Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
J Inherit Metab Dis ; 33 Suppl 3: S443-53, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20978941

ABSTRACT

Ethylmalonic encephalopathy (EE) is a rare metabolic disorder caused by dysfunction of ETHE1, a mitochondrial dioxygenase involved in hydrogen sulfide (H2S) detoxification. Patients present in infancy with psychomotor retardation, chronic diarrhea, orthostatic acrocyanosis and relapsing petechiae. High levels of lactic acid, ethymalonic acid (EMA) and methylsuccinic acid (MSA) are detected in body fluids. Several pathways may contribute to the pathophysiology, including isoleucine, methionine and fatty acid metabolism. We report on a 15-month-old male presenting with typical EE associated with a homozygous ETHE1 mutation. We investigated oral isoleucine (150 mg/kg), methionine (100 mg/kg), fatty acid loading tests and isoleucine-restricted diet (200 mg/day) for any effects on several metabolic parameters. Before loading tests or specific dietary interventions, EMA, C4-C5 acylcarnitines and most acylglycines were elevated, indicating functional deficiency of short chain acyl-CoA (SCAD) as well as all branched acyl-CoA dehydrogenases. Excretion of EMA and n-butyrylglycine increased following each of the loads, and isoleucine led to increased levels of derivative metabolites. An isoleucine-restricted diet for 8 days corrected some of the abnormalities but led to no obvious clinical improvement and only partial effects on EMA. A principal component analysis supports the inference that these dietary conditions have consistent effects on the global metabolic profile. Our results suggest that multiple pathways modulate EMA levels in EE. They might all interact with H2S toxicity. Prolonged dietary interventions involving the restriction for branched aminoacids, fatty acids and methionine could be discussed as auxiliary therapeutical strategies in EE.


Subject(s)
Brain Diseases, Metabolic, Inborn/enzymology , Mitochondrial Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Purpura/enzymology , Amino Acids/therapeutic use , Biomarkers/blood , Biomarkers/urine , Brain Diseases, Metabolic, Inborn/diagnosis , Brain Diseases, Metabolic, Inborn/diet therapy , Brain Diseases, Metabolic, Inborn/genetics , Diet, Protein-Restricted , Dietary Supplements , Genetic Predisposition to Disease , Homozygote , Humans , Infant , Male , Malonates/blood , Malonates/urine , Mitochondrial Proteins/genetics , Mutation , Nucleocytoplasmic Transport Proteins/genetics , Phenotype , Principal Component Analysis , Purpura/diagnosis , Purpura/diet therapy , Purpura/genetics , Treatment Outcome
2.
J Inherit Metab Dis ; 30(5): 800-10, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17885820

ABSTRACT

Animal models of inborn errors of metabolism are useful for investigating the pathogenesis associated with the corresponding human disease. Since the mechanisms involved in the pathophysiology of succinate semialdehyde dehydrogenase (SSADH) deficiency (Aldh5a1; OMIM 271980) are still not established, in the present study we evaluated the tissue antioxidant defences and lipid peroxidation in various cerebral structures (cortex, cerebellum, thalamus and hippocampus) and in the liver of SSADH-deficient mice. The parameters analysed were total radical-trapping antioxidant potential (TRAP) and glutathione (GSH) levels, the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as thiobarbituric acid-reactive substances (TBARS). We first observed that the tissue nonenzymatic antioxidant defences were significantly reduced in the SSADH-deficient animals, particularly in the liver (decreased TRAP and GSH) and in the cerebral cortex (decreased GSH), as compared to the wild-type mice. Furthermore, SOD activity was significantly increased in the liver and cerebellum, whereas the activity of CAT was significantly higher in the thalamus. In contrast, GPx activity was significantly diminished in the hippocampus. Finally, we observed that lipid peroxidation (TBARS levels) was markedly increased in the liver and cerebral cortex, reflecting a high lipid oxidative damage in these tissues. Our data showing an imbalance between tissue antioxidant defences and oxidative attack strongly indicate that oxidative stress is involved in the pathophysiology of SSADH deficiency in mice, and likely the corresponding human disorder.


Subject(s)
Antioxidants/metabolism , Brain Diseases, Metabolic, Inborn/metabolism , Brain/metabolism , Lipid Peroxidation , Liver/metabolism , Oxidative Stress , Succinate-Semialdehyde Dehydrogenase/deficiency , Animals , Brain/enzymology , Brain Diseases, Metabolic, Inborn/enzymology , Brain Diseases, Metabolic, Inborn/genetics , Catalase/metabolism , Cerebellum/enzymology , Cerebellum/metabolism , Cerebral Cortex/enzymology , Cerebral Cortex/metabolism , Disease Models, Animal , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Hippocampus/enzymology , Hippocampus/metabolism , Liver/enzymology , Mice , Mice, Inbred C57BL , Mice, Knockout , Succinate-Semialdehyde Dehydrogenase/genetics , Superoxide Dismutase/metabolism , Thalamus/enzymology , Thalamus/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
3.
Sleep ; 28(4): 418-24, 2005 Apr.
Article in English | MEDLINE | ID: mdl-16171286

ABSTRACT

BACKGROUND: Exogenous gamma-hydroxybutyrate (GHB) increases slow-wave sleep and reduces daytime sleepiness and cataplexy in patients with primary narcolepsy. OBJECTIVE: To examine nighttime sleep and daytime sleepiness in a 13-year-old girl homozygous for succinic semialdehyde dehydrogenase (SSADH) deficiency, a rare recessive metabolic disorder that disrupts the normal degradation of 4-aminobutyric acid (GABA), and leads to an accumulation of GHB and GABA within the brain. METHODS: Sleep interview, nighttime polysomnography, Multiple Sleep Latency Tests, and continuous 24-hour in-lab recordings in the patient; overnight polysomnography in her recessive mother and in a 13-year-old female control. RESULTS: During quiet wakefulness, background electroencephalographic activity was slow and composed of 7-Hz activity. Sleep stage 3/4 was slightly increased (28.1% of total sleep period, norms 15%-28%), and the daytime mean sleep latency was short in the patient (3 minutes 42 seconds, norms > 8 minutes). Stage 2 spindles were infrequent in the child (0.18/minute, norms: 1.2-9.2/minute) and her mother (0.65/minute) but normal (4.6/minute) in the control. At the beginning of the second night, a tonic-clonic seizure occurred, followed by a dramatic increase in stage 3/4 sleep, that lasted 46.3 % of the total sleep period, double the normal value. The mother showed a reduced total sleep time and rapid eye movement sleep percentage. DISCUSSION: This suggests that a chronic excess of GABA and GHB induces subtle sleep abnormalities, whereas increased slow-wave sleep evoked by a sudden event (here an epileptic seizure) may be caused by a supplementary increase in GABA and GHB.


Subject(s)
Brain/metabolism , Disorders of Excessive Somnolence/diagnosis , Disorders of Excessive Somnolence/physiopathology , Sleep/physiology , Sodium Oxybate/metabolism , Succinate-Semialdehyde Dehydrogenase/genetics , gamma-Aminobutyric Acid/genetics , gamma-Aminobutyric Acid/metabolism , Adolescent , Brain Diseases, Metabolic, Inborn/blood , Brain Diseases, Metabolic, Inborn/enzymology , Brain Diseases, Metabolic, Inborn/genetics , Electroencephalography , Female , Humans , Lymphocytes/enzymology , Methylmalonyl-CoA Decarboxylase/blood , Polysomnography , Sleep Stages/physiology , Sodium Oxybate/urine , Succinate-Semialdehyde Dehydrogenase/blood , Succinate-Semialdehyde Dehydrogenase/deficiency , Wakefulness/physiology , gamma-Aminobutyric Acid/urine
4.
Pharmacol Res ; 49(5): 475-9, 2004 May.
Article in English | MEDLINE | ID: mdl-14998558

ABSTRACT

UNLABELLED: Galactosaemia is an inborn error of galactose (Gal) metabolism characterized by irreversible brain damage. The aim of this study was to evaluate whether the antioxidants L-cysteine (Cys) and the reduced glutathione (GSH) could reverse the alterations of brain total antioxidant status (TAS) and the modulated activities of the enzymes Na+,K+ -ATPase and Mg2+ -ATPase in in vitro galactosaemia. Mixture A (mix. A: galactose-1-phosphate (Gal-1-P, 2mM) plus galactitol (Galtol, 2mM) plus Gal (4mM) = classical galactosaemia) or Mixture B (mix. B: Galtol (2mM) plus Gal (1mM) = galactokinase deficiency galactosaemia) were preincubated in the presence or absence of Cys (0.83mM) or GSH (0.83 mM) with whole brain homogenates of suckling rats at 37 degrees C for 1h. TAS and the enzyme activities were determined spectrophotometrically. The preincubation of brain homogenates with mix. A or mix. B resulted in a decrease of TAS to 30% (P < 0.01), while the presence of Cys or GSH increased TAS to 20% (P < 0.01) and 60% ( P < 0.001), respectively. The antioxidants reversed the inhibited Na+,K+ -ATPase by mix. A or mix. B and the stimulated Mg2+ -ATPase by mix. B to control values, whereas no effect was observed on the enormously activated Mg2+ -ATPase by mix. A. CONCLUSIONS: (a) Gal and its derivatives may produce free radicals in the suckling rat brain, reported for first time, (b) Na+,K+ -ATPase inhibition and Mg2+ -ATPase activation are probably due to the oxidative stress from the above compounds, (c) Cys or GSH could play a protective role reversing the inhibited Na+,K+ -ATPase toward normal in in vitro galactosaemia and (d) the addition of the above antioxidants may reduce the consequences of brain Mg2+ -ATPase activation by Gal and Galtol in galactokinase deficiency galactosaemia.


Subject(s)
Animals, Suckling/metabolism , Brain Diseases, Metabolic, Inborn/enzymology , Ca(2+) Mg(2+)-ATPase/drug effects , Cysteine/physiology , Galactosemias/enzymology , Glutathione/physiology , Sodium-Potassium-Exchanging ATPase/drug effects , Animals , Antioxidants/chemistry , Antioxidants/metabolism , Brain/cytology , Brain/drug effects , Brain/enzymology , Brain Diseases, Metabolic, Inborn/drug therapy , Brain Diseases, Metabolic, Inborn/physiopathology , Ca(2+) Mg(2+)-ATPase/antagonists & inhibitors , Ca(2+) Mg(2+)-ATPase/metabolism , Cysteine/pharmacology , Drug Combinations , Drug Evaluation, Preclinical , Female , Galactitol/adverse effects , Galactitol/chemistry , Galactitol/metabolism , Galactose/adverse effects , Galactose/analogs & derivatives , Galactose/metabolism , Galactosemias/chemically induced , Galactosemias/physiopathology , Galactosephosphates/adverse effects , Galactosephosphates/chemistry , Galactosephosphates/metabolism , Glutathione/pharmacology , Male , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism
5.
J Neurosci Res ; 65(6): 591-4, 2001 Sep 15.
Article in English | MEDLINE | ID: mdl-11550227

ABSTRACT

Malonyl CoA decarboxylase (MCD) is an enzyme involved in the metabolism of fatty acids synthesis. Based on reports of MCD deficiency, this enzyme is particular important in muscle and brain metabolism. Mutations in the MCD gene result in a deficiency of MCD activity, that lead to psychomotor retardation, cardiomyopathy and neonatal death. To date however, only a few patients have been reported with defects in MCD. We report here studies of a patient with MCD deficiency, who presented with hypotonia, cardiomyopathy and psychomotor retardation. DNA sequencing of MCD revealed a homozygous intronic mutation, specifically a -5 C to T transition near the acceptor site for exon 3. RT-PCR amplification of exons 2 and 3 revealed that although mRNA from a normal control sample yielded one major DNA band, the mutant mRNA sample resulted in two distinct DNA fragments. Sequencing of the patient's two RT-PCR products revealed that the larger molecular weight fragments contained exons 2 and 3 as well as the intervening intronic sequence. The smaller size band from the patient contained the properly spliced exons, similar to the normal control. Western blotting analysis of the expressed protein showed only a faint band in the patient sample in contrast to a robust band in the control. In addition, the enzyme activity of the mutant protein was lower than that of the control protein. The data indicate that homozygous mutation in intron 2 disrupt normal splicing of the gene, leading to lower expression of the MCD protein and MCD deficiency.


Subject(s)
Brain Diseases, Metabolic, Inborn/enzymology , Brain Diseases, Metabolic, Inborn/genetics , Brain/enzymology , Carboxy-Lyases/deficiency , Carboxy-Lyases/genetics , Genes/genetics , Introns/genetics , Mutation/physiology , RNA Splice Sites/genetics , Base Sequence , Brain/abnormalities , Brain/physiopathology , DNA Mutational Analysis , DNA, Complementary/analysis , DNA, Complementary/genetics , Fatty Acids/genetics , Fatty Acids/metabolism , Homozygote , Humans , Malonyl Coenzyme A/genetics , Malonyl Coenzyme A/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL