Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.334
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Agric Food Chem ; 72(17): 9717-9734, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38624258

ABSTRACT

Plants have a history of being employed in managing breast cancer. However, no scientific evidence supports the idea that these plants can effectively reduce the level of HER2 expression. In this study, extracts from 10 medicinal plants were evaluated for their anticancer properties against HER2-positive breast cancer cells through various methods, including the SRB assay, comet assay, annexin V-FITC dual staining, and immunoblotting. All extracts exerted antiproliferative activity against HER2-positive breast cancer cells. Furthermore, Terminalia chebula (T. chebula), Berberis aristata (B. aristata), and Mucuna pruriens (M. pruriens) reduced HER2 expression in tested cell lines. In addition, an increased Bax/Bcl-2 ratio was observed after the treatment. A comparative proteomics study showed modulation in the proteome profile of breast cancer cells after treatment with T. chebula, B. aristata, Punica granatum, M. pruriens, and Acorus calamus. Metabolic profiling of lead plants revealed the existence of multiple anticancer compounds. Our study demonstrates the considerable potential of the mentioned plants as innovative therapies for HER2-positive breast cancer.


Subject(s)
Breast Neoplasms , Cell Proliferation , Down-Regulation , Plant Extracts , Plants, Medicinal , Receptor, ErbB-2 , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Plants, Medicinal/chemistry , Female , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Line, Tumor , Down-Regulation/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Terminalia/chemistry , Mucuna/chemistry
2.
J Agric Food Chem ; 72(13): 7089-7099, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38512774

ABSTRACT

Breast cancer patients undergoing chemotherapy often experience muscle wasting and weakness, which impact their quality of life. A potential solution lies in customizing amino acid compositions based on exome-derived formulations (ExAAs). The study hypothesized that tailoring dietary amino acids using ExAAs could enhance muscle health. Theoretical amino acid requirements were calculated from the genome's exome region, and a breast cancer mouse model undergoing paclitaxel treatment was established. The mice were supplemented with a cancer-specific nutritional formula (QJS), and the effects of QJS and amino acid-adjusted QJS (adjQJS) were compared. Both formulations improved the nutritional status without compromising tumor growth. Notably, adjQJS significantly enhanced muscle strength compared to QJS (1.51 ± 0.25 vs. 1.30 ± 0.08 fold change, p < 0.05). Transcriptome analysis revealed alterations in complement and coagulation cascades, with an observed upregulation of C3 gene expression in adjQJS. Immune regulation also changed, showing a decrease in B cells and an increase in monocytes in skeletal muscle with adjQJS. Importantly, adjQJS resulted in a notable increase in Alistipes abundance compared to QJS (10.19 ± 0.04% vs. 5.03 ± 1.75%). This study highlights the potential of ExAAs as valuable guide for optimizing amino acid composition in diets for breast cancer patients undergoing chemotherapy.


Subject(s)
Breast Neoplasms , Exome , Humans , Animals , Mice , Female , Exome/genetics , Quality of Life , Amino Acids/metabolism , Diet , Muscle Strength , Muscle, Skeletal/metabolism , Dietary Supplements , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism
3.
Sci Rep ; 14(1): 6769, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514720

ABSTRACT

Breast cancer is a serious threat to human health. The transforming growth factor-ß signaling pathway is an important pathway involved in the occurrence and development of cancer. The SMAD family genes are responsible for the TGF-ß signaling pathway. However, the mechanism by which genes of the SMAD family are involved in breast cancer is still unclear. Therefore, it is necessary to investigate the biological roles of the SMAD family genes in breast cancer. We downloaded the gene expression data, gene mutation data, and clinical pathological data of breast cancer patients from the UCSC Xena database. We used the Wilcox test to estimate the expression of genes of the SMAD family in cancers. And the biological functions of SMAD family genes using the DAVID website. The Pearson correlation method was used to explore the immune cell infiltration and drug response of SMAD family genes. We conducted in biological experiments vitro and vivo. In this study, we integrated the multi-omics data from TCGA breast cancer patients for analysis. The expression of genes of SMAD family was significantly dysregulated in patients with breast cancer. Except for SMAD6, the expression of other SMAD family genes was positively correlated. We also found that genes of the SMAD family were significantly enriched in the TGF-ß signaling pathway, Hippo signaling pathway, cell cycle, and cancer-related pathways. In addition, SMAD3, SMAD6, and SMAD7 were lowly expressed in stage II breast cancer, while SMAD4 and SMAD2 were lowly expressed in stage III cancer. Furthermore, the expression of genes of the SMAD family was significantly correlated with immune cell infiltration scores. Constructing a xenograft tumor mouse model, we found that SMAD3 knockdown significantly inhibited tumorigenesis. Finally, we analyzed the association between these genes and the IC50 value of drugs. Interestingly, patients with high expression of SMAD3 exhibited significant resistance to dasatinib and staurosporine, while high sensitivity to tamoxifen and auranofin. In addition, SMAD3 knockdown promoted the apoptosis of BT-549 cells and decreased cell activity, and BAY-1161909 and XK-469 increased drug efficacy. In conclusion, genes of the SMAD family play a crucial role in the development of breast cancer.


Subject(s)
Breast Neoplasms , Trans-Activators , Humans , Animals , Mice , Female , Trans-Activators/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Signal Transduction , Smad4 Protein/genetics , Smad4 Protein/metabolism , Smad2 Protein/genetics , Smad2 Protein/metabolism , Transforming Growth Factor beta/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism , Smad Proteins/genetics , Smad Proteins/metabolism
4.
Womens Health Issues ; 34(3): 268-275, 2024.
Article in English | MEDLINE | ID: mdl-38448251

ABSTRACT

PURPOSE: The U.S. Preventive Services Task Force recommends screening women to identify individuals eligible for genetic counseling based on a priori hereditary breast and ovarian cancer syndrome (HBOC) risk (i.e., risk assessment). However, risk assessment has not been widely integrated into primary care. This qualitative study explored young women's views on implementing routine HBOC risk assessment with a focus on equity and patient-centeredness. METHODS: We conducted group discussions with young women (aged 21-40 years) receiving care in an integrated health care system. Discussion groups occurred in two phases and used a modified deliberative approach that included a didactic component and prioritized developing consensus. Twenty women participated in one of three initial small group discussions (phase one). All 20 were invited to participate in a subsequent large group discussion (phase two), and 15 of them attended. FINDINGS: Key themes and recommendations were as follows. Risk assessment should be accessible, contextualized, and destigmatized to encourage participation and reduce anxiety, particularly for women who do not know their family history. Providers conducting risk assessments must be equipped to address women's informational needs, relieve emotionality, and plan next steps after positive screens. Finally, to minimize differential screening uptake, health care systems must prioritize equity in program design and contribute to external educational and outreach efforts. CONCLUSION: Young women see pragmatic opportunities for health systems to optimize HBOC screening implementation.


Subject(s)
Breast Neoplasms , Genetic Counseling , Genetic Predisposition to Disease , Genetic Testing , Ovarian Neoplasms , Primary Health Care , Qualitative Research , Humans , Female , Adult , Ovarian Neoplasms/genetics , Ovarian Neoplasms/prevention & control , Ovarian Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/prevention & control , Risk Assessment , Young Adult , Focus Groups , Mass Screening , Early Detection of Cancer , Health Knowledge, Attitudes, Practice , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Hereditary Breast and Ovarian Cancer Syndrome/diagnosis
5.
Asian Pac J Cancer Prev ; 25(3): 893-908, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38546072

ABSTRACT

INTRODUCTION: Breast cancer is the most common type of cancer in women. The construction of a competing gene network is an important step in the identification of the role of hub genes in breast cancers. In the current research, we used a number of bioinformatics tools to construct this network in breast cancer and investigated the combined effect of garlic and ginger on mice model of breast cancer. MATERIALS AND METHODS: We chose female mice weighing 18-20 g that were divided into 7 groups including; the cancer group receiving normal saline, different doses of ginger extract (100 and 500 mg/kg), different doses of garlic (50 and 100 mg/kg), tamoxifen (10 mg/ kg) and simultaneous garlic (100 mg/kg) and ginger (500 mg/kg) for 3 weeks intraperitoneal. Then we anesthetized the mice, isolated the tumor, and determined its size. Glutathione reductase and peroxidase levels and HER2, PTEN, and Cullin3 genes expression were measured. RESULTS: We identified 20 hub genes for breast cancer. In animal phase we found that tumor size in all mice receiving garlic and ginger showed a significant decrease compared to the control. Glutathione reductase showed a significant increase in all groups, especially in ginger 500 and combined groups. Glutathione peroxidase increased almost in all groups, especially in ginger 500. Expression of HER2 decreased in all treated groups. Expression of PTEN increased just in the combined group. CONCLUSION: Taken together, we introduce a number of novel promising diagnostic biomarkers for breast cancer. The use of garlic and ginger in the treatment of cancer can be useful. This action is probably through the antioxidant mechanism, and regulation of the expression of cancer related genes such as PTEN.


Subject(s)
Breast Neoplasms , Garlic , Zingiber officinale , Humans , Female , Mice , Animals , Antioxidants/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Glutathione Reductase , Plant Extracts/pharmacology , PTEN Phosphohydrolase/genetics
6.
Environ Toxicol ; 39(6): 3389-3399, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38445457

ABSTRACT

Breast cancer stands as the predominant malignancy and primary cause of cancer-related mortality among females globally. Approximately 25% of breast cancers exhibit HER2 overexpression, imparting a more aggressive tumor phenotype and correlating with poor prognoses. Patients with metastatic breast cancer receiving HER2 tyrosine kinase inhibitors (HER2 TKIs), such as Lapatinib, develop acquired resistance within a year, posing a critical challenge in managing this disease. Here, we explore the potential of Artemisia argyi, a Chinese herbal medicine known for its anti-cancer properties, in mitigating HER2 TKI resistance in breast cancer. Analysis of the Cancer Genome Atlas (TCGA) revealed diminished expression of transmembrane serine protease 2 (TMPRSS2), a subfamily of membrane proteolytic enzymes, in breast cancer patients, correlating with unfavorable outcomes. Intriguingly, lapatinib-responsive patients exhibited higher TMPRSS2 expression. Our study unveiled that the compounds from Artemisia argyi, eriodictyol, and umbelliferone could inhibit the growth of lapatinib-resistant HER2-positive breast cancer cells. Mechanistically, they suppressed HER2 kinase activation by enhancing TMPRSS2 activity. Our findings propose TMPRSS2 as a critical determinant in lapatinib sensitivity, and Artemisia argyi emerges as a potential agent to overcome lapatinib via activating TMPRSS2 in HER2-positive breast cancer. This study not only unravels the molecular mechanisms driving cell death in HER2-positive breast cancer cells induced by Artemisia argyi but also lays the groundwork for developing novel inhibitors to enhance therapy outcomes.


Subject(s)
Artemisia , Breast Neoplasms , Drug Resistance, Neoplasm , Lapatinib , Plant Extracts , Receptor, ErbB-2 , Serine Endopeptidases , Lapatinib/pharmacology , Lapatinib/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Humans , Drug Resistance, Neoplasm/drug effects , Artemisia/chemistry , Female , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Cell Line, Tumor , Plant Extracts/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
7.
Aging (Albany NY) ; 16(7): 5856-5865, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38393683

ABSTRACT

Breast cancer (BC) is among the top three most prevalent cancers across the world, especially in women, and its pathogenesis is still unknown. Fatty acid ß-oxidation is highly associated with breast cancer. Serpin family E member 1 (SERPINE1)-induced down-regulation of fatty acid ß-oxidation can facilitate BC cell proliferation, invasion, and metastasis. In this paper, the difference of miR-30d-5p expressions in both cancerous tissues and para-carcinoma tissues was first detected. Next, the expressions of SERPINE1, long-chain acyl-CoA dehydrogenase (LCAD) and medium-chain acyl-CoA dehydrogenase (MCAD) in the aforementioned tissues were analyzed. Finally, miR-30d-5p mimics were supplemented to breast cancer cells to observe the miR-30d-5p effect upon breast cancer cells. Via immunofluorescence assay and Western blotting, it was found that cancerous tissues had lower expressions of miR-30d-5p, MCAD and LCAD and a higher expression of SERPINE1 than para-carcinoma tissues. The miR-30d-5p mimic group had a decreased SERPINE1 expression and increased MCAD and LCAD expressions compared with the NC group, thus inhibiting BC cell proliferation, invasion, and metastasis. To sum up, miR-30d-5p blocks the cell proliferation, invasion and metastasis by targeting SERPINE1 and promoting fatty acid ß-oxidation. Preclinical studies are further required to establish a fatty acid ß-oxidation-targeting therapy for breast cancer.


Subject(s)
Breast Neoplasms , Cell Movement , Cell Proliferation , Fatty Acids , Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplasm Invasiveness , Oxidation-Reduction , Plasminogen Activator Inhibitor 1 , Humans , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Cell Proliferation/genetics , Cell Movement/genetics , Fatty Acids/metabolism , Cell Line, Tumor , Middle Aged
8.
Adv Sci (Weinh) ; 11(16): e2308316, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38380506

ABSTRACT

Anti-HER2 (human epidermal growth factor receptor 2) therapies significantly increase the overall survival of patients with HER2-positive breast cancer. Unfortunately, a large fraction of patients may develop primary or acquired resistance. Further, a multidrug combination used to prevent this in the clinic places a significant burden on patients. To address this issue, this work develops a nanotherapeutic platform that incorporates bimetallic gold-silver hollow nanoshells (AuAg HNSs) with exceptional near-infrared (NIR) absorption capability, the small-molecule tyrosine kinase inhibitor pyrotinib (PYR), and Herceptin (HCT). This platform realizes targeted delivery of multiple therapeutic effects, including chemo-and photothermal activities, oxidative stress, and immune response. In vitro assays reveal that the HCT-modified nanoparticles exhibit specific recognition ability and effective internalization by cells. The released PYR inhibit cell proliferation by downregulating HER2 and its associated pathways. NIR laser application induces a photothermal effect and tumor cell apoptosis, whereas an intracellular reactive oxygen species burst amplifies oxidative stress and triggers cancer cell ferroptosis. Importantly, this multimodal therapy also promotes the upregulation of genes related to TNF and NF-κB signaling pathways, enhancing immune activation and immunogenic cell death. In vivo studies confirm a significant reduction in tumor volume after treatment, substantiating the potential effectiveness of these nanocarriers.


Subject(s)
Breast Neoplasms , Gold , Hyperthermia, Induced , Receptor, ErbB-2 , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Humans , Mice , Animals , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Hyperthermia, Induced/methods , Gold/chemistry , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Silver/chemistry , Cell Line, Tumor , Disease Models, Animal , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Combined Modality Therapy/methods , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Cell Proliferation/drug effects
9.
Lasers Med Sci ; 39(1): 56, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329547

ABSTRACT

Photobiomodulation (PBM) induced by non-ionizing radiations emitted from low-power lasers and light-emitting diodes (LEDs) has been used for various therapeutic purposes due to its molecular, cellular, and systemic effects. At the molecular level, experimental data have suggested that PBM modulates base excision repair (BER), which is responsible for restoring DNA damage. There is a relationship between the misfunction of the BER DNA repair pathway and the development of tumors, including breast cancer. However, the effects of PBM on cancer cells have been controversial. Breast cancer (BC) is the main public health problem in the world and is the most diagnosed type of cancer among women worldwide. Therefore, the evaluation of new strategies, such as PBM, could increase knowledge about BC and improve therapies against BC. Thus, this work aims to evaluate the effects of low-power red laser (658 nm) and blue LED (470 nm) on the mRNA levels from BER genes in human breast cancer cells. MCF-7 and MDA-MB-231 cells were irradiated with a low-power red laser (69 J cm-2, 0.77 W cm-2) and blue LED (482 J cm-2, 5.35 W cm-2), alone or in combination, and the relative mRNA levels of the APTX, PolB, and PCNA genes were assessed by reverse transcription-quantitative polymerase chain reaction. The results suggested that exposure to low-power red laser and blue LED decreased the mRNA levels from APTX, PolB, and PCNA genes in human breast cancer cells. Our research shows that photobiomodulation induced by low-power red laser and blue LED decreases the mRNA levels of repair genes from the base excision repair pathway in MCF-7 and MDA-MB-231 cells.


Subject(s)
Breast Neoplasms , Low-Level Light Therapy , Humans , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/radiotherapy , Proliferating Cell Nuclear Antigen/metabolism , Lasers , DNA Repair/genetics , Low-Level Light Therapy/methods
10.
Cancer Causes Control ; 35(6): 907-919, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38351438

ABSTRACT

PURPOSE: Vitamin D has some anticancer properties that may decrease breast cancer risk and improve prognosis. The aim was to investigate associations between four previously studied VDR SNPs (Taq1, Tru91, Bsm1, and Fok1) and prognosis in different groups of breast cancer patients. METHODS: VDR genotyping of 1,017 breast cancer patients included 2002-2012 in Lund, Sweden, was performed using Oncoarray. Follow-up was until June 30, 2019. Clinical data and patient information were collected from medical records and questionnaires. Cox regression was used for survival analyses. RESULTS: Genotype frequencies were as follows: Fok1 (AA 15.7%, AG 49.1%, GG 35.1%), Bsm1 (CC 37.2%, CT 46.1%, TT 16.7%), Tru91 (CC 77.8%, CT 20.7%, TT 1.5%), and Taq1 (AA 37.2%, AG 46.2%, GG 16.6%). During follow-up there were 195 breast cancer events. The homozygous variants of Taq1 and Bsm1 were associated with reduced risk of breast cancer events (adjusted HR = 0.59, 95% CI 0.38-0.92 for Taq1 and adjusted HR = 0.61, 95% CI 0.40-0.94 for Bsm1). The G allele of the Fok1 was associated with increased risk of breast cancer events in small tumors (pT1, adjusted HR = 1.83, 95% CI 1.04-3.23) but not in large tumors (pT2/3/4, adjusted HR = 0.80, 95% CI 0.41-1.59) with a borderline interaction (Pinteraction = 0.058). No interactions between VDR genotypes and adjuvant treatments regarding breast cancer prognosis were detected. CONCLUSION: VDR genotypes were associated with breast cancer prognosis and the association might be modified by tumor size. Further research is needed to confirm the findings and elucidate their potential clinical implications.


Subject(s)
Breast Neoplasms , Polymorphism, Single Nucleotide , Receptors, Calcitriol , Humans , Receptors, Calcitriol/genetics , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Prognosis , Middle Aged , Prospective Studies , Sweden/epidemiology , Genotype , Aged , Adult , Genetic Predisposition to Disease
11.
PLoS One ; 19(2): e0297080, 2024.
Article in English | MEDLINE | ID: mdl-38408073

ABSTRACT

BACKGROUND: Hair loss/thinning is a common side effect of tamoxifen in estrogen receptor (ER) positive breast cancer therapy. Some nutraceuticals known to promote hair growth are avoided during breast cancer therapy for fear of phytoestrogenic activity. However, not all botanical ingredients have similarities to estrogens, and in fact, no information exists as to the true interaction of these ingredients with tamoxifen. Therefore, this study sought to ascertain the effect of nutraceuticals (+/- estrogen/tamoxifen), on proliferation of breast cancer cells and the relative expression of ERα/ß. METHODS: Kelp, Astaxanthin, Saw Palmetto, Tocotrienols, Maca, Horsetail, Resveratrol, Curcumin and Ashwagandha were assessed on proliferation of MCF7, T47D and BT483 breast cancer cell lines +/- 17ß-estradiol and tamoxifen. Each extract was analysed by high performance liquid chromatography (HPLC) prior to use. Cellular ERα and ERß expression was assessed by qRT-PCR and western blot. Changes in the cellular localisation of ERα:ERß and their ratio following incubation with the nutraceuticals was confirmed by immunocytochemistry. RESULTS: Estradiol stimulated DNA synthesis in three different breast cancer cell lines: MCF7, T47D and BT483, which was inhibited by tamoxifen; this was mirrored by a specific ERa agonist in T47D and BT483 cells. Overall, nutraceuticals did not interfere with tamoxifen inhibition of estrogen; some even induced further inhibition when combined with tamoxifen. The ERα:ERß ratio was higher at mRNA and protein level in all cell lines. However, incubation with nutraceuticals induced a shift to higher ERß expression and a localization of ERs around the nuclear periphery. CONCLUSIONS: As ERα is the key driver of estrogen-dependent breast cancer, if nutraceuticals have a higher affinity for ERß they may offer a protective effect, particularly if they synergize and augment the actions of tamoxifen. Since ERß is the predominant ER in the hair follicle, further studies confirming whether nutraceuticals can shift the ratio towards ERß in hair follicle cells would support a role for them in hair growth. Although more research is needed to assess safety and efficacy, this promising data suggests the potential of nutraceuticals as adjuvant therapy for hair loss in breast cancer patients receiving endocrine therapy.


Subject(s)
Breast Neoplasms , Tamoxifen , Humans , Female , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Breast Neoplasms/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Estradiol/pharmacology , Estrogens/pharmacology , MCF-7 Cells , Dietary Supplements , Alopecia/drug therapy , Hair/metabolism , Cell Line, Tumor , Cell Proliferation
12.
Cancer Med ; 13(3): e6930, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38327130

ABSTRACT

AIM: We investigated the pathologic complete response rates (pCR) and survival outcomes of early breast cancer patients who underwent neoadjuvant chemotherapy (NAC) over 14 years at a French comprehensive cancer center and reported pCR and survival outcomes by tumor subtypes and size. METHODS: From January 2005 to December 2018, 1150 patients receiving NAC were identified. Correlations between cT stage, breast tumor response, axillary lymph node response, pCR, surgery, and outcomes were assessed. pCR was defined as (ypT0/ypTis) and (ypN0/pN0sn). RESULTS: A pCR was reached in 31.7% (365/1150) of patients and was strongly associated with tumor subtypes, but not with tumor size (pretreatment cT category). Luminal-B Her2-negative and triple-negative (TN) subtypes, cN1 status, older age, and no-pCR had an independent negative prognostic value. Overall survival (OS), relapse-free survival (RFS), and metastasis-free survival (MFS) were not significantly different for cT0-1 compared to cT2 stages. In Cox-model adjusted on in-breast pCR and pN status, ypN1 had a strong negative impact (OS, RFS, and MFS: HR = 3.153, 4.677, and 6.133, respectively), higher than no in-breast pCR (HR = 2.369, 2.252, and 2.323). A negative impact of no pCR on OS was observed for cN0 patients and TN tumors (HR = 4.972) or HER2-positive tumors (HR = 11.706), as well as in Luminal-B Her2-negative tumors on MFS (HR = 2.223) and for Luminal-A on RFS (HR = 4.465) and MFS (HR = 4.185). CONCLUSION: Achievement of pCR, but not tumor size (pretreatment cT category), has an independent prognostic impact on survival. These results suggest potential NAC benefits in patients with small tumors (<2 cm), even in absence of clinically suspicious lymph nodes. Residual lymph node disease after NAC is the most powerful adverse prognostic factor.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Neoadjuvant Therapy , Prognosis , Breast , Axilla
13.
Pathol Res Pract ; 254: 155075, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219492

ABSTRACT

Hereditary Breast and Ovarian Cancer (HBOC) syndrome is characterized by an increased risk of developing breast cancer (BC) and ovarian cancer (OC) due to inherited genetic mutations. Understanding the genetic variants associated with HBOC is crucial for identifying individuals at high risk and implementing appropriate preventive measures. The study included 630 Turkish OC patients with confirmed diagnostic criteria of The National Comprehensive Cancer Network (NCCN) concerning HBOC. Genomic DNA was extracted from peripheral blood samples, and targeted Next-generation sequencing (NGS) was performed. Bioinformatics analysis and variant interpretation were conducted to identify pathogenic variants (PVs). Our analysis revealed a spectrum of germline pathogenic variants associated with HBOC in Turkish OC patients. Notably, several pathogenic variants in BRCA1, BRCA2, and other DNA repair genes were identified. Specifically, we observed germline PVs in 130 individuals, accounting for 20.63% of the total cohort. 76 distinct PVs in genes, BRCA1 (40 PVs), BRCA2 (29 PVs), ATM (1 PV), CHEK2 (2 PVs), ERCC2 (1 PV), MUTYH (1 PV), RAD51C (1 PV), and TP53 (1PV) and also, two different PVs (i.e., c.135-2 A>G p.? in BRCA1 and c.6466_6469delTCTC in BRCA2) were detected in a 34-year-old OC patient. In conclusion, our study contributes to a better understanding of the genetic variants underlying HBOC in Turkish OC patients. These findings provide valuable insights into the genetic architecture of HBOC in the Turkish population and shed light on the potential contribution of specific germline PVs to the increased risk of OC.


Subject(s)
Breast Neoplasms , Hereditary Breast and Ovarian Cancer Syndrome , Ovarian Neoplasms , Humans , Female , Adult , Genetic Predisposition to Disease , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Hereditary Breast and Ovarian Cancer Syndrome/genetics , BRCA1 Protein/genetics , Ovarian Neoplasms/genetics , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Germ Cells , Xeroderma Pigmentosum Group D Protein/genetics
14.
Mol Biol Rep ; 51(1): 61, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170326

ABSTRACT

BACKGROUND: Breast adenocarcinoma cells (MCF-7) are characterized by the overexpression of apoptotic marker genes and proliferative cell nuclear antigen (PCNA), which promote cancer cell proliferation. Thymol, derived from Nigella sativa (NS), has been investigated for its potential anti-proliferative and anticancer properties, especially its ability to suppress Cyclin D1 and PCNA expression, which are crucial in the proliferation of cancer cells. METHODS: The cytotoxicity of thymol on MCF-7 cells was assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release methods. Thymol was tested at increasing concentrations (0-1000 µM) to evaluate its impact on MCF-7 cell growth. Additionally, Cyclin D1 and PCNA gene expression in thymol-treated and vehicle control groups of MCF-7 were quantified using real-time Polymerase Chain Reaction (RT-qPCR). Protein-ligand interactions were also investigated using the CB-Dock2 server. RESULTS: Thymol significantly inhibited MCF-7 cell growth, with a 50% inhibition observed at 200 µM. The gene expression of Cyclin D1 and PCNA was down-regulated in the thymol-treated group relative to the vehicle control. The experimental results were verified through protein-ligand interaction investigations. CONCLUSIONS: Thymol, extracted from NS, demonstrated specific cytotoxic effects on MCF-7 cells by suppressing the expression of Cyclin D1 and PCNA, suggesting its potential as an effective drug for MCF-7. However, additional in vivo research is required to ascertain its efficacy and safety in medical applications.


Subject(s)
Breast Neoplasms , Nigella sativa , Humans , Female , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , MCF-7 Cells , Breast Neoplasms/genetics , Thymol/pharmacology , Thymol/therapeutic use , Nigella sativa/metabolism , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Antigens, Nuclear/therapeutic use , Cyclin D1/genetics , Cyclin D1/metabolism , Down-Regulation , Ligands , Cell Proliferation
15.
Biol Pharm Bull ; 47(2): 399-410, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38220208

ABSTRACT

Metastases and drug resistance are the major risk factors associated with breast cancer (BC), which is the most common type of tumor affecting females. Icariin (ICA) is a traditional Chinese medicine compound that possesses significant anticancer properties. Long non-coding RNAs (lncRNAs) are involved in a wide variety of biological and pathological processes and have been shown to modulate the effectiveness of certain drugs in cancer. The purpose of this study was to examine the potential effect of ICA on epithelial mesenchymal transition (EMT) and stemness articulation in BC cells, as well as the possible relationship between its inhibitory action on EMT and stemness with the NEAT1/transforming growth factor ß (TGFß)/SMAD2 pathway. The effect of ICA on the proliferation (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony assays), EMT (Western blotting, immunofluorescence, and wound healing), and stemness (mammosphere formation assays, Western blotting) of BC cells were examined. According to the findings, ICA suppressed the proliferation, EMT, and stem cell-like in MDA-MB-231 cells, and exerted its inhibitory impact by downregulating the TGFß/SMAD2 signaling pathway. ICA could significantly downregulate the expression of lncRNA NEAT1, and silencing NEAT1 enhanced the effect of ICA in suppressing EMT and expression of different stem cell markers. In addition, silencing NEAT1 was found to attenuate the TGFß/SMAD2 signaling pathway, thereby improving the inhibitory impact of ICA on stemness and EMT in BC cells. In conclusion, ICA can potentially inhibit the metastasis of BC via affecting the NEAT1/TGFß/SMAD2 pathway, which provides a theoretical foundation for understanding the mechanisms involved in potential application of ICA for BC therapy.


Subject(s)
Breast Neoplasms , Flavonoids , RNA, Long Noncoding , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Smad2 Protein/metabolism , Stem Cells/metabolism , Transforming Growth Factor beta/metabolism
16.
Redox Biol ; 70: 103033, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38211440

ABSTRACT

Most anticancer treatments act on oxidative-stress pathways by producing reactive oxygen species (ROS) to kill cancer cells, commonly resulting in consequential drug-induced systemic cytotoxicity. Physical activity (PA) has arisen as an integrative cancer therapy, having positive health effects, including in redox-homeostasis. Here, we investigated the impact of an online supervised PA program on promoter-specific DNA methylation, and corresponding gene expression/activity, in 3 antioxidants- (SOD1, SOD2, and CAT) and 3 breast cancer (BC)-related genes (BRCA1, L3MBTL1 and RASSF1A) in a population-based sample of women diagnosed with primary BC, undergoing medical treatment. We further examined mechanisms involved in methylating and demethylating pathways, predicted biological pathways and interactions of exercise-modulated molecules, and the functional relevance of modulated antioxidant markers on parameters related to aerobic capacity/endurance, physical fatigue and quality of life (QoL). PA maintained levels of SOD activity in blood plasma, and at the cellular level significantly increased SOD2 mRNA (≈+77 %), contrary to their depletion due to medical treatment. This change was inversely correlated with DNA methylation in SOD2 promoter (≈-20 %). Similarly, we found a significant effect of PA only on L3MBTL1 promoter methylation (≈-25 %), which was inversely correlated with its mRNA (≈+43 %). Finally, PA increased TET1 mRNA levels (≈+15 %) and decreased expression of DNMT3B mRNA (≈-28 %). Our results suggest that PA-modulated DNA methylation affects several signalling pathways/biological activities involved in the cellular oxidative stress response, chromatin organization/regulation, antioxidant activity and DNA/protein binding. These changes may positively impact clinical outcomes and improve the response to cancer treatment in post-surgery BC patients.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/surgery , Quality of Life , Longitudinal Studies , DNA Methylation , Exercise , Oxidation-Reduction , Antioxidants/therapeutic use , Antioxidants/metabolism , Disease Progression , RNA, Messenger/metabolism , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/genetics
17.
Breast Cancer Res Treat ; 203(2): 281-289, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37847456

ABSTRACT

PURPOSE: The International Ki67 Working Group (IKWG) has developed training for immunohistochemistry (IHC) scoring reproducibility and recommends cut points of ≤ 5% and ≥ 30% for prognosis in ER+, HER2-, stage I/II breast cancer. We examined scoring reproducibility following IKWG training and evaluated these cut points for selecting patients for further testing with the 21-gene Recurrence Score (RS) assay. METHODS: We included 307 women aged 50+ years with node-negative, ER+PR+HER2- breast cancer and with available RS results. Slides from the diagnostic biopsy were stained for Ki67 and scored using digital image analysis (IA). Two IHC pathologists underwent IKWG training and visually scored slides, blinded to each other and IA readings. Interobserver reproducibility was examined using intraclass correlation (ICC) and Kappa statistics. RESULTS: Depending on reader, 8.8-16.0% of our cohort had Ki67 ≤ 5% and 11.4-22.5% had scores ≥ 30%. The ICC for Ki67 scores by the two pathologists was 0.82 (95% CI 0.78-0.85); it was 0.79 (95% CI 0.74-0.83) for pathologist 1 and IA and 0.76 (95% CI 0.71-0.80) for pathologist 2 and IA. For Ki67 scores ≤ 5%, the percentages with RS < 26 were 92.6%, 91.8%, and 90.9% for pathologist 1, pathologist 2, and IA, respectively. For Ki67 scores ≥ 30%, the percentages with RS ≥ 26 were 41.5%, 51.4%, and 27.5%, respectively. CONCLUSION: The IKWG's Ki67 training resulted in moderate to strong reproducibility across readers but cut points had only moderate overlap with RS cut points, especially for Ki67 ≥ 30% and RS ≥ 26; thus, their clinical utility for a 21-gene assay testing pathway remains unclear.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Ki-67 Antigen/metabolism , Reproducibility of Results , Prognosis , Immunohistochemistry , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis
18.
Surgery ; 175(3): 712-717, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37848355

ABSTRACT

BACKGROUND: Time to treatment has been identified as a quality metric, with longer time to treatment associated with poorer outcomes. Genetic evaluation is an integral part of treatment counseling for patients with breast cancer. With expanding indications for genetic testing and consideration of expansion of genetic testing to all patients with a personal history of breast cancer, this study aims to evaluate the effect of genetic evaluation on the time interval from initial surgical visit to surgery. METHODS: A retrospective review of patients undergoing upfront surgery for stage 0-3 breast cancer from June 2022 to December 2022. Patient demographics, treatment characteristics, National Comprehensive Cancer Network criteria for genetic testing, and results were obtained. RESULTS: The study included 492 patients (489 females). Eighty-one (16.2%) were ≤50 years of age at diagnosis. In total, 281 patients (57.1%) met National Comprehensive Cancer Network criteria for genetic testing and 199 consulted with a genetic counselor (72.4%). Seventy-six patients (27.6%) not meeting National Comprehensive Cancer Network criteria pursued genetic counseling. In total, 218 patients (79.3%) referred for genetic counseling completed testing. Mean turnaround time to genetic testing result was 11 days (range, 6-66 days). Twenty-six patients (11.9%) had a pathogenic or likely pathogenic variant. Twenty-four of these patients met National Comprehensive Cancer Network testing criteria (92.3%) and 2 did not (7.7%). The time to treatment for patients undergoing genetic testing was 33 vs 34 days in those without testing (P = .45). Three patients (11.5%) with pathogenic or likely pathogenic variants altered their initial surgical plan due to their genetic testing results. Seven patients with pathogenic or likely pathogenic variant results returning postoperatively did not undergo additional surgery. CONCLUSION: Hereditary breast cancer evaluation and genetic testing did not appear to delay time to treatment for patients with breast cancer in our study cohort.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/surgery , Breast Neoplasms/diagnosis , Genetic Predisposition to Disease , Genetic Testing/methods , Genetic Counseling , Retrospective Studies
19.
JCO Oncol Pract ; 20(2): 262-267, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37369093

ABSTRACT

PURPOSE: Despite data-driven consensus recommendations, there remains significant nonadherence to genetic screening and testing. More than 300,000 patients are diagnosed with breast cancer annually, with one third of these estimated to be eligible for homologous recombination deficiency (HRD)/BRCA testing following National Comprehensive Cancer Network (NCCN) guidelines. Only 35% of eligible patients are referred for genetic counseling. METHODS: The goal of this project was to apply NCCN guidelines for germline genetic testing to all new patients with breast cancer within a large community oncology practice to improve HRD/BRCA testing. Plan-Do-Study-Act methodology was used, and cycles were built on a proven teaching infrastructure. In cycle 1, providers were educated and directed to use electronic health record (EHR) templates in the setting of an initial diagnosis visit and treatment planning. Discreet data fields were created in the EHR during cycle 2 to streamline and automate the process. Appropriate patients were referred to the genetics team for further evaluation, counseling, and testing. Adherence to the plan was maintained and measured using data analytic reports and chart audits. RESULTS: Of the 1,203 patients with breast cancer eligible for inclusion, 1,200 (99%) were screened according to NCCN guidelines. Of the screened patients, 631 (52.5%) met the referral/testing criteria. In total, 585 (92.7%) of the 631 were referred to a genetic specialist. Seven percent had previous referrals. A total of 449 (71%) patients were acceptable to genetics referral while 136 (21.5%) patients refused. CONCLUSION: The implemented methods of education, NCCN guidelines imbedded within provider notes, and discreet data fields in the EHR have proven to be highly effective in screening appropriate patients and ordering subsequent genetic referrals.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Genetic Testing/methods , Genetic Counseling , Delivery of Health Care , Counseling
20.
Arch Gynecol Obstet ; 309(4): 1509-1514, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37737883

ABSTRACT

PURPOSE: In the following work, we investigated the effect of matcha green tea extract (MTE) on MCF-7 breast cancer cell viability and estrogen receptor-beta expression (ERß). METHODS: MCF-7 cells were stimulated with MTE at concentrations of 5 and 10 µg/ml. Cell viability was assessed using a water-soluble tetrazolium assay (WST-1 assay) after an incubation time of 72 h. ERß was quantified at gene level by real-time polymerase chain reaction (PCR). A western blot (WB) was carried out for the qualitative assessment of the expression behavior of on a protein level. RESULTS: The WST-1 test showed a significant inhibition of viability in MFC-7 cells after 72 h at 10 µg/ml. The WB demonstrated a significant quantitative decrease of ERß at protein level with MTE concentrations of 10 µg/ml. In contrast, the PCR did not result in significant downregulation of ERß. CONCLUSION: MTE decreases the cell viability of MCF-7 cells and furthermore leads to a decrease of ERß at protein level.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , MCF-7 Cells , Estrogen Receptor beta/genetics , Cell Survival , Antioxidants/pharmacology , Tea , Estrogen Receptor alpha , Cell Line, Tumor , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL