ABSTRACT
SUMMARY: High-throughput screens (HTS) have been utilized to assess the efficacy of single drugs against patient tumor samples with the purpose of optimizing precision therapy, but testing the synergy of drug combinations can identify the ideal second drug to add. With novel sophisticated HTS, effective venetoclax combinations can be revealed that provide the cell state, phenotype, and molecular features of the susceptible and resistant cell populations. See related article by Eide, Kurtz et al., p. 452 (14) .
Subject(s)
Leukemia, Myeloid, Acute , Humans , Drug Evaluation, Preclinical , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic useABSTRACT
INTRODUCTION: Cytarabine and anthracycline combination therapy (7 + 3 regimen) is the standard care for induction chemotherapy in adult patients with acute myeloid leukemia (AML). Although this intensive regimen achieves a high response rate, it is highly toxic, especially in elderly or frail patients. Hypomethylating agents approved initially for high-risk myelodysplastic syndrome had longer survival times than conventional care in elderly patients with newly diagnosed AML. AREAS COVERED: We summarize the latest information regarding induction therapy using hypomethylating agents (azacitidine and decitabine) for newly diagnosed AML. EXPERT OPINION: For untreated patients ineligible for an intensive regimen, a phase III trial exhibited the survival benefit of adding the highly selective BCL2 inhibitor venetoclax to azacitidine. The National Comprehensive Cancer Network guidelines recommend azacitidine or decitabine plus venetoclax as an option for patients with poor-risk AML, including those with TP53 mutations and AML with the cytogenetic features of myelodysplastic syndrome. Future studies should evaluate positioning this combination as an induction therapy for younger patients eligible for hematopoietic stem cell transplantation. Without randomized trials, propensity score matching analysis suggested a comparable prognosis between azacitidine combination and intensive chemotherapy. Considering the feasibility of a doublet regimen incorporating azacitidine, a triplet regimen should be examined.
Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Sulfonamides , Adult , Humans , Aged , Decitabine/therapeutic use , Induction Chemotherapy , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Azacitidine/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/drug therapyABSTRACT
Acute myelogenous leukemia (AML) is a hematopoietic malignancy that is characterized by clonal autonomous proliferation of myeloid cells with impaired differentiation and maturation. Recent advances in next-generation sequencing technology have elucidated the pathogenesis of AML at the genetic level. Furthermore, the molecular targeted therapy to efficiently eradicate leukemic cells has been rapidly expanding since 2017. In Japan, gilteritinib and quizartinib, which target FMS-like tyrosine kinase 3, and venetoclax, which targets B-cell lymphoma 2, have finally become available after resolving the drug launch lag between Japan and the United States. The combination of venetoclax and azacitidine, which was simultaneously approved with venetoclax for AML, is expected to be more effective than conventional therapy in patients who are ineligible for transplantation. Herein, we review the National Comprehensive Cancer Network guidelines for intensive chemotherapy in Japan and the United States and discuss the future of AML treatment, including the development of novel agents.
Subject(s)
Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Azacitidine/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , United States , fms-Like Tyrosine Kinase 3ABSTRACT
Objective: To explore the safety and short-term efficacy of venetoclax combined with azacitidine (Ven+AZA) in previously untreated patients unfit for standard chemotherapy and patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) in China. Methods: A retrospective study was conducted in 60 previously untreated patients unfit for standard chemotherapy and patients with R/R AML who received Ven+ AZA (venetoclax, 100 mg D1, 200 mg D2, 400 mg D3-28; azacitidine, 75 mg/m(2) D1- 7) at the Peking University Institute of Hematology from June 1, 2019 to May 31, 2021. The incidence of adverse events, complete remission (CR) /CR with incomplete hematological recovery (CRi) rate, objective remission rate (ORR) , and minimal residual disease (MRD) status in patients with different risk stratification and gene subtypes were analyzed. Results: The median age of the patients was 54 (18-77) years, 33 (55.0%) were males, and the median follow-up time was 4.8 (1.4-26.3) months. Among the 60 patients, 24 (40.0%) were previously untreated patients unfit for standard chemotherapy, and 36 (60.0%) were R/R patients. The median mumber cycles of Ven+AZA in the two groups were both 1 (1-5) . According to the prognostic risk stratification of the National Comprehensive Cancer Network, it was divided into 8 cases of favorable-risk, 2 cases of intermediate risk, and 14 cases of poor-risk. In previously untreated patients unfit for standard chemotherapy, after the first cycle of Ven+AZA, 17/24 (70.8%) cases achieved CR/CRi, 3/24 (12.5%) achieved partial remission (PR) , and the ORR was 83.3%. Among them, nine patients received a second cycle chemotherapy and two received a third cycle. Among CR/CRi patients, 8/17 (47.1%) achieved MRD negativity after two cycles of therapy. In the R/R group, after the first cycle of Ven+AZA, 21/36 (58.3%) cases achieved CR/CRi (7/21 achieved MRD negativity) , 3 achieved PR, and the ORR was 66.7%. Among R/R patients, 12 were treated for more than two cycles. There were no new CR/CRi patients after the second treatment cycle, and 14 cases (66.7%) achieved MRD negativity. According to the time from CR to hematological recurrence, the R/R group was divided into 12 cases in the favorable-risk group (CR to hematological recurrence ≥18 months) and 24 in the poor-risk group (CR to hematological recurrence<18 months, no remission after one cycle of therapy, and no remission after two or more cycles of therapy) . Eleven of 24 (45.8%) cases achieved CR/CRi after one cycle of Ven+AZA in the poor-risk R/R group, and 10 of 12 (83.3%) achieved CR/CRi in the favorable-risk R/R group, which was significantly superior to the poor-risk group (P=0.031) . After one cycle of treatment, 13 patients with IDH1/2 mutations and 4 that were TP53-positive all achieved CR/CRi. The CR/CRi rate of 18 patients with NPM1 mutations was 77.8%. Five patients with RUNX1-RUNX1T1 combined with KIT D816 mutation (two initial diagnoses and three recurrences) had no remission. Ven+ AZA was tolerable for AML patients. Conclusion: Ven+AZA has acceptable safety in previously untreated patients unfit for standard chemotherapy, patients with R/R AML can achieve a high response rate, and some patients can achieve MRD negativity. It is also effective in NPM1-, IDH1/IDH2-, and TP53-positive patients. The long-term efficacy remains to be observed.
Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azacitidine/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Leukemia, Myeloid, Acute/genetics , Male , Middle Aged , Retrospective Studies , SulfonamidesABSTRACT
Objective: To explore the safety and short-term efficacy of venetoclax combined with azacitidine (Ven+AZA) in previously untreated patients unfit for standard chemotherapy and patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) in China. Methods: A retrospective study was conducted in 60 previously untreated patients unfit for standard chemotherapy and patients with R/R AML who received Ven+ AZA (venetoclax, 100 mg D1, 200 mg D2, 400 mg D3-28; azacitidine, 75 mg/m(2) D1- 7) at the Peking University Institute of Hematology from June 1, 2019 to May 31, 2021. The incidence of adverse events, complete remission (CR) /CR with incomplete hematological recovery (CRi) rate, objective remission rate (ORR) , and minimal residual disease (MRD) status in patients with different risk stratification and gene subtypes were analyzed. Results: The median age of the patients was 54 (18-77) years, 33 (55.0%) were males, and the median follow-up time was 4.8 (1.4-26.3) months. Among the 60 patients, 24 (40.0%) were previously untreated patients unfit for standard chemotherapy, and 36 (60.0%) were R/R patients. The median mumber cycles of Ven+AZA in the two groups were both 1 (1-5) . According to the prognostic risk stratification of the National Comprehensive Cancer Network, it was divided into 8 cases of favorable-risk, 2 cases of intermediate risk, and 14 cases of poor-risk. In previously untreated patients unfit for standard chemotherapy, after the first cycle of Ven+AZA, 17/24 (70.8%) cases achieved CR/CRi, 3/24 (12.5%) achieved partial remission (PR) , and the ORR was 83.3%. Among them, nine patients received a second cycle chemotherapy and two received a third cycle. Among CR/CRi patients, 8/17 (47.1%) achieved MRD negativity after two cycles of therapy. In the R/R group, after the first cycle of Ven+AZA, 21/36 (58.3%) cases achieved CR/CRi (7/21 achieved MRD negativity) , 3 achieved PR, and the ORR was 66.7%. Among R/R patients, 12 were treated for more than two cycles. There were no new CR/CRi patients after the second treatment cycle, and 14 cases (66.7%) achieved MRD negativity. According to the time from CR to hematological recurrence, the R/R group was divided into 12 cases in the favorable-risk group (CR to hematological recurrence ≥18 months) and 24 in the poor-risk group (CR to hematological recurrence<18 months, no remission after one cycle of therapy, and no remission after two or more cycles of therapy) . Eleven of 24 (45.8%) cases achieved CR/CRi after one cycle of Ven+AZA in the poor-risk R/R group, and 10 of 12 (83.3%) achieved CR/CRi in the favorable-risk R/R group, which was significantly superior to the poor-risk group (P=0.031) . After one cycle of treatment, 13 patients with IDH1/2 mutations and 4 that were TP53-positive all achieved CR/CRi. The CR/CRi rate of 18 patients with NPM1 mutations was 77.8%. Five patients with RUNX1-RUNX1T1 combined with KIT D816 mutation (two initial diagnoses and three recurrences) had no remission. Ven+ AZA was tolerable for AML patients. Conclusion: Ven+AZA has acceptable safety in previously untreated patients unfit for standard chemotherapy, patients with R/R AML can achieve a high response rate, and some patients can achieve MRD negativity. It is also effective in NPM1-, IDH1/IDH2-, and TP53-positive patients. The long-term efficacy remains to be observed.
Subject(s)
Aged , Humans , Male , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azacitidine/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Leukemia, Myeloid, Acute/genetics , Retrospective Studies , SulfonamidesABSTRACT
This is a comprehensive and current guide for the diagnosis, differential diagnosis, treatment, and management of eczematous dermatitis, with a focus on atopic dermatitis, irritant and allergic contact dermatitis, hand dermatitis including recurrent vesicular and hyperkeratotic types, asteatotic dermatitis, and nummular or discoid dermatitis. Diagnostic options highlighted are clinical history, physical examination, and patch testing. Therapeutic options highlighted are moisturizers, topical corticosteroids, topical calcineurin inhibitors, crisaborole, phototherapy, and systemic medications including biologics.
Subject(s)
Dermatitis, Allergic Contact/pathology , Dermatitis, Atopic/pathology , Eczema/pathology , Administration, Topical , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/therapeutic use , Aged , Biological Products/therapeutic use , Boron Compounds/administration & dosage , Boron Compounds/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Calcineurin Inhibitors/administration & dosage , Calcineurin Inhibitors/therapeutic use , Child , Child, Preschool , Dermatitis, Allergic Contact/diagnosis , Dermatitis, Allergic Contact/drug therapy , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/drug therapy , Diagnosis, Differential , Eczema/diagnosis , Eczema/drug therapy , Humans , Infant , Middle Aged , Patch Tests/methods , Phototherapy/methods , Quality of LifeABSTRACT
The unraveling of the pathophysiology of acute myeloid leukemia (AML) has resulted in rapid translation of the information into clinical practice. After more than 40 years of slow progress in AML research, the US Food and Drug Administration has approved nine agents for different AML treatment indications since 2017. In this review, we detail the progress that has been made in the research and treatment of AML, citing key publications related to AML research and therapy in the English literature since 2000. The notable subsets of AML include acute promyelocytic leukemia (APL), core-binding factor AML (CBF-AML), AML in younger patients fit for intensive chemotherapy, and AML in older/unfit patients (usually at the age cutoff of 60-70 years). We also consider within each subset whether the AML is primary or secondary (therapy-related, evolving from untreated or treated myelodysplastic syndrome or myeloproliferative neoplasm). In APL, therapy with all-trans retinoic acid and arsenic trioxide results in estimated 10-year survival rates of ≥80%. Treatment of CBF-AML with fludarabine, high-dose cytarabine, and gemtuzumab ozogamicin (GO) results in estimated 10-year survival rates of ≥75%. In younger/fit patients, the "3+7" regimen (3 days of daunorubicin + 7 days of cytarabine) produces less favorable results (estimated 5-year survival rates of 35%; worse in real-world experience); regimens that incorporate high-dose cytarabine, adenosine nucleoside analogs, and GO are producing better results. Adding venetoclax, FLT3, and IDH inhibitors into these regimens has resulted in encouraging preliminary data. In older/unfit patients, low-intensity therapy with hypomethylating agents (HMAs) and venetoclax is now the new standard of care. Better low-intensity regimens incorporating cladribine, low-dose cytarabine, and other targeted therapies (FLT3 and IDH inhibitors) are emerging. Maintenance therapy now has a definite role in the treatment of AML, and oral HMAs with potential treatment benefits are also available. In conclusion, AML therapy is evolving rapidly and treatment results are improving in all AML subsets as novel agents and strategies are incorporated into traditional AML chemotherapy. LAY SUMMARY: Ongoing research in acute myeloid leukemia (AML) is progressing rapidly. Since 2017, the US Food and Drug Administration has approved 10 drugs for different AML indications. This review updates the research and treatment pathways for AML.
Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Age Factors , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Arsenic Trioxide/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cladribine/therapeutic use , Core Binding Factors , Cytarabine/therapeutic use , Daunorubicin/therapeutic use , Gemtuzumab/therapeutic use , Humans , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/mortality , Maintenance Chemotherapy , Mutation , Myelodysplastic Syndromes/complications , Myeloproliferative Disorders/complications , Neoplasm, Residual , Sulfonamides/therapeutic use , Survival Rate , Translational Research, Biomedical , Tretinoin/therapeutic use , Vidarabine/analogs & derivatives , Vidarabine/therapeutic useABSTRACT
BACKGROUND: Impetigo, a highly contagious bacterial skin infection commonly occurring in young children, but adults may also be affected. The superficial skin infection is mainly caused by Staphylococcus aureus (S. aureus) and less frequently by Streptococcus pyogenes (S. pyogenes). Antimicrobial resistance has become a worldwide concern and needs to be addressed when selecting treatment for impetigo patients. An evidence-based impetigo treatment algorithm was developed to address the treatment of impetigo for pediatric and adult populations. METHODS: An international panel of pediatric dermatologists, dermatologists, pediatricians, and pediatric infectious disease specialists employed a modified Delphi technique to develop the impetigo treatment algorithm. Treatment recommendations were evidence-based, taking into account antimicrobial stewardship and the increasing resistance to oral and topical antibiotics. RESULTS: The algorithm includes education and prevention of impetigo, diagnosis and classification, treatment measures, and follow-up and distinguishes between localized and widespread or epidemic outbreaks of impetigo. The panel adopted the definition of localized impetigo of fewer than ten lesions and smaller than 36 cm2 area affected in patients of two months and up with no compromised immune status. Resistance to oral and topical antibiotics prescribed for the treatment of impetigo such as mupirocin, retapamulin, fusidic acid, have been widely reported. CONCLUSIONS: When prescribing antibiotics, it is essential to know the local trends in antibiotic resistance. Ozenoxacin cream 1% is highly effective against S. pyogenes and S. aureus, including methycyllin-susceptible and resistant strains (MRSA), and may be a suitable option for localized impetigo.J Drugs Dermatol. 2021;20(2):134-142. doi:10.36849/JDD.5475 THIS ARTICLE HAD BEEN MADE AVAILABLE FREE OF CHARGE. PLEASE SCROLL DOWN TO ACCESS THE FULL TEXT OF THIS ARTICLE WITHOUT LOGGING IN. NO PURCHASE NECESSARY. PLEASE CONTACT THE PUBLISHER WITH ANY QUESTIONS.
Subject(s)
Anti-Bacterial Agents/therapeutic use , Critical Pathways/standards , Impetigo/drug therapy , Staphylococcus aureus/drug effects , Streptococcus pyogenes/drug effects , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Anti-Bacterial Agents/pharmacology , Antimicrobial Stewardship/standards , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Delphi Technique , Diterpenes/pharmacology , Diterpenes/therapeutic use , Drug Resistance, Bacterial , Evidence-Based Medicine/standards , Fusidic Acid/pharmacology , Fusidic Acid/therapeutic use , Humans , Impetigo/diagnosis , Impetigo/microbiology , Microbial Sensitivity Tests/standards , Mupirocin/pharmacology , Mupirocin/therapeutic use , Practice Guidelines as Topic , Quinolones/pharmacology , Quinolones/therapeutic use , Skin Cream/pharmacology , Skin Cream/therapeutic use , Staphylococcus aureus/isolation & purification , Streptococcus pyogenes/isolation & purification , Systematic Reviews as TopicABSTRACT
Bcl-2 inhibitors display an effective activity in acute myeloid leukemia (AML), but its clinical efficacy as a monotherapy was limited in part owing to failure to target other antiapoptotic Bcl-2 family proteins, such as Mcl-1. In this context, the combination strategy may be a promising approach to overcome this barrier. Here, we report the preclinical efficacy of a novel strategy combining ABT-199 with triptolide (TPL), a natural product extracted from a traditional Chinese medicine, in AML. Combination treatment exhibited markedly increased cytotoxicity in leukemic cells irrespective of p53 status while largely sparing normal cells of the hematopoietic lineage. Moreover, co-administration of ABT-199 with TPL dramatically suppressed leukemia progression as well as prolonged animal survival in a xenograft AML model. The potentiated effect of ABT-199 and TPL against AML was associated with activation of the mitochondrum-related intrinsic apoptotic pathway through a mechanism reciprocally modulating Bcl-2 family proteins. In this case, TPL not only downregulated Mcl-1 but also upregulated proapoptotic BH3-only proteins, thereby overcoming the resistance toward ABT-199. Conversely, ABT-199 abrogated Bcl-2-mediated cytoprotection against TPL. Together, these findings suggest that the regimen combining TPL and ABT-199 might be active against AML by inducing robust apoptosis through reciprocal regulation of anti- and proapoptotic Bcl-2 family proteins, therefore providing a strong rationale for the clinical investigation of this combination regimen for the treatment of AML.
Subject(s)
Apoptosis , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Diterpenes/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Phenanthrenes/therapeutic use , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/therapeutic use , Adolescent , Adult , Aged , Animals , Apoptosis/drug effects , Blast Crisis/pathology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Child , Diterpenes/pharmacology , Drug Synergism , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Female , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism , Phenanthrenes/pharmacology , Sulfonamides/pharmacology , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor AssaysABSTRACT
To find a therapeutic alternative for the treatment of skin and soft tissue infections, we evaluated the effects of combinations of retapamulin with macrolide, lincosamide, and streptogramin (MLS) antibiotics against Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecium, and Enterococcus faecalis. Using both the disk diffusion test and checkerboard assay, we initially examined the effects of combinations of retapamulin with MLS antibiotics against standard strains of these species. Combinations of retapamulin with erythromycin, quinupristin/dalfopristin and quinupristin showed synergistic activity against E. faecalis only. Synergy of retapamulin with clindamycin and dalfopristin was not observed. Then, a checkerboard assay was performed to evaluate the effects of the combinations against 15 clinical strains of E. faecalis. Retapamulin and quinupristin, the most synergistic combination, showed activity against all erythromycin-susceptible, -intermediate, and -resistant strains tested. Among the eight strains with high-level erythromycin resistance, five strains were synergistically inhibited in the presence of only 1 µg of retapamulin per ml. Time-kill assay revealed that combinations of retapamulin with erythromycin and quinupristin were bacteriostatic. These results suggest that combinations of retapamulin with erythromycin and quinupristin have in vitro synergistic activity against E. faecalis, including strains with high-level erythromycin resistance.
Subject(s)
Anti-Bacterial Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Diterpenes/therapeutic use , Enterococcus faecalis/drug effects , Erythromycin/therapeutic use , Gram-Positive Bacterial Infections/drug therapy , Virginiamycin/analogs & derivatives , Drug Synergism , Enterococcus faecium/drug effects , Humans , Macrolides/therapeutic use , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Streptococcus pyogenes/drug effects , Virginiamycin/therapeutic useABSTRACT
Targeting neuroendocrine receptors can be considered as another interesting approach to treating fibrotic disorders. Previously, we could demonstrate that tropisetron, a classical serotonin receptor blocker, can modulate collagen synthesis and acts in vitro through the α7 nicotinic acetylcholine receptor (α7nAchR). Here, we used a pharmacologic approach with specific α7nAchR agonists to validate this hypothesis. PHA-543613, an α7nAchR-specific agonist, not only prevented but also reversed established skin fibrosis of mice injected with bleomycin. Interestingly, agonistic stimulation of α7nAchR also attenuated experimental skin fibrosis in the non-inflammation driven adenovirus coding for TGFß receptor Iact mouse model, indicating fibroblast-mediated and not only anti-inflammatory effects of such agents. The fibroblast-mediated effects were confirmed in vitro using human dermal fibroblasts, in which the α7nAchR-specific agonists strongly reduced the impact of TGFß1-mediated expression on collagen and myofibroblast marker expression. These actions were linked to modulation of the redox-sensitive transcription factor JunB and impairment of the mitochondrial respiratory system. Our results indicate that pharmacologic stimulation of the α7nAchR could be a promising target for treatment of patients with skin fibrotic diseases. Moreover, our results suggest a mechanistic axis of collagen synthesis regulation through the mitochondrial respiratory system.
Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Quinuclidines/pharmacology , Scleroderma, Systemic/drug therapy , Skin/pathology , alpha7 Nicotinic Acetylcholine Receptor/agonists , Adenoviridae/genetics , Animals , Bleomycin/toxicity , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cells, Cultured , Collagen/metabolism , Disease Models, Animal , Drug Evaluation, Preclinical , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibrosis , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Male , Mice , Primary Cell Culture , Quinuclidines/therapeutic use , Receptor, Transforming Growth Factor-beta Type I/genetics , Scleroderma, Systemic/chemically induced , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Skin/cytology , Skin/drug effects , alpha7 Nicotinic Acetylcholine Receptor/metabolismABSTRACT
: The role of Staphylococcus aureus (SA) in the pathogenesis and management in atopic dermatitis is rapidly evolving. The modern understanding of SA in atopic dermatitis now includes an expanded array of virulence factors, the interplay of clonal and temporal shifts in SA populations, and host factors such as filaggrin and natural moisturizing factor. New, emerging therapies that focus on long-term, targeted elimination of SA colonization are currently under investigation (Br J Dermatol 2017;17(1)63-71). Herein, we discuss and review the latest staphylococcal and microbiome-modifying therapies including topical antibiotics, topical natural oil fatty acids, anti-SA vaccines, microbial transplantation, vitamin D supplementation, dupilumab and proposed future investigative directions.
Subject(s)
Dermatitis, Atopic/microbiology , Dermatitis, Atopic/therapy , Dysbiosis/complications , Staphylococcal Infections/complications , Staphylococcal Infections/drug therapy , Staphylococcus aureus , Anti-Bacterial Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Bacterial Vaccines/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Dermatologic Agents/therapeutic use , Diterpenes/therapeutic use , Dysbiosis/therapy , Filaggrin Proteins , Humans , Laurates/therapeutic use , Microbiota , Monoglycerides/therapeutic use , Probiotics/therapeutic use , Skin/microbiology , Surface-Active Agents/therapeutic use , Symptom Flare UpABSTRACT
BCL-2 is an antiapoptotic protein that plays a critical role acute and chronic leukemias. Venetoclax is an orally selective BCL-2 inhibitor and BH3 mimetic approved in chronic lymphocytic leukemia and in combination with low dose cytarabine or hypomethylating agent in acute myeloid leukemia for the treatment of patients unfit for intensive chemotherapy. This article reviews the biology of BCL-2, focusing on its relationship to the myeloid microenvironment, and discusses the rationale for BCL-2 inhibition in myelodysplastic syndrome (MDS). Clinical trials testing venetoclax in MDS patients are under way. Potential biomarkers for clinical response to BCL-2 inhibition are discussed. Therapeutic opportunities for venetoclax in the therapeutic landscape of MDS are explored.
Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Myelodysplastic Syndromes/drug therapy , Sulfonamides/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Clinical Studies as Topic , Disease Management , Disease Models, Animal , Disease Susceptibility , Drug Evaluation, Preclinical , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/etiology , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/etiology , Myelodysplastic Syndromes/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology , Treatment OutcomeABSTRACT
BACKGROUND: Clinical trial data for dupilumab, a monoclonal antibody against the interleukin-4 receptor (IL-4Rα), have shown that it is safe and effective for the treatment of moderate to severe atopic dermatitis in patients whose disease is resistant to other therapies. However, little real-world experience with dupilumab use has been reported thus far. The aim of this retrospective study was to assess overall outcomes in adult patients with atopic dermatitis (AD) treated with dupilumab. METHODS: A retrospective review of electronic medical records was conducted for patients treated with dupilumab in the Department of Dermatology at the University of California, Irvine. RESULTS: We analyzed the medical records of 77 AD patients who received dupilumab according to standard dosing and had at least one documented follow-up visit. In 66 patients (86%), dupilumab improved clinical disease severity, with 23 patients (30%) experiencing complete clearance on dupilumab. Dupilumab was generally well-tolerated and caused no serious adverse events. The most common side effects included dry eyes, conjunctivitis, and keratitis. The most common reason for discontinuation of treatment was lack of substantial clinical improvement or progression of disease severity, followed by ophthalmologic side effects. CONCLUSIONS: Overall, dupilumab was well-tolerated and resulted in clinical improvement in our patient population. These results provide additional important information on the safety and utility of dupilumab treatment for moderate to severe atopic dermatitis in the real-world clinical setting.
Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Dermatitis, Atopic/drug therapy , Dermatologic Agents/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Boron Compounds/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Calcineurin Inhibitors/therapeutic use , Combined Modality Therapy , Conjunctivitis/chemically induced , Dermatitis, Atopic/radiotherapy , Dermatologic Agents/adverse effects , Disease Progression , Drug Therapy, Combination , Dry Eye Syndromes/chemically induced , Female , Humans , Keratitis/chemically induced , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Treatment Outcome , Ultraviolet TherapyABSTRACT
Purpose/Aim of the Study: Wnt/ß-catenin signaling was reported to be activated in pulmonary fibrosis, and was focused on as a target for antifibrotic therapy. However, the mechanism how the inhibition of Wnt/ß-catenin signaling ameliorate pulmonary fibrosis has not been fully elucidated. The purpose of this study is to explore the target cells of Wnt/ß-catenin inhibition in pulmonary fibrosis and to examine the antifibrotic effect of the novel inhibitor PRI-724 specifically disrupting the interaction of ß-catenin and CBP. Materials and Methods: The effect of C-82, an active metabolite of PRI-724, on the expression of TGF-ß1 and α-smooth muscle actin (SMA) was examined on fibroblasts and macrophages. We also examined the effects of PRI-724 in mouse model of bleomycin-induced pulmonary fibrosis. Results: The activation and increased accumulation of ß-catenin in the canonical pathway were detected in lung fibroblasts as well as macrophages stimulated by Wnt3a using Western blotting. Treatment with C-82 reduced CBP protein and increased p300 protein binding to ß-catenin in the nucleus of lung fibroblasts. In addition, C-82 inhibited the expression of SMA in lung fibroblasts treated with TGF-ß, indicating the inhibition of myofibroblast differentiation. In the fibrotic lungs induced by bleomycin, ß-catenin was stained strongly in macrophages, but the staining of ß-catenin in alveolar epithelial cells and fibroblasts was weak. The administration of PRI-724 ameliorated pulmonary fibrosis induced by bleomycin in mice when administered with a late, but not an early, treatment schedule. Analysis of bronchoalveolar fluid (BALF) showed a decreased number of alveolar macrophages. In addition, the level of TGF-ß1 in BALF was decreased in mice treated with PRI-724. C-82 also inhibited the production of TGF-ß1 by alveolar macrophages. Conclusions: These results suggest that the ß-catenin/CBP inhibitor PRI-724 is a potent antifibrotic agent that acts by modulating the activity of macrophages in the lungs.
Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Pulmonary Fibrosis/drug therapy , Pyrimidinones/therapeutic use , beta Catenin/antagonists & inhibitors , Animals , Bleomycin , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Evaluation, Preclinical , Fibroblasts/metabolism , Macrophages/metabolism , Male , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pyrimidinones/pharmacology , Transforming Growth Factor beta1/metabolism , Wnt Signaling Pathway/drug effects , beta Catenin/metabolismABSTRACT
HYPOTHESIS: SENS-401 (R-azasetron besylate) is effective against severe acoustic trauma-induced hearing loss. BACKGROUND: SENS-401 has calcineurin inhibiting properties and attenuates cisplatin-induced hearing loss in a rat model. Cisplatin-induced and acoustic trauma-induced hearing loss share common apoptotic pathways. METHODS: The dose-response relationship of SENS-401 (6.6âmg/kg BID, 13.2âmg/kg BID, 26.4âmg/kg QD) and treatment time-window (13.2âmg/kg BID starting 24, 72, and 96âh posttrauma) versus placebo for 28 days were evaluated in a male rat model of severe acoustic trauma-induced hearing loss (120âdB SPL, 2âh) using auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) measures followed by cochlear outer hair cell (OHC) counting with myosin-VIIa immunolabeling. RESULTS: All SENS-401 doses improved ABR threshold shift and recovery, reaching statistical significance (pâ<â0.05) for ABR threshold recoveries after 28-days treatment. DPOAE amplitude loss and recovery improved markedly for 13.2âmg/kg BID SENS-401, reaching significance after 14 days (pâ<â0.05). Significant improvements in ABR threshold shifts/recovery and DPOAE amplitude loss occurred with up to 96-hours delay in initiating SENS-401 (pâ<â0.05), and in DPOAE amplitude recovery with up to 72-hours delay (pâ<â0.05). Significantly more surviving OHCs were present after SENS-401 treatment compared with placebo after 24 to 96-hours delay posttrauma, with up to 5.3-fold more cells in the basal cochlea turn. CONCLUSIONS: In vivo data support the otoprotective potential of twice daily oral SENS-401. Improvements in hearing loss recovery make SENS-401 a promising clinical candidate for acoustic trauma-induced hearing loss, including when treatment is not initiated immediately.
Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Evoked Potentials, Auditory, Brain Stem/drug effects , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Sensorineural/drug therapy , Oxazines/pharmacology , Acoustic Stimulation/adverse effects , Animals , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cisplatin/toxicity , Hair Cells, Auditory, Outer/drug effects , Hearing Loss, Sensorineural/chemically induced , Male , Otoacoustic Emissions, Spontaneous/drug effects , Oxazines/administration & dosage , Oxazines/therapeutic use , Rats , Rats, WistarABSTRACT
Introduction: Treatment of multiple myeloma (MM) in the relapsed setting remains challenging, despite recent impressive advances in the management of these patients. Venetoclax (ABT-199) is a BCL-2 inhibitor recently approved by the US food and drug administration for treatment of chronic lymphocytic leukemia but the drug has shown activity in a number of hematological malignancies. Venetoclax has broadened the treatment options for patients with relapsed or refractory MM. Approximately, 20% of myeloma patients will exhibit t (11;14) associated with high BCL-2 expression making venetoclax an attractive therapeutic option. The efficacy of venetoclax is not uniquely restricted to this population. Areas covered: This review will summarize the mechanism of action, toxicity profile, and published data on venetoclax use in MM, moving the field toward personalized medicine in the treatment of myeloma. Expert commentary: Numerous phase 1/2 clinical trials are evaluating the efficacy and safety of venetoclax monotherapy and in combinations in the relapse setting. These trials show better outcomes in the subgroup of patients harboring t(11;14).
Subject(s)
Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Multiple Myeloma/drug therapy , Sulfonamides/therapeutic use , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Clinical Trials as Topic , Drug Evaluation, Preclinical , Humans , Multiple Myeloma/pathology , Proto-Oncogene Proteins c-bcl-2/analysis , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Secondary Prevention , Sulfonamides/adverse effects , Sulfonamides/pharmacologyABSTRACT
Asthma accounts for 380,000 deaths a year. Carotid body denervation has been shown to have a profound effect on airway hyper-responsiveness in animal models but a mechanistic explanation is lacking. Here we demonstrate, using a rat model of asthma (OVA-sensitized), that carotid body activation during airborne allergic provocation is caused by systemic release of lysophosphatidic acid (LPA). Carotid body activation by LPA involves TRPV1 and LPA-specific receptors, and induces parasympathetic (vagal) activity. We demonstrate that this activation is sufficient to cause acute bronchoconstriction. Moreover, we show that prophylactic administration of TRPV1 (AMG9810) and LPA (BrP-LPA) receptor antagonists prevents bradykinin-induced asthmatic bronchoconstriction and, if administered following allergen exposure, reduces the associated respiratory distress. Our discovery provides mechanistic insight into the critical roles of carotid body LPA receptors in allergen-induced respiratory distress and suggests alternate treatment options for asthma.
Subject(s)
Acrylamides/therapeutic use , Asthma/prevention & control , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Carotid Body/metabolism , Lysophospholipids/therapeutic use , Receptors, Lysophosphatidic Acid/metabolism , TRPV Cation Channels/metabolism , Acrylamides/pharmacology , Animals , Asthma/etiology , Asthma/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Disease Models, Animal , Drug Evaluation, Preclinical , Lysophospholipids/pharmacology , Male , Rats, Inbred BN , Rats, Sprague-Dawley , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , TRPV Cation Channels/antagonists & inhibitorsABSTRACT
Despite advances in the treatment of multiple myeloma, the disease still remains incurable for the majority of patients. The overexpression of anti-apoptotic proteins (i.e., Bcl-2, Bcl-XL or Mcl-1) is a hallmark of cancer and favors tumor cell survival and resistance to therapy. The oral drug venetoclax is the first-in-class Bcl-2-specific BH3 mimetic. In myeloma, in vitro sensitivity to venetoclax is mainly observed in plasma cells harboring the t(11;14) translocation, a molecular subgroup associated with high Bcl-2 and low Mcl-1/Bcl-XL expression. In addition with Bcl-2 members expression profile, functional tests as BH3 profiling or in vitro BH3 mimetic drug testing also predict sensitivity to the drug. Phase 1 clinical trials recently confirmed the efficacy of venetoclax monotherapy in heavily pretreated myeloma patients, mostly in patients with t(11;14). In combination with the proteasome inhibitor bortezomib, venetoclax therapy was found to be feasible and allowed promising response rate in relapsed myeloma patients, independent of t(11;14) status. The present review summarizes the current knowledge, "from bench to bedside", about venetoclax for the treatment of multiple myeloma.