Monoamine Oxidase/metabolism , Animals , Cerebral Cortex/enzymology , Mice , Thalamus/enzymology
3.
Neuropeptides ; 87: 102136, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33721592

ABSTRACT

Anxiety induced by excess mental or physical stress is deeply involved in the onset of human psychiatric diseases such as depression, bipolar disorder, and panic disorder. Recently, Kampo medicines have received focus as antidepressant drugs for clinical use because of their synergistic and additive effects. Thus, we evaluated the anxiolytic activity of Ninjinyoeito (NYT) using neuropeptide Y-knockout (NPY-KO) zebrafish that exhibit severe anxiety responses to acute stress. Adult NPY-KO zebrafish were fed either a 3% NYT-supplemented or normal diet (i.e., the control diet) for four days and were then examined via behavioral tests. After short-term cold stress (10 °C, 2 s) was applied, control-fed NPY-KO zebrafish exhibited anxiety behaviors such as freezing, erratic movement, and increased swimming time along the tank wall. On the other hand, NYT-fed NPY-KO zebrafish significantly suppressed these anxiety behaviors, accompanied by a downregulation of tyrosine hydroxylase levels and phosphorylation of extracellular signal-regulated kinases in the brain. To understand the responsible component(s) in NYT, twelve kinds of herbal medicines that composed NYT were tested in behavioral trials with the zebrafish. Among them, nine significantly reduced freezing behavior in NPY-KO zebrafish. In particular, Schisandra fruit induced the most potent effect on abnormal zebrafish behavior, even in the lower amount (0.3% equivalent to NYT), followed by Atractylodes rhizome and Cinnamon bark. Subsequently, four lignans uniquely found in Schisandra fruit (i.e., gomisin A, gomisin N, schizandrin, and schizandrin B) were investigated for their anxiolytic activity in NPY-KO zebrafish. As a result, schizandrin was identified as a responsible compound in the anxiolytic effect of NYT. These results suggest that NYT has a positive effect on mental stress-induced anxiety and may be a promising therapeutic for psychiatric diseases.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Drugs, Chinese Herbal/therapeutic use , Neuropeptide Y/deficiency , Phytotherapy , Animals , Anti-Anxiety Agents/chemistry , Anxiety/genetics , Brain/enzymology , Cold-Shock Response , Disease Models, Animal , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , Freezing Reaction, Cataleptic , Fruit , Gene Expression Regulation/drug effects , Gene Knockout Techniques , Lignans/isolation & purification , Lignans/pharmacology , Lignans/therapeutic use , Medicine, Kampo , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Schisandra , Swimming , Tyrosine 3-Monooxygenase/metabolism , Zebrafish , Zebrafish Proteins
4.
Drug Dev Res ; 82(5): 628-667, 2021 08.
Article in English | MEDLINE | ID: mdl-33533102

ABSTRACT

The cytochrome P450 (CYP450) superfamily is responsible for the metabolism of most xenobiotics and pharmacological treatments generally used in clinical settings. Genetic factors as well as environmental determinants acting through fine epigenetic mechanisms modulate the expression of CYP over the lifespan (fetal vs. infancy vs. adult phases) and in diverse organs. In addition, pathological processes might alter the expression of CYP. In this selective review, we sought to summarize the evidence on the expression of CYP focusing on three specific aspects: (a) the anatomical distribution of the expression in body districts relevant in terms of drug pharmacokinetics (liver, gut, and kidney) and pharmacodynamics, focusing for the latter on the brain, since this is the target organ of psychopharmacological agents; (b) the patterns of expression during developmental phases; and (c) the expression of CYP450 enzymes during pathological processes such as cancer. We showed that CYP isoforms show distinct patterns of expression depending on the body district and the specific developmental phases. Of particular relevance for neuropsychopharmacology is the complex regulatory mechanisms that significantly modulate the complexity of the pharmacokinetic regulation, including the concentration of specific CYP isoforms in distinct areas of the brain, where they could greatly affect local substrate and metabolite concentrations of drugs.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Brain/enzymology , Brain/metabolism , Cytochrome P-450 Enzyme System/genetics , Drug Evaluation, Preclinical , Drug Interactions , Enzyme Activation , Enzyme Induction , Humans , Intestines/enzymology , Kidney/enzymology , Liver/enzymology , Pharmacogenetics , Xenobiotics/metabolism
5.
Toxicol Appl Pharmacol ; 415: 115443, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33548273

ABSTRACT

The brain is a critical target for the toxic action of organophosphorus (OP) inhibitors of acetylcholinesterase (AChE) such as the nerve agent sarin. However, the available oxime antidote 2-PAM only reactivates OP-inhibited AChE in peripheral tissues. Monoisonitrosoacetone (MINA), a tertiary oxime, reportedly reactivates AChE in the central nervous system (CNS). The current study investigated whether MINA would be beneficial as a supplemental oxime treatment in preventing lethality and reducing morbidity following lethal sarin exposure, MINA supplement would improve AChE recovery in the body, and MINA would be detectable in the CNS. Guinea pigs were exposed to sarin and treated with atropine sulfate and 2-PAM at one minute. Additional 2-PAM or MINA was administered at 3, 5, 15, or 30 min after sarin exposure. Survival and morbidity were assessed at 2 and 24 h. AChE activity in brain and peripheral tissues was evaluated one hour after MINA and 2-PAM treatment. An in vivo microdialysis technique was used to determine partitioning of MINA into the brain. A liquid chromatography-tandem mass spectrometry method was developed for the analysis of MINA in microdialysates. MINA-treated animals exhibited significantly higher survival and lower morbidity compared to 2-PAM-treated animals. 2-PAM was significantly more effective in reactivating AChE in peripheral tissues, but only MINA reactivated AChE in the CNS. MINA was found in guinea pig brain microdialysate samples beginning at ~10 min after administration in a dose-related manner. The data strongly suggest that a centrally penetrating oxime could provide significant benefit as an adjunct to atropine and 2-PAM therapy for OP intoxication.


Subject(s)
Acetylcholinesterase/metabolism , Antidotes/pharmacology , Brain/drug effects , Cholinesterase Reactivators/pharmacology , Organophosphate Poisoning/prevention & control , Oximes/pharmacology , Sarin , Animals , Antidotes/metabolism , Brain/enzymology , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Activation , Guinea Pigs , Male , Microdialysis , Organophosphate Poisoning/enzymology , Oximes/metabolism , Permeability , Pralidoxime Compounds/metabolism , Pralidoxime Compounds/pharmacology , Tissue Distribution
6.
J Stroke Cerebrovasc Dis ; 30(3): 105165, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33360522

ABSTRACT

BACKGROUND: Cerebral infarction is one of the most common causes of disability and death worldwide. It is reported that electric acupuncture was able to improve the prognosis of cerebral infarction by promoting angiogenesis. However, the corresponding signal pathways of angiogenesis promotes by electric acupuncture treatment needs to be further explored. METHODS: MCAO rat was employed as the animal model, and clopidogrel hydrogen sulfate treatment was set as the positive control. Behaviors of rats, H&E staining, and TTC-staining was used to evaluate the recovery of infarcted brain tissue and nervous function. After that, immunocytochemical and immunofluorescence staining was used to quantify the angiogenesis and compensatory circulation, which including the analysis of microvessel density, field/ microvessel area ratio, and microvessel diameter. Western blot and RT-PCR for the detection of the related signal molecule, PI3K, Src, and EphB4/ephrinB2. RESULTS: The neurologic impairment scores were decreased, and the brain tissue damage that showed with H&E and TTC-staining was relieved by the treatment of electric acupuncture in MCAO rat. The quantification of microvessel density and field/ microvessel area ratio was improved obviously, and the microvessel diameter was decreased which represent the angiogenesis of capillary in day 3 and 7 by the electric acupuncture treatment. We also found that the level of Src and PI3K was increased markedly followed by the up-regulation of EphB4 and EphrinB2 mRNA during the electric acupuncture treatment, and the pre-treatment of Src and/or PI3K inhibitor was able to disturb the angiogenesis of capillary. CONCLUSIONS: We proved that electric acupuncture was able to accelerate the recovery of infarcted brain tissue and nervous function in MCAO rat by the promotion of angiogenesis, which was regulated by EphB4/EphrinB2 mediated Src/PI3K signal pathway. Our study provides a potential therapy and theoretical basis for the clinical treatment of cerebral infarction by the use of electric acupuncture.


Subject(s)
Brain/blood supply , Brain/enzymology , Electroacupuncture , Ephrin-B2/metabolism , Infarction, Middle Cerebral Artery/therapy , Neovascularization, Physiologic , Phosphatidylinositol 3-Kinase/metabolism , Receptor, EphB4/metabolism , src-Family Kinases/metabolism , Animals , Disease Models, Animal , Ephrin-B2/genetics , Infarction, Middle Cerebral Artery/enzymology , Infarction, Middle Cerebral Artery/physiopathology , Microvascular Density , Rats, Sprague-Dawley , Receptor, EphB4/genetics , Recovery of Function , Signal Transduction , Time Factors
7.
J Ethnopharmacol ; 267: 113612, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33249246

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory of traditional Chinese medicine (TCM), Alzheimer's disease (AD) is identified as "forgetfulness" or "dementia", and it can be caused by spleen deficiency. Longan Aril (the aril of Dimocarpus longan Lour., LA) is a kind of Chinese medicine, and it can improve intelligence attributed to entering the spleen-meridian. This study aimed to explore the therapeutic effects of LA on AD mice with spleen deficiency, and to understand anti-AD mechanism of LA. MATERIAL AND METHODS: A mouse model of AD with spleen deficiency was established by D-gal (140 mg/kg, intraperitoneal injection) and AlCl3 (20 mg/kg, intragastrical administration) in combination with an irregular diet for 60 days, in which mice in LA group were daily given LA (0.5, 1.0 or 2.0 g/kg). The anti-AD effects of LA were evaluated by the Morris water maze, enzyme-linked immunosorbent assay (ELISA), hematoxylin and eosin (H&E), Nissl, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. The anti-AD mechanism of LA was studied by using metabolomics, and the expressions of RAS/MEK/extracellular signal-regulated kinase (ERK) signaling pathway-related proteins were detected by Western blotting. RESULTS: LA improved learning and memory abilities, superoxide dismutase (SOD) level, and form and number of Nissl bodies, while reduced the levels of Aß42, phosphorylated-tau (p-tau), reactive oxygen species (ROS), malondialdehyde (MDA), monoamine oxidase-B (MAO-B), histological injury, and apoptosis rate in AD group (P < 0.05, P < 0.01 or P < 0.001). The anti-AD mechanism of LA may be related to RAS/MEK/ERK and other signaling pathways, in which the expressions of RAS/MEK/ERK signaling pathway-related proteins significantly reduced (P < 0.05 or P < 0.01). CONCLUSIONS: LA could improve the cognitive ability and reduce the pathologic impairment in AD mice, which might be partly mediated via inhibition of RAS/MEK/ERK singling pathway.


Subject(s)
Alzheimer Disease/prevention & control , Behavior, Animal/drug effects , Brain/drug effects , Cognition/drug effects , Cognitive Dysfunction/prevention & control , Extracellular Signal-Regulated MAP Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Nootropic Agents/pharmacology , Plant Extracts/pharmacology , Sapindaceae , ras Proteins/metabolism , Aluminum Chloride , Alzheimer Disease/chemically induced , Alzheimer Disease/enzymology , Alzheimer Disease/psychology , Animals , Apoptosis/drug effects , Brain/enzymology , Brain/physiopathology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/enzymology , Cognitive Dysfunction/psychology , Disease Models, Animal , Female , Galactosamine , Maze Learning/drug effects , Mice , Nootropic Agents/isolation & purification , Oxidative Stress/drug effects , Phosphorylation , Plant Extracts/isolation & purification , Sapindaceae/chemistry , Signal Transduction
8.
Biomed Pharmacother ; 133: 111021, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33227709

ABSTRACT

OBJECTIVE: To observe the brain protective effect of Leonuri Herba Total Alkali (LHA) on cerebral ischemia reperfusion injury in rats, so as to provide basis for clinical research. METHODS: Adult male SD rats were randomly assigned into sham group, middle cerebral artery occlusion/reperfusion (MCAO/R) group, and LHA + MCAO/R group (25 mg/kg, 50 mg/kg, and 100 mg/kg). Fourteen days before MCAO/R surgery, the rats in treatment groups were orally administered with LHA in ultrapure water once daily for 14 days, while rats in the sham and MCAO groups were given the same amount of saline in advance. After 1 h of administration on the 14th day, MCAO surgery was subjected. The neurological deficits, brain infarct volume, histopathology, immunofluorescence, inflammation indicators and the gene/protein expressions of BDNF-TrKB-PI3K/Akt signaling pathway in the rat brain tissue were evaluated 24 h after the MCAO/R-injury. RESULTS: It was found that rats in LHA pre-administration group showed significantly reduced neurological deficit scores, infarction volume, the serum levels of NSE and S100ß. Meanwhile, the content of Evans Blue (EB) in brain tissue from LHA group was decreased, as well as the levels of inflammatory cytokines and their gene levels. Moreover, LHA pre-administration inhibited the expression of CD44, GFAP, FOXO1 and promoted the expression of BDNF and NeuN. In addition, LHA pre-administration could up-regulate the protein expression of TrkB, p-PI3K, p-Akt, Bcl-2, and down-regulate the protein expression of Bax, and increase the level of Bcl-2/Bax. CONCLUSIONS: The study demonstrated that LHA pre-administration could regulate the PI3K/Akt pathway by increasing BDNF levels, and play a neuroprotective role in cerebral ischemia-reperfusion injury.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Brain/drug effects , Drugs, Chinese Herbal/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Leonurus/chemistry , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, trkB/metabolism , Reperfusion Injury/prevention & control , Animals , Apoptosis Regulatory Proteins/metabolism , Brain/enzymology , Brain/pathology , Disease Models, Animal , Infarction, Middle Cerebral Artery/enzymology , Infarction, Middle Cerebral Artery/pathology , Male , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Neuroprotective Agents/pharmacology , Phosphorylation , Rats, Sprague-Dawley , Reperfusion Injury/enzymology , Reperfusion Injury/pathology , Signal Transduction
9.
J Ethnopharmacol ; 267: 113491, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33091490

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gardenia jasminoides J. Ellis (Fructus Gardenia) is a traditional Chinese medicine with diverse pharmacological functions, such as anti-inflammation, anti-depression, as well as improvement of cognition and ischemia brain injury. GJ-4 is a natural extract from Gardenia jasminoides J. Ellis (Fructus Gardenia) and has been proved to improve memory impairment in Alzheimer's disease (AD) mouse model in our previous studies. AIM OF THE STUDY: This study aimed to evaluate the therapeutic effects of GJ-4 on vascular dementia (VD) and explore the potential mechanisms. MATERIAL AND METHODS: In our experiment, a focal cerebral ischemia and reperfusion rat model was successfully developed by the middle cerebral artery occlusion and reperfusion (MCAO/R). GJ-4 (10 mg/kg, 25 mg/kg, 50 mg/kg) and nimodipine (10 mg/kg) were orally administered to rats once a day for consecutive 12 days. Learning and memory behavioral performance was assayed by step-down test and Morris water maze test. The neurological scoring test was performed to evaluate the neurological function of rats. 2,3,5-Triphenyltetrazolium chloride (TTC) staining and Nissl staining were respectively employed to determine the infarct condition and neuronal injury of the brain. Iba1 immunohistochemistry was used to show the activation of microglia. Moreover, the synaptic damage and inflammatory level were detected by Western blot. RESULTS: GJ-4 could significantly improve memory impairment, cerebral infraction, as well as neurological deficits of VD rats induced by MCAO/R. Further research indicated VD-induced neuronal injury was alleviated by GJ-4. In addition, GJ-4 could protect synapse of VD rats by upregulating synaptophysin (SYP) expression, post synaptic density 95 protein (PSD95) expression, and downregulating N-Methyl-D-Aspartate receptor 1 (NMDAR1) expression. Subsequent investigation of the underlying mechanisms identified that GJ-4 could suppress neuroinflammatory responses, supported by inhibited activation of microglia and reduced expression of inflammatory proteins, which ultimately exerted neuroprotective effects on VD. Further mechanistic study indicated that janus kinase 2 (JAK2)/signal transducer and activator of transcription 1 (STAT1) pathway was inhibited by GJ-4 treatment. CONCLUSION: These results suggested that GJ-4 might serve as a potential drug to improve VD. In addition, our study indicated that inhibition of neuroinflammation might be a promising target to treat VD.


Subject(s)
Behavior, Animal/drug effects , Brain/drug effects , Dementia, Vascular/prevention & control , Infarction, Middle Cerebral Artery/drug therapy , Janus Kinase 2/metabolism , Memory Disorders/prevention & control , Memory/drug effects , Neuroprotective Agents/pharmacology , Nootropic Agents/pharmacology , Plant Extracts/pharmacology , Reperfusion Injury/prevention & control , STAT1 Transcription Factor/metabolism , Animals , Brain/enzymology , Brain/pathology , Brain/physiopathology , Dementia, Vascular/enzymology , Dementia, Vascular/etiology , Dementia, Vascular/psychology , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Gardenia , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/enzymology , Infarction, Middle Cerebral Artery/physiopathology , Inflammation Mediators/metabolism , Male , Memory Disorders/enzymology , Memory Disorders/etiology , Memory Disorders/psychology , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Rats, Sprague-Dawley , Reperfusion Injury/enzymology , Reperfusion Injury/etiology , Reperfusion Injury/physiopathology , Signal Transduction , Synapses/drug effects , Synapses/metabolism , Synapses/pathology
10.
Bioorg Chem ; 105: 104435, 2020 12.
Article in English | MEDLINE | ID: mdl-33161254

ABSTRACT

This study aims to determine whether atomoxetine (ATX), used as an alternative to methylphenidate, affects superoxide dismutase (SOD) activity besides glutathione (GSH) and malondialdehyde (MDA) levels, apart from determining possible effects of ATX on SOD activity through molecular docking studies. 24 male Wistar rats were divided into 4 groups, each containing 6 members. After a 6-week application of ATX, blood samples and brain tissues were obtained from the rats for biochemical analyses. Besides, molecular docking studies were conducted using PyRx and Discovery Studio 3.0 programs. No significant difference occurred in GSH and MDA levels after ATX application. A high-dose application of ATX caused a statistically significant change only in the serum-SOD activity compared to that of Control Group. Molecular docking studies revealed that ATX settled in the biggest space rather than the catalytic regions of Cu2Zn2-SOD. Our biochemical and molecular docking data showed that ATX, an alternative drug to stimulant methylphenidate, showed no significant changes in the antioxidant defence system at either low or therapeutic doses after long-term use. Therefore, we suggest ATX could be used as a substitute for methylphenidate in the long-term treatment of ADHD.


Subject(s)
Atomoxetine Hydrochloride/pharmacology , Attention Deficit Disorder with Hyperactivity/drug therapy , Molecular Docking Simulation , Superoxide Dismutase/metabolism , Administration, Oral , Animals , Atomoxetine Hydrochloride/administration & dosage , Attention Deficit Disorder with Hyperactivity/metabolism , Brain/drug effects , Brain/enzymology , Dose-Response Relationship, Drug , Male , Molecular Structure , Rats , Rats, Wistar , Structure-Activity Relationship , Superoxide Dismutase/blood
11.
Epilepsia ; 61(12): 2825-2835, 2020 12.
Article in English | MEDLINE | ID: mdl-33098125

ABSTRACT

OBJECTIVE: The role of α2A adrenergic receptors (α2A ARs) in absence epilepsy is not well characterized. Therefore, we investigated the outcomes of the specific antagonism of α2A ARs on the spike-and-wave discharges (SWDs) in genetic absence epilepsy rats from Strasbourg (GAERSs), together with its influence on the behavior and second messenger systems, which may point to the mechanisms to which a possible SWD modulation can be related. METHODS: Atipamezole, an α2A AR antagonist, was administered intracerebroventricularly to the adult GAERSs, and electroencephalography (EEG) was conducted. The cumulative duration and number of SWDs, and the mean duration of each SWD complex were counted. The relative power of the EEG frequency bands and behavioral activity after the acute application of two doses (12 and 31 µg/5 µL) of atipamezole were evaluated. The levels of cyclic adenosine monophosphate and calcium/calmodulin-dependent kinase II (CaMKII) were measured in the cortex, thalamus, and hippocampus of naive Wistar rats and GAERSs, administered with artificial cerebrospinal fluid (aCSF) as a vehicle, or either acute or chronic atipamezole (12 µg), the latter being administered for 5 consecutive days. RESULTS: Atipamezole significantly suppressed SWDs dose-dependently, without affecting the relative power values of EEG frequency spectrum. The stereotypic activity was significantly lower in both naive Wistar rats and GAERSs receiving the highest dose (31 µg) of atipamezole compared to GAERSs receiving aCSF. In GAERSs, CaMKII levels were found to be higher in the thalamus after the acute and chronic application of SWD-suppressing doses of atipamezole (12 and 31 µg) compared to aCSF. SIGNIFICANCE: This study emphasizes the α2 AR-related modulation of absence epilepsy and particularly the significance of α2 AR antagonism in suppressing SWDs. Atipamezole's SWD-suppressive actions may be through CaMKII-mediated second messenger systems in the thalamus.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists/pharmacology , Anticonvulsants/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Epilepsy, Absence/drug therapy , Imidazoles/pharmacology , Thalamus/drug effects , Animals , Anticonvulsants/administration & dosage , Brain/enzymology , Brain/pathology , Brain/physiopathology , Disease Models, Animal , Electroencephalography , Enzyme-Linked Immunosorbent Assay , Epilepsy, Absence/enzymology , Epilepsy, Absence/physiopathology , Female , Imidazoles/administration & dosage , Injections, Intraventricular , Male , Rats , Rats, Inbred Strains , Rats, Wistar , Thalamus/physiopathology
12.
Indian J Pharmacol ; 52(2): 108-116, 2020.
Article in English | MEDLINE | ID: mdl-32565598

ABSTRACT

We investigate the protective effect of Carthamus tinctorius L. (CTL, also known as Honghua in China or Safflower) on cerebral ischemia-reperfusion and explored the possible mechanisms on regulating apoptosis and matrix metalloproteinases (MMPs). High-performance liquid chromatography method with diode array detection analysis was established to analyze the components of CTL. Middle cerebral artery occlusion rats model was established to evaluate Neurological Function Score and hematoxylin-eosin staining, as well as triphenyltetrazolium was used to examine the infarction area ratio. Transferase-mediated dUTP nick-end labeling was performed for the apoptosis. Apoptosis-related factors, including B-cell lymphoma-2 (Bcl-2), Bax and Caspase3, and MMPs-related MMP2, MMP9, tissue inhibitor of metalloproteinases 1 (TIMP1) in ischemic brain, were assayed by Western blot, reverse transcription polymerase chain reaction, and immunohistochemistry. The data showed that CTL (2, 4 g crude drug/kg/d) treatment could significantly reduce the ischemic damage in brain tissue and improve a significant neurological function score. In addition, CTL could also attenuate apoptosis degree of brain tissues and regulate Bcl-2, Bax, and Caspase 3 and also have a significant decrease on MMP-9 expression, followed by a significant increase of TIMP1 protein expression. These findings indicated that regulation of CTL on apoptosis and MMPs contributed to its protective effect on ischemia/reperfusion injury.


Subject(s)
Apoptosis/drug effects , Brain/drug effects , Carthamus tinctorius , Infarction, Middle Cerebral Artery/drug therapy , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Reperfusion Injury/prevention & control , Animals , Apoptosis Regulatory Proteins/metabolism , Brain/enzymology , Brain/pathology , Carthamus tinctorius/chemistry , Disease Models, Animal , Infarction, Middle Cerebral Artery/enzymology , Infarction, Middle Cerebral Artery/pathology , Male , Neuroprotective Agents/isolation & purification , Plant Extracts/isolation & purification , Rats, Sprague-Dawley , Reperfusion Injury/enzymology , Reperfusion Injury/pathology , Signal Transduction , Tissue Inhibitor of Metalloproteinase-1/metabolism
13.
Biomed Pharmacother ; 129: 110360, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32559623

ABSTRACT

Several proteins including S-nitrosoglutathione reductase (GSNOR), complement Factor D, complement 3b (C3b) and Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK), have been demonstrated to be involved in pathogenesis pathways for Alzheimer's disease (AD) and considered as potential treatment targets to AD. Based on the concept of multitargets, a network pharmacology-based approach was employed to investigate potential Traditional Chinese Medicine (TCM) candidates that can dock well with GSNOR, C3b, Factor D and PERK proteins. To predict the bioactivities of candidates, Artificial Intelligence (AI) algorithms composed of seven machine learning algorithms and a deep learning model were performed to validate the docking results. Furthermore, in this study, we propose a novel combined method for efficiently exploring the predicted results of AI algorithms. Besides, Comparative force field analysis (CoMFA) and comparative similarity indices analysis (CoMSIA) were performed to construct predicted models. The results show that the square correlation coefficients (R2) of all models are almost higher than 0.75, which also acquire good achievements on the test set. Moreover, the binding stability of the potential inhibitors were evaluated using 100 ns of MD simulation. Collectively, this study elucidate that the herbs Ardisia japonica, Ligusticum chuanxiong, Lippia nodiflora and Mirabilis jalapa containing 2,2'-[benzene-1,4-diylbis(methanediyloxybenzene-4,1-diyl)]bis(oxoacetic acid), Glyasperin B, Nodifloridin A, Miraxanthin III and l-Valine-l-valine anhydride might be a potential medicine formula for AD.


Subject(s)
Alzheimer Disease/drug therapy , Artificial Intelligence , Brain/drug effects , Computer-Aided Design , Drug Design , Drug Discovery , Nootropic Agents/pharmacology , Plant Extracts/pharmacology , Alzheimer Disease/enzymology , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Animals , Brain/enzymology , Brain/physiopathology , Cognition/drug effects , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Molecular Targeted Therapy , Nootropic Agents/chemistry , Plant Extracts/chemistry , Quantitative Structure-Activity Relationship , Signal Transduction
14.
Aquat Toxicol ; 224: 105493, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32408004

ABSTRACT

Currently, the contamination of water with different insecticides like profenofos (PFF) is a critical concern in the aquatic ecosystem. There are limited studies available on the negative impacts of PFF on common carp fish (Cyprinus carpio L.). Therefore, the existing study was designed to investigate the effect of PFF exposure (1/10 of the 96 h-LC50) on the neurobehavior, growth performance, chemical composition, oxidative status, DNA damage, apoptotic status and histological indices of the brain and gill tissues. In addition, this study seeks to detect the ability of geranium essential oil (GEO) dietary supplementation to mitigate the negative impacts of PFF. Accordingly, a total of 120 healthy fish were divided into four groups: the control group, fed on basal diet only; the other groups were fed on a basal diet supplemented with 400 mg kg-1 GEO, basal diet and PFF in water (PFF group), and supplemented diet with GEO and PFF in water (GEO + PFF), respectively, for 60 days. The results showed that PFF significantly reduced fish growth performance, crude protein, and lipid contents. It caused several behavioral alterations including spiral movement, decreased activeness, and changes in feeding behavior. Moreover, PFF increased the DNA tail length, tail moment, and the level of 8-hydroxy-2'-deoxyguanosine. Histologically, PFF induced a wide array of circulatory, inflammatory, regressive and progressive alterations in the brain and gill tissues. PFF significantly downregulated Bcl-2 and upregulated caspase-3 immuno-expression in both organs. Further, it considerably depleted the antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase. The GEO supplementation did not reach the respective control values but markedly improved most of the behavioral, physical, biochemical, oxidative, apoptotic, and inflammatory markers, altered by PFF exposure. It also protected the gill and brain tissues from the branchial and encephalopathic effects of PFF. These findings suggest that GEO dietary supplements could be advantageous for mitigating PFF negative impacts and presenting a promising feed additive for common carp in aquaculture.


Subject(s)
Apoptosis/drug effects , Behavior, Animal/drug effects , Brain/drug effects , Carps , DNA Damage/drug effects , Geranium/chemistry , Oils, Volatile/pharmacology , Organothiophosphates/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Aquaculture , Brain/enzymology , Brain/pathology , Carps/genetics , Carps/metabolism , Diet , Dietary Supplements , Ecosystem , Gills/drug effects , Gills/enzymology , Gills/pathology , Oils, Volatile/isolation & purification
15.
J Anim Physiol Anim Nutr (Berl) ; 104(5): 1384-1391, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32342530

ABSTRACT

This research aims to evaluate the effects of maternal vitamin E (VE) dietary supplementation on the egg characteristics, hatchability and antioxidant status of the embryo and newly hatched chicks of prolonged storage eggs. A total of 576 75-week-old Ross 308 breeder hens were randomly allocated into three dietary VE treatments (100, 200 and 400 mg/kg) with 6 replicates of 32 hens, for a 12-week feeding trial. At week 12, a total of 710 eggs were collected over a 5-day period, and eggs per treatment were attributed into 5 replicates and stored for 14 days until incubation. The egg yolk, trunk and head of 7-day-old embryo and the serum, liver, brain and yolk sac of newly hatched chicks were sampled for the evaluation of antioxidant status. Results showed that as maternal dietary VE levels increased, yolk α-tocopherol concentration increased (p < .05). Compared with 100 mg/kg VE, the use of 200 and 400 mg/kg VE increased the hatchability of set/fertile eggs and total antioxidant capacity (T-AOC) of liver and serum in chicks (p < .05), and decreased both the early embryonic mortality and the malondialdehyde (MDA) content of trunk and head in 7-day-old embryos (p < .05); moreover, 400 mg/kg VE increased the yolk T-AOC (p < .05) and decreased yolk and brain MDA content of chicks (p < .05). Brain T-AOC of chicks in 200 mg/kg VE group was improved compared to that of chicks in 100 mg/kg VE group (p < .05). In conclusion, maternal dietary VE at 200 or 400 mg/kg could increase hatchability by decreasing early embryonic mortality and increasing the antioxidant status of egg yolk, embryo and newly hatched chicks as breeder egg storage was prolonged to 14-18 days. The suitable VE level for the broiler breeder diet was 200 mg/kg as breeder egg storage was prolonged.


Subject(s)
Animal Feed/analysis , Chickens/blood , Diet/veterinary , Ovum/physiology , Vitamin E/pharmacology , Animal Nutritional Physiological Phenomena , Animals , Antioxidants/metabolism , Brain/enzymology , Brain Chemistry , Dose-Response Relationship, Drug , Female , Liver/chemistry , Liver/enzymology , Malondialdehyde/blood , Superoxide Dismutase/blood , Vitamin E/administration & dosage , Yolk Sac
16.
Neurotoxicology ; 79: 84-94, 2020 07.
Article in English | MEDLINE | ID: mdl-32343995

ABSTRACT

Gulf War Illness (GWI) affects 30% of veterans from the 1991 Gulf War (GW), who suffer from symptoms that reflect ongoing mitochondria dysfunction. Brain mitochondria bioenergetics dysfunction in GWI animal models corresponds with astroglia activation and neuroinflammation. In a pilot study of GW veterans (n = 43), we observed that blood nicotinamide adenine dinucleotide (NAD) and sirtuin 1 (Sirt1) protein levels were decreased in the blood of veterans with GWI compared to healthy GW veterans. Since nicotinamide riboside (NR)-mediated targeting of Sirt1 is shown to improve mitochondria function, we tested whether NR can restore brain bioenergetics and reduce neuroinflammation in a GWI mouse model. We administered a mouse diet supplemented with NR at 100µg/kg daily for 2-months to GWI and control mice (n = 27). During treatment, mice were assessed for fatigue-type behavior using the Forced Swim Test (FST), followed by euthanasia for biochemistry and immunohistochemistry analyses. Fatigue-type behavior was elevated in GWI mice compared to control mice and lower in GWI mice treated with NR compared to untreated GWI mice. Levels of plasma NAD and brain Sirt1 were low in untreated GWI mice, while GWI mice treated with NR had higher levels, similar to those of control mice. Deacetylation of the nuclear-factor κB (NFκB) p65 subunit and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) was an increase in the brains of NR-treated GWI mice. This corresponded with a decrease in pro-inflammatory cytokines and lipid peroxidation and an increase in markers of mitochondrial bioenergetics in the brains of GWI mice. These findings suggest that targeting NR mediated Sirt1 activation restores brain bioenergetics and reduces inflammation in GWI mice. Further evaluation of NR in GWI is warranted to determine its potential efficacy in treating GWI.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Brain/drug effects , Energy Metabolism/drug effects , Niacinamide/analogs & derivatives , Persian Gulf Syndrome/drug therapy , Pyridinium Compounds/pharmacology , Sirtuin 1/metabolism , Aged , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Behavior, Animal/drug effects , Brain/enzymology , Brain/physiopathology , Case-Control Studies , Disease Models, Animal , Fatigue/drug therapy , Fatigue/enzymology , Fatigue/physiopathology , Fatigue/psychology , Female , Gulf War , Humans , Male , Mice, Inbred C57BL , Middle Aged , Mitochondria/drug effects , Mitochondria/enzymology , NAD/blood , Niacinamide/pharmacology , Organelle Biogenesis , Oxidative Stress/drug effects , Persian Gulf Syndrome/enzymology , Persian Gulf Syndrome/physiopathology , Persian Gulf Syndrome/psychology , Pilot Projects , Sirtuin 1/blood , Veterans Health
17.
Molecules ; 25(7)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252285

ABSTRACT

For thousands of years, it has been widely believed that walnut is a kind of nut that has benefits for the human body. Walnut oil, accounting for about 70% of walnut, mainly consists of polyunsaturated fatty acids. To investigate the effect of walnut oil on memory impairment in mice, scopolamine (3 mg/kg body weight/d) was used to establish the animal model during Morris Water Maze (MWM) tests. Walnut oil was administrated orally at 10 mL/kg body weight/d for 8 consecutive weeks. The results showed that walnut oil treatment ameliorated the behavior of the memory-impaired mice in the MWM test. Additionally, walnut oil obviously inhibited acetylcholinesterase activity (1.26 ± 0.12 U/mg prot) (p = 0.013) and increased choline acetyltransferase activity (129.75 ± 6.76 U/mg tissue wet weight) in the brains of scopolamine-treated mice (p = 0.024), suggesting that walnut oil could prevent cholinergic function damage in mice brains. Furthermore, walnut oil remarkably prevented the decrease in total superoxide dismutase activity (93.30 ± 5.50 U/mg prot) (p = 0.006) and glutathione content (110.45 ± 17.70 mg/g prot) (p = 0.047) and the increase of malondialdehyde content (13.79 ± 0.96 nmol/mg prot) (p = 0.001) in the brain of scopolamine-treated mice, indicating that walnut oil could inhibit oxidative stress in the brain of mice. Furthermore, walnut oil prevented histological changes of neurons in hippocampal CA1 and CA3 regions induced by scopolamine. These findings indicate that walnut oil could prevent memory impairment in mice, which might be a potential way for the prevention of memory dysfunctions.


Subject(s)
Juglans/chemistry , Memory Disorders/prevention & control , Plant Oils/administration & dosage , Scopolamine/adverse effects , Administration, Oral , Animals , Brain/drug effects , Brain/enzymology , Choline O-Acetyltransferase/antagonists & inhibitors , Disease Models, Animal , Gene Expression Regulation, Enzymologic/drug effects , Maze Learning/drug effects , Memory Disorders/chemically induced , Memory Disorders/enzymology , Mice , Oxidative Stress/drug effects , Plant Oils/pharmacology
18.
J Pharm Pharmacol ; 72(8): 1001-1012, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32149402

ABSTRACT

OBJECTIVES: Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders and a well-recognized cause of dementia with ageing. In this review, we have represented the ChE and MAO inhibitory potential of TV 3326 against AD based on current scientific evidence. KEY FINDINGS: The aetiology of AD is quite complex and not completely understood. However, it has been observed that AD involves the deposition of abnormal amyloid beta (Aß), along with hyperphosphorylation of tau, oxidative stress, low acetylcholine (ACh) level and biometal dyshomeostasis. Due to the complex nature of AD aetiology, active research is required in the areas of development of multitarget drugs with 2 or more complementary biological functions, as they might represent significant progress in the AD treatment. Interestingly, it has been found that TV 3326 (i.e. ladostigil) is regarded as a novel therapeutic agent since it has the potential to cause inhibition of monoamine oxidase (MAO) A and B, and acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the brain. Furthermore, it has the capacity to reverse memory impairments, which further suggests the ability of this drug to elevate cholinergic activity in the brain. SUMMARY: TV 3326 can avert oxidative-nitrative stress and gliosis. It has also been confirmed that TV 3326 contains neuroprotective and anti-apoptotic properties. Therefore, this distinctive combined inhibition of ChE and MAO along with its neuroprotective property makes TV 3326 a useful drug in the treatment of AD.


Subject(s)
Alzheimer Disease/drug therapy , Brain/drug effects , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/therapeutic use , Indans/therapeutic use , Memory/drug effects , Monoamine Oxidase Inhibitors/therapeutic use , Nootropic Agents/therapeutic use , Acetylcholinesterase/metabolism , Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Brain/enzymology , Brain/pathology , Cholinesterase Inhibitors/adverse effects , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Humans , Indans/adverse effects , Monoamine Oxidase Inhibitors/adverse effects , Nootropic Agents/adverse effects
19.
Biochemistry (Mosc) ; 85(1): 27-39, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32079515

ABSTRACT

To study the mechanisms of the non-coenzyme action of thiamine and its diphosphate (ThDP) on brain proteins, proteins of acetone extract of bovine brain synaptosomes or the homogenate of rat brain cortex were subjected to affinity chromatography on thiamine-modified Sepharose. In the step-wise eluates by thiamine (at pH 7.4 or 5.6), NaCl, and urea, the occurrence of glutamate dehydrogenase (GDH) and isoenzymes of malate dehydrogenase (MDH) along with the influence of thiamine and/or ThDP on the enzymatic activities were characterized using mass spectrometry and kinetic experiments. Maximal activation of the malate dehydrogenase reaction by thiamine is observed after the protein elution with the acidic thiamine solution, which does not elute the MDH1 isoenzyme. Effects of exogenous thiamine or ThDP on the GDH activity may depend on endogenous enzyme regulators. For example, thiamine and/or ThDP activate the brain GDH in eluates from thiamine-Sepharose but inhibit the enzyme in the crude preparations applied to the sorbent. Inhibition of GDH by ThDP is observed using the ADP-activated enzyme. Compared to the affinity chromatography employing the elution by thiamine at pH 7.4, the procedure at pH 5.6 decreases the activation of GDH by thiamine (but not ThDP) in the eluates with NaCl and urea. Simultaneously, the MDH2 content and total GDH activity are higher after the affinity elution at pH 5.6 than at pH 7.4, suggesting the role of the known interaction of GDH with MDH2 in stabilizing the activity of GDH and in the regulation of GDH by thiamine. The biological potential of thiamine-dependent regulation of the brain GDH is confirmed in vivo by demonstration of changes in regulatory properties of GDH after administration of a high dose of thiamine to rats. Bioinformatics analysis of the thiamine-eluted brain proteins shows a specific enrichment of their annotation terms with "phosphoprotein", "acetylation", and "methylation". The relationship between thiamine and the posttranslational modifications in brain may contribute to the neuroprotective effects of high doses of thiamine, including the regulation of oxidation of the major excitatory neurotransmitter in brain - glutamate.


Subject(s)
Brain/enzymology , Glutamate Dehydrogenase/metabolism , Malate Dehydrogenase/metabolism , Thiamine Pyrophosphate/pharmacology , Thiamine/pharmacology , Animals , Cattle , Enzyme Activation , Oxidation-Reduction , Rats , Rats, Wistar
20.
J Basic Clin Physiol Pharmacol ; 32(5): 987-994, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-34592080

ABSTRACT

OBJECTIVES: Rauvolfia vomitoria is a medicinal plant used traditionally in Africa in the management of several human diseases including psychosis. However, there is inadequate scientific information on the potency of the phenolic constituents of R. vomitoria leaf in the management of neurodegeneration. Therefore, this study characterized the phenolic constituents and investigated the effects of aqueous and methanolic extracts of R. vomitoria leaf on free radicals, Fe2+-induced lipid peroxidation, and critical enzymes linked to neurodegeneration in rat's brain in vitro. METHODS: The polyphenols were evaluated by characterizing phenolic constituents using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The antioxidant properties were assessed through the extracts ability to reduce Fe3+ to Fe2+; inhibit ABTS, DPPH, and OH radicals and Fe2+-induced lipid peroxidation. The effects of the extracts on AChE and MAO were also evaluated. RESULTS: The phenolic characterization of R. vomitoria leaf revealed that there were more flavonoids present. Both aqueous and methanolic extracts of R. vomitoria leaf had inhibitory effects with the methanolic extract having higher significant (p≤0.05) free radicals scavenging ability coupled with inhibition of monoamine oxidases. However, there was no significant (p≤0.05) difference obtained in the inhibition of lipid peroxidation and cholinesterases. CONCLUSION: This study suggests that the rich phenolic constituents of R. vomitoria leaf might contribute to the observed antioxidative and neuroprotective effects. The methanolic extract was more potent than the aqueous extract; therefore, extraction of R. vomitoria leaf with methanol could offer better health-promoting effects in neurodegenerative condition.


Subject(s)
Brain/drug effects , Phenols , Plant Extracts , Rauwolfia , Animals , Antioxidants/pharmacology , Brain/enzymology , Cholinergic Agents , Free Radicals , Methanol , Phenols/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Rats , Rauwolfia/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL