Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Am J Bot ; 110(12): e16253, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37938812

ABSTRACT

PREMISE: Moss sporophytes differ strongly in size and biomass partitioning, potentially reflecting reproductive and dispersal strategies. Understanding how sporophyte traits are coordinated is essential for understanding moss functioning and evolution. This study aimed to answer: (1) how the size and proportions of the sporophyte differ between moss species with and without a prominent central strand in the seta, (2) how anatomical and morphological traits of the seta are related, and (3) how sporophytic biomass relates to gametophytic biomass and nutrient concentrations. METHODS: We studied the relationships between seta anatomical and morphological traits, the biomass of seta, capsule, and gametophyte, and carbon, nitrogen, and phosphorus concentrations of 27 subtropical montane moss species. RESULTS: (1) Moss species with a prominent central strand in the seta had larger setae and heavier capsules than those without a prominent strand. (2) With increasing seta length, setae became thicker and more rounded for both groups, while in species with a prominent central strand, the ratio of transport-cell area to epidermal area decreased. (3) In both groups, mosses with greater gametophytic biomass tended to have heavier sporophytes, but nitrogen and phosphorus concentrations in the gametophyte were unrelated to sporophytic traits. CONCLUSIONS: Our study highlights that the central strand in the seta may have an important functional role and affect the allometry of moss sporophytes. The coordinated variations in sporophyte morphological and anatomical traits follow basic biomechanical principles of cylinder-like structures, and these traits relate only weakly to the gametophytic nutrient concentrations. Research on moss sporophyte functional traits and their relationships to gametophytes is still in its infancy but could provide important insights into their adaptative strategies.


Subject(s)
Bryophyta , Bryopsida , Germ Cells, Plant , Bryophyta/anatomy & histology , Nitrogen , Phosphorus
2.
Molecules ; 28(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687046

ABSTRACT

St. John's wort (Hypericum perforatum, Hypericaceae) has long been used in traditional medicine as a potent remedy, while many other species of this genus have not been thoroughly investigated. The study aimed to detect the biological activity, including antioxidant, antihyperglycemic, anticholinergic, antimicrobial and monoaminoxidase inhibitory potential, of water-alcoholic extracts of three species autochthonous for Serbia and Greece from plant genus Hypericum (section Hypericum-H. tetrapterum, H. maculatum ssp. immaculatum and H. triquetrifolium), followed by phytochemical profiling. The highest amount of phenolics was recorded in H. maculatum subsp. immaculatum extract, while the highest abundance of flavonoids was characteristic of H. tetrapterum extract. Hypericin and hyperforin, quercetin, and its flavonoid, rutin, were present in all of the evaluated species. The evaluated species were good scavengers of DPPH, OH and NO radicals, as well as potent reducers of ferric ions in FRAP assay. Furthermore, the evaluated species were shown as potent inhibitors of monoaminoxidase A and α-glucosidase and modest inhibitors of acetylcholinesterase, monoaminoxidase B and α-amylase. No anti-Candida activity was recorded, but the extracts were effective against MRSA Staphylococcus aureus and Enterococcus sp., as well as against Proteus mirabilis. The obtained results strongly highlight the need for further in vivo studies in order to better define the potential of the medicinal application of the studied species.


Subject(s)
Bryopsida , Clusiaceae , Hypericum , Acetylcholinesterase , Flavonoids/pharmacology , Plant Extracts/pharmacology
3.
Microb Ecol ; 86(1): 419-430, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35859069

ABSTRACT

Cyanobacteria associated with mosses play a key role in the nitrogen (N) cycle in unpolluted ecosystems. Mosses have been found to release molecules that induce morphophysiological changes in epiphytic cyanobionts. Nevertheless, the extent of moss influence on these microorganisms remains unknown. To evaluate how mosses or their metabolites influence N2 fixation rates by cyanobacteria, we assessed the nitrogenase activity, heterocyte frequency and biomass of a cyanobacterial strain isolated from the feather moss Hylocomium splendens and a non-symbiotic strain when they were either growing by themselves, together with H. splendens or exposed to H. splendens water, acetone, ethanol, or isopropanol extracts. The same cyanobacterial strains were added to another moss (Taxiphyllum barbieri) and a liverwort (Monosolenium tenerum) to assess if these bryophytes affect N2 fixation differently. Although no significant increases in nitrogenase activity by the cyanobacteria were observed when in contact with H. splendens shoots, both the symbiotic and non-symbiotic cyanobacteria increased nitrogenase activity as well as heterocyte frequency significantly upon exposure to H. splendens ethanol extracts. Contact with T. barbieri shoots, on the other hand, did lead to increases in nitrogenase activity, indicating low host-specificity to cyanobacterial activity. These findings suggest that H. splendens produces heterocyte-differentiating factors (HDFs) that are capable of stimulating cyanobacterial N2 fixation regardless of symbiotic competency. Based on previous knowledge about the chemical ecology and dynamics of moss-cyanobacteria interactions, we speculate that HDF expression by the host takes place in a hypothetical new step occurring after plant colonization and the repression of hormogonia.


Subject(s)
Bryophyta , Bryopsida , Cyanobacteria , Ecosystem , Stimulation, Chemical , Nitrogen Fixation/physiology , Bryophyta/physiology , Bryopsida/metabolism , Bryopsida/microbiology , Cyanobacteria/metabolism , Nitrogenase/metabolism , Plant Extracts
4.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36499119

ABSTRACT

Plagiomnium acutum T. Kop. (P. acutum) has been used as a traditional Chinese medicine for thousands of years to treat cancer but lacks evidence. The objective of this work was to reveal the chemical composition of P. acutum essential oil (PEO) and explore its potential antitumor activity and molecular mechanism. PEO was prepared by the simultaneous distillation-extraction method and characterized by gas chromatography/mass spectroscopy. CCK8 assay, flow cytometry, western blot, and immunofluorescence techniques were used to analyze the effects and mechanism of PEO against cancer cells. A total of 74 constituents of PEO were identified, with diterpenes (26.5%), sesquiterpenes (23.89%), and alcohols (21.81%) being the major constituents. Two terpenoids, selina-6-en-4-ol and dolabella-3,7-dien-18-ol, were detected in PEO for the first time. PEO showed significant cell growth inhibitory activity on HepG2 and A549 cells by blocking the G1 phase and inducing apoptosis, which may be attributed to its upregulation of p21Cip1 and p27Kip1 proteins and interference with mitochondrial membrane potential effect. Dolabella-3,7-dien-18-ol accounts for 25.5% of PEO and is one of the main active components of PEO, with IC50 values in HepG2 and A549 cells of (25.820 ± 0.216) µg/mL and (23.597 ± 1.207) µg/mL, respectively. These results confirmed the antitumor medicinal value of P. acutum and showed great application potential in the pharmaceutical industry.


Subject(s)
Antineoplastic Agents, Phytogenic , Bryopsida , Oils, Volatile , Sesquiterpenes , Humans , A549 Cells , Apoptosis , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p27 , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Bryopsida/chemistry , Hep G2 Cells , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology
5.
J Exp Bot ; 73(13): 4440-4453, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35348679

ABSTRACT

The moss Physcomitrium (previously Physcomitrella) patens is a non-vascular plant belonging to the bryophytes that has been used as a model species to study the evolution of plant cell wall structure and biosynthesis. Here, we present an updated review of the cell wall biology of P. patens. Immunocytochemical and structural studies have shown that the cell walls of P. patens mainly contain cellulose, hemicelluloses (xyloglucan, xylan, glucomannan, and arabinoglucan), pectin, and glycoproteins, and their abundance varies among different cell types and at different plant developmental stages. Genetic and biochemical analyses have revealed that a number of genes involved in cell wall biosynthesis are functionally conserved between P. patens and vascular plants, indicating that the common ancestor of mosses and vascular plants had already acquired most of the biosynthetic machinery to make various cell wall polymers. Although P. patens does not synthesize lignin, homologs of the phenylpropanoid biosynthetic pathway genes exist in P. patens and they play an essential role in the production of caffeate derivatives for cuticle formation. Further genetic and biochemical dissection of cell wall biosynthetic genes in P. patens promises to provide additional insights into the evolutionary history of plant cell wall structure and biosynthesis.


Subject(s)
Bryophyta , Bryopsida , Biology , Bryophyta/genetics , Bryopsida/genetics , Bryopsida/metabolism , Cell Wall/metabolism , Pectins/metabolism , Plants
6.
J Exp Bot ; 72(15): 5569-5583, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34111292

ABSTRACT

Glycosylceramides are abundant membrane components in vascular plants and are associated with cell differentiation, organogenesis, and protein secretion. Long-chain base (LCB) Δ4-desaturation is an important structural feature for metabolic channeling of sphingolipids into glycosylceramide formation in plants and fungi. In Arabidopsis thaliana, LCB Δ4-unsaturated glycosylceramides are restricted to pollen and floral tissue, indicating that LCB Δ4-desaturation has a less important overall physiological role in A. thaliana. In the bryophyte Physcomitrium patens, LCB Δ4-desaturation is a feature of the most abundant glycosylceramides of the gametophyte generation. Metabolic changes in the P. patens null mutants for the sphingolipid Δ4-desaturase (PpSD4D) and the glycosylceramide synthase (PpGCS), sd4d-1 and gcs-1, were determined by ultra-performance liquid chromatography coupled with nanoelectrospray ionization and triple quadrupole tandem mass spectrometry analysis. sd4d-1 plants lacked unsaturated LCBs and the most abundant glycosylceramides. gcs-1 plants lacked all glycosylceramides and accumulated hydroxyceramides. While sd4d-1 plants mostly resembled wild-type plants, gcs-1 mutants were impaired in growth and development. These results indicate that LCB Δ4-desaturation is a prerequisite for the formation of the most abundant glycosylceramides in P. patens. However, loss of unsaturated LCBs does not affect plant viability, while blockage of glycosylceramide synthesis in gcs-1 plants causes severe plant growth and development defects.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Bryopsida , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Pollen , Sphingolipids
7.
Arch Environ Contam Toxicol ; 80(2): 350-367, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33236186

ABSTRACT

The present work was conducted to obtain and highlight the first comprehensive baseline data on atmospheric deposition of trace elements and to evaluate the air quality in Georgia. A total of 120 moss samples were collected over accessible territories in Georgia in the period from 2014 to 2017. Hylocomium splendens (Hedw.) Schimp., Hypnum cupressiforme (Hedw.), and Pleurozium schreberi (Brid.) Mitt. moss species were analyzed by two complementary analytical techniques: instrumental neutron activation analysis and atomic absorption spectrometry. Concentrations of 41 elements in mg/kg were determined. The concentrations were compared with the corresponding values in the literature and are in a good agreement, except for the concentration of Mg, Al, K, Ca, Ti, and Fe, which were higher than those reported for other countries. The principal component and discriminant analyses were implemented to extract information about the similar geochemical features and to decipher the provenance of the studied elements. The analysis showed that a considerable association of crustal elements and the provenance of elements can be considered as a mixture of geogenic and anthropogenic sources. In addition, the influence of different latitudinal climate zones on the distribution of elements in the atmospheric deposition was observed. The enrichment factor shows considerable values for Th and Zr. The spatial distribution of the pollution load index identifies four zones (#12, 38, 53, and 64). The potential ecological risk index and the risk index were calculated and it does not pose significant risk except As and Cd. The data obtained can be used as the first dataset of metal characterization of air pollution in Georgia.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Trace Elements/analysis , Air Pollution/analysis , Biological Monitoring , Bryophyta/chemistry , Bryopsida/chemistry , Georgia , Metals/analysis , Metals, Heavy/analysis , Neutron Activation Analysis , Spectrophotometry, Atomic , Titanium
8.
Int J Biol Macromol ; 164: 2818-2830, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32853619

ABSTRACT

Hydrogels for complex and chronic wound dressings must be conformable, absorb and retain wound exudates and maintain hydration. They can incorporate and release bioactive molecules that can accelerate the healing process. Wound dressings have to be in contact with the wound and epidermis, even for long periods, without causing adverse effects. Hydrogel dressing formulations based on biopolymers derived from terrestrial or marine flora can be relatively inexpensive and well tolerated. In the present article hydrogel films composed by agarose (1.0 wt%), κ-carrageenan at three different concentrations (0.5, 1.0 and 1.5 wt%) and glycerol (3.0 wt%) were prepared without recourse to crosslinking agents, and characterized for their mechanical properties, morphology, swelling and erosion behavior. The films resulted highly elastic and able to absorb and retain large amounts of fluids without losing their integrity. One of the films was loaded with the aqueous extract from Cryphaea heteromalla (Hedw.) D. Mohr for its antioxidant properties. Absence of cytotoxicity and ability to reduce the oxidative stress were demonstrated on NIH-3T3 fibroblast cell cultures. These results encourage further biological evaluations to assess their impact on the healing process.


Subject(s)
Antioxidants/pharmacology , Bryopsida/chemistry , Carrageenan/chemistry , Fibroblasts/cytology , Plant Extracts/pharmacology , Sepharose/chemistry , Animals , Antioxidants/chemistry , Bandages , Biomechanical Phenomena , Cell Survival , Elasticity , Fibroblasts/drug effects , Fibroblasts/metabolism , Methylgalactosides , Mice , NIH 3T3 Cells , Plant Extracts/chemistry
9.
Int J Mol Sci ; 21(5)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143437

ABSTRACT

Actin-depolymerizing factor (ADF) is a small class of actin-binding proteins that regulates the dynamics of actin in cells. Moreover, it is well known that the plant ADF family plays key roles in growth, development and defense-related functions. Results: Thirteen maize (Zea mays L., ZmADFs) ADF genes were identified using Hidden Markov Model. Phylogenetic analysis indicated that the 36 identified ADF genes in Physcomitrella patens, Arabidopsis thaliana, Oryza sativa japonica, and Zea mays were clustered into five groups. Four pairs of segmental genes were found in the maize ADF gene family. The tissue-specific expression of ZmADFs and OsADFs was analyzed using microarray data obtained from the Maize and Rice eFP Browsers. Five ZmADFs (ZmADF1/2/7/12/13) from group V exhibited specifically high expression in tassel, pollen, and anther. The expression patterns of 13 ZmADFs in seedlings under five abiotic stresses were analyzed using qRT-PCR, and we found that the ADFs mainly responded to heat, salt, drought, and ABA. Conclusions: In our study, we identified ADF genes in maize and analyzed the gene structure and phylogenetic relationships. The results of expression analysis demonstrated that the expression level of ADF genes was diverse in various tissues and different stimuli, including abiotic and phytohormone stresses, indicating their different roles in plant growth, development, and response to external stimulus. This report extends our knowledge to understand the function of ADF genes in maize.


Subject(s)
Destrin/genetics , Gene Expression Regulation, Plant , Stress, Physiological , Zea mays/genetics , Actins/metabolism , Arabidopsis/genetics , Bryopsida/genetics , Chromosomes, Plant/ultrastructure , Destrin/metabolism , Droughts , Gene Expression Profiling , Genetic Association Studies , Genome, Plant , Oligonucleotide Array Sequence Analysis , Oryza/genetics , Phylogeny , Plant Growth Regulators/metabolism , Pollen/chemistry
10.
Int J Mol Sci ; 21(3)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033083

ABSTRACT

Genome editing has become a major tool for both functional studies and plant breeding in several species. Besides generating knockouts through the classical CRISPR-Cas9 system, recent development of CRISPR base editing holds great and exciting opportunities for the production of gain-of-function mutants. The PAM requirement is a strong limitation for CRISPR technologies such as base editing, because the base substitution mainly occurs in a small edition window. As precise single amino-acid substitution can be responsible for functions associated to some domains or agronomic traits, development of Cas9 variants with relaxed PAM recognition is of upmost importance for gene function analysis and plant breeding. Recently, the SpCas9-NG variant that recognizes the NGN PAM has been successfully tested in plants, mainly in monocotyledon species. In this work, we studied the efficiency of SpCas9-NG in the model moss Physcomitrella patens and two Solanaceae crops (Solanum lycopersicum and Solanum tuberosum) for both classical CRISPR-generated gene knock-out and cytosine base editing. We showed that the SpCas9-NG greatly expands the scope of genome editing by allowing the targeting of non-canonical NGT and NGA PAMs. The CRISPR toolbox developed in our study opens up new gene function analysis and plant breeding perspectives for model and crop plants.


Subject(s)
Bryopsida/genetics , CRISPR-Associated Protein 9/genetics , Gene Editing/methods , Solanum lycopersicum/genetics , Solanum tuberosum/genetics , Amino Acid Substitution/genetics , CRISPR-Cas Systems/genetics , Crops, Agricultural/genetics , Plants, Genetically Modified/genetics , Streptococcus pyogenes/enzymology
11.
J Biol Chem ; 295(11): 3497-3505, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31996373

ABSTRACT

Pentatricopeptide repeat (PPR) proteins with C-terminal DYW domains are present in organisms that undergo C-to-U editing of organelle RNA transcripts. PPR domains act as specificity factors through electrostatic interactions between a pair of polar residues and the nitrogenous bases of an RNA target. DYW-deaminase domains act as the editing enzyme. Two moss (Physcomitrella patens) PPR proteins containing DYW-deaminase domains, PPR65 and PPR56, can convert Cs to Us in cognate, exogenous RNA targets co-expressed in Escherichia coli We show here that purified, recombinant PPR65 exhibits robust editase activity on synthetic RNAs containing cognate, mitochondrial PpccmFC sequences in vitro, indicating that a PPR protein with a DYW domain is solely sufficient for catalyzing C-to-U RNA editing in vitro Monomeric fractions possessed the highest conversion efficiency, and oligomeric fractions had reduced activity. Inductively coupled plasma (ICP)-MS analysis indicated a stoichiometry of two zinc ions per highly active PPR65 monomer. Editing activity was sensitive to addition of zinc acetate or the zinc chelators 1,10-o-phenanthroline and EDTA. Addition of ATP or nonhydrolyzable nucleotide analogs stimulated PPR65-catalyzed RNA-editing activity on PpccmFC substrates, indicating potential allosteric regulation of PPR65 by ATP. Unlike for bacterial cytidine deaminase, addition of two putative transition-state analogs, zebularine and tetrahydrouridine, failed to disrupt RNA-editing activity. RNA oligonucleotides with a single incorporated zebularine also did not disrupt editing in vitro, suggesting that PPR65 cannot bind modified bases due to differences in the structure of the active site compared with other zinc-dependent nucleotide deaminases.


Subject(s)
Biocatalysis , Bryopsida/metabolism , Cytosine/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , RNA Editing/genetics , Repetitive Sequences, Amino Acid , Uracil/metabolism , Adenosine Triphosphate/pharmacology , Cytidine/analogs & derivatives , Cytidine/pharmacology , Ions , Magnesium/pharmacology , Mutation/genetics , Plant Extracts/chemistry , Plant Proteins/isolation & purification , Protein Aggregates , Protein Domains , Protein Multimerization , Recombinant Proteins/metabolism , Substrate Specificity , Temperature , Tetrahydrouridine , Zea mays/chemistry , Zinc/metabolism
12.
Int J Phytoremediation ; 22(2): 140-147, 2020.
Article in English | MEDLINE | ID: mdl-31429316

ABSTRACT

The mosses have been widely used as bioindicators to investigate pollution and changes of heavy metals in different countries and regions. In this research, the field surveys were carried out for understanding the moss community and enrichment effects of the dominant species of mosses around the uranium mill tailings impoundment in South China, especially for the enriched contentions of 210Pb and 210Po in soil and Hypnum plumaeforme. The results showed that the maximum concentrations of U and 226Ra in the study sites were 93 mg kg-1 and 1130.8 Bq kg-1, respectively. The exhalation rate of 222Rn (ERRn), soil U, and 226Ra contents in SS1, SS2, and SS3 were higher than CKS. With the increase of the distance from the central well, the contents of nuclides (U and 226Ra) in soils and H. plumaeforme were both decreased. And, the bioconcentration factors of H. plumaeforme for 210Pb and 210Po ranged from 1.05 to 1.49, and 1.25 to 1.40, respectively, indicating an accumulation of 210Po and 210Pb from soil by H. plumaeforme. These results indicated that H. plumaeforme is hopeful to become an accumulator plant for remediation of radon pollution, and also can be used as a potential indicator plant for radon pollution monitoring.


Subject(s)
Bryopsida , Uranium , Biodegradation, Environmental , China , Lead
13.
BMC Pharmacol Toxicol ; 20(Suppl 1): 77, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31852531

ABSTRACT

BACKGROUND: Ultraviolet (UV) radiation is the main exogenous inductor of skin damage and so photoprotection is important to control skin disorders. The Antarctic moss Sanionia uncinata is an important source of antioxidants and the photoprotective activity of its organic extracts has been investigated. This study aimed to evaluate the potential photoprotection, cytotoxicity and embryotoxicity of residual aqueous fraction (AF) from the moss S. uncinata. METHODS: UV-visible spectrum and SPF (sun protection factor) were determined by spectrophotometry. Embryotoxicity potential was evaluated by Fish embryo-larval toxicity test using zebrafish (Danio rerio) as organism model. Cell death assays by water-soluble tetrazolium salt (WST-1) and lactate dehydrogenase (LDH) were investigated using HaCaT keratinocyte cell line cultured in monolayers and three dimensions (3D). Phototoxicity and association with UV-filters were performed by 3T3 neutral red uptake test. RESULTS: The AF showed sharp absorption bands in the UV region and less pronounced in the visible region. The SPF was low (2.5 ± 0.3), but the SPF values of benzophenone-3 and octyl-methoxycinnamate increased ~ 3 and 4 times more, respectively, in association with AF. The AF did not induce significant lethal and sublethal effects on zebrafish early-life stages. In monolayers, the HaCaT cell viability, evaluated by WST-1, was above 70% by ≤0.4 mg AF/mL after 48 and 72-h exposure, whereas ≤1 mg AF/mL after 24-h exposure. The LDH assay showed that the cell viability was above 70% by ≤0.4 mg AF/mL even after 72-h exposure, but ≤1 mg/mL after 24 and 48-h exposure. In 3D cell culture, an increased cell resistance to toxicity was observed, because cell viability of HaCaT cell by WST-1 and LDH was above ~ 90% when using ≤1 and 4 mg AF/mL, respectively. The AF demonstrated values of photo irritation factor < 2 and of photo effect < 0.1, even though in association with UV-filters. CONCLUSIONS: The residual AF absorbs UV-vis spectrum, increased SPF values of BP-3 and OMC and does not induce embryotoxicity to zebrafish early life-stage. The cell death assays allowed establishing non-toxic doses of AF and phototoxicity was not detected. AF of S. uncinata presents a good potential for skin photoprotection against UV-radiation.


Subject(s)
Bryopsida/chemistry , Embryo, Nonmammalian/drug effects , Keratinocytes/drug effects , Plant Extracts/pharmacology , Sunscreening Agents/pharmacology , Ultraviolet Rays , Animals , Antarctic Regions , Bryopsida/growth & development , Cell Culture Techniques , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Dose-Response Relationship, Drug , Embryo, Nonmammalian/radiation effects , Humans , Keratinocytes/radiation effects , Plant Extracts/toxicity , Sun Protection Factor , Sunscreening Agents/toxicity , Zebrafish
14.
Planta ; 250(2): 535-548, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31111205

ABSTRACT

MAIN CONCLUSION: ACOS5, OsACOS12 and PpACOS6 are all capable of fatty acyl-CoA synthetase activity but exhibit different substrate preferences. The transcriptional regulation of ACOS for sporopollenin synthesis appears to have been conserved in Physcomitrella, rice and Arabidopsis during evolution. Sporopollenin is the major constituent of spore and pollen exines. In Arabidopsis, acyl-CoA synthetase 5 (ACOS5) is an essential enzyme for sporopollenin synthesis, and its orthologues are PpACOS6 from the moss Physcomitrella and OsACOS12 from monocot rice. However, knowledge regarding the evolutionary conservation and divergence of the ACOS gene in sporopollenin synthesis remains limited. In this study, we analysed the function and regulation of PpACOS6 and OsACOS12. A complementation test showed that OsACOS12 driven by the ACOS5 promoter could partially restore the male fertility of the acos5 mutant in Arabidopsis, while PpACOS6 did not rescue the acos5 phenotype. ACOS5, PpACOS6 and OsACOS12 all complemented the acyl-CoA synthetase-deficient yeast strain (YB525) phenotype, although they exhibited different substrate preferences. To understand the conservation of sporopollenin synthesis regulation, we constructed two constructs with ACOS5 driven by the OsACOS12 or PpACOS6 promoter. Both constructs could restore the fertility of acos5 plants. The MYB transcription factor MS188 from Arabidopsis directly regulates ACOS5. We found that MS188 could also bind the promoters of OsACOS12 and PpACOS6 and activate the genes driven by the promoters, suggesting that the transcriptional regulation of these genes was similar to that of ACOS5. These results show that the ACOS gene promoter region from Physcomitrella, rice and Arabidopsis has been functionally conserved during evolution, while the chain lengths of fatty acid-derived monomers of sporopollenin vary in different plant species.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Bryopsida/enzymology , Coenzyme A Ligases/metabolism , Oryza/enzymology , Plant Proteins/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Biopolymers/biosynthesis , Bryopsida/genetics , Bryopsida/growth & development , Bryopsida/ultrastructure , Carotenoids/biosynthesis , Coenzyme A Ligases/genetics , Genes, Reporter , Mutation , Oryza/genetics , Oryza/growth & development , Oryza/ultrastructure , Phylogeny , Plant Infertility , Plant Proteins/genetics , Pollen/enzymology , Pollen/genetics , Pollen/growth & development , Pollen/ultrastructure , Sequence Alignment , Substrate Specificity , Transcription Factors/genetics , Transcription Factors/metabolism
15.
BMC Plant Biol ; 19(1): 9, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30616513

ABSTRACT

BACKGROUND: Cryptic peptides (cryptides) are small bioactive molecules generated via degradation of functionally active proteins. Only a few examples of plant cryptides playing an important role in plant defense have been reported to date, hence our knowledge about cryptic signals hidden in protein structure remains very limited. Moreover, little is known about how stress conditions influence the size of endogenous peptide pools, and which of these peptides themselves have biological functions is currently unclear. RESULTS: Here, we used mass spectrometry to comprehensively analyze the endogenous peptide pools generated from functionally active proteins inside the cell and in the secretome from the model plant Physcomitrella patens. Overall, we identified approximately 4,000 intracellular and approximately 500 secreted peptides. We found that the secretome and cellular peptidomes did not show significant overlap and that respective protein precursors have very different protein degradation patterns. We showed that treatment with the plant stress hormone methyl jasmonate induced specific proteolysis of new functional proteins and the release of bioactive peptides having an antimicrobial activity and capable to elicit the expression of plant defense genes. Finally, we showed that the inhibition of protease activity during methyl jasmonate treatment decreased the secretome antimicrobial potential, suggesting an important role of peptides released from proteins in immune response. CONCLUSIONS: Using mass-spectrometry, in vitro experiments and bioinformatics analysis, we found that methyl jasmonate acid induces significant changes in the peptide pools and that some of the resulting peptides possess antimicrobial and regulatory activities. Moreover, our study provides a list of peptides for further study of potential plant cryptides.


Subject(s)
Acetates/pharmacology , Anti-Infective Agents/metabolism , Bryopsida/metabolism , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Peptides/metabolism , Plant Growth Regulators/pharmacology , Anti-Infective Agents/isolation & purification , Bacillus subtilis/drug effects , Bryopsida/drug effects , Escherichia coli/drug effects , Mass Spectrometry , Microbial Sensitivity Tests , Peptides/isolation & purification
16.
Sci Total Environ ; 630: 203-210, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29477819

ABSTRACT

A study was undertaken to test the effects of molybdenum (Mo) and phosphorus (P) amendments on biological nitrogen (N) fixation (BNF) by boreal forest moss-associated cyanobacteria. Feather moss (Pleurozium schreberi) samples were collected on five sites, on two dates and at different roadside distances (0-100m) corresponding to an assumed gradient of reactive N deposition. Potential BNF of Mo and P amended moss samples was measured using the acetylene reduction assay. Total N, P and heavy metal concentrations of mosses collected at 0 and 100m from roadsides were also measured. Likewise, the needles from Norway spruce trees (Picea abies) at different roadside distances were collected in late summer and analyzed for total N, P and heavy metals. There was a significant increase in BNF with roadside distance on 7-of-10 individual Site×Date combinations. We found no clear evidence of an N gradient across roadside distances. Elemental analyses of feather moss and Norway spruce needle tissues suggested decreasing deposition of heavy metals (Mo-Co-Cr-Ni-V-Pb-Ag-Cu) as well as P with increasing distance from the roadside. The effects of Mo and P amendments on BNF were infrequent and inconsistent across roadside distances and across sites. One particular site, however, displayed greater concentrations of heavy metals near the roadside, as well as a steeper P fertility gradient with roadside distance, than the other sites. Here, BNF increased with roadside distance only when moss samples were amended with P. Also at this site, BNF across all roadside distances was higher when mosses were amended with both Mo and P, suggesting a co-limitation of these two nutrients in controlling BNF. In summary, our study showed a potential for car emissions to increase heavy metals and P along roadsides and underscored the putative roles of these anthropogenic pollutants on BNF in northern latitudes.


Subject(s)
Bryopsida/physiology , Environmental Monitoring , Metals, Heavy/analysis , Nitrogen Fixation/drug effects , Phosphorus/analysis , Bryophyta , Bryopsida/drug effects , Metals, Heavy/toxicity , Nitrogen/analysis , Norway , Phosphorus/toxicity , Taiga
17.
Molecules ; 23(1)2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29301383

ABSTRACT

Artemisinin is a natural sesquiterpene lactone obtained from the Artemisia annua herb. It is widely used for the treatment of malaria. In this article, we have reviewed the role of artemisinin in controlling malaria, spread of resistance to artemisinin and the different methods used for its large scale production. The highest amount of artemisinin gene expression in tobacco leaf chloroplast leads to the production of 0.8 mg/g of the dry weight of the plant. This will revolutionize the treatment and control of malaria in third world countries. Furthermore, the generations of novel derivatives of artemisinin- and trioxane ring structure-inspired compounds are important for the treatment of malaria caused by resistant plasmodial species. Synthetic endoperoxide-like artefenomel and its derivatives are crucial for the control of malaria and such synthetic compounds should be further explored.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Artemisinins/metabolism , Artemisinins/therapeutic use , Biotechnology/methods , Animals , Antimalarials/therapeutic use , Artemisia annua/chemistry , Artemisia annua/metabolism , Artemisinins/pharmacology , Bryopsida/metabolism , Drug Resistance, Microbial/drug effects , Humans , Plants, Genetically Modified/metabolism , Porifera/chemistry , Structure-Activity Relationship , Nicotiana/genetics , Nicotiana/metabolism
18.
Biochem J ; 474(22): 3705-3717, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28963347

ABSTRACT

Plants, fungi, and bacteria synthesize the aromatic amino acids: l-phenylalanine, l-tyrosine, and l-tryptophan. Chorismate mutase catalyzes the branch point reaction of phenylalanine and tyrosine biosynthesis to generate prephenate. In Arabidopsis thaliana, there are two plastid-localized chorismate mutases that are allosterically regulated (AtCM1 and AtCM3) and one cytosolic isoform (AtCM2) that is unregulated. Previous analysis of plant chorismate mutases suggested that the enzymes from early plants (i.e. bryophytes/moss, lycophytes, and basal angiosperms) formed a clade distinct from the isoforms found in flowering plants; however, no biochemical information on these enzymes is available. To understand the evolution of allosteric regulation in plant chorismate mutases, we analyzed a basal lineage of plant enzymes homologous to AtCM1 based on sequence similarity. The chorismate mutases from the moss/bryophyte Physcomitrella patens (PpCM1 and PpCM2), the lycophyte Selaginella moellendorffii (SmCM), and the basal angiosperm Amborella trichopoda (AmtCM1 and AmtCM2) were characterized biochemically. Tryptophan was a positive effector for each of the five enzymes examined. Histidine was a weak positive effector for PpCM1 and AmtCM1. Neither tyrosine nor phenylalanine altered the activity of SmCM; however, tyrosine was a negative regulator of the other four enzymes. Phenylalanine down-regulates both moss enzymes and AmtCM2. The 2.0 ŠX-ray crystal structure of PpCM1 in complex with the tryptophan identified the allosteric effector site and reveals structural differences between the R- (more active) and T-state (less active) forms of plant chorismate mutases. Molecular insight into the basal plant chorismate mutases guides our understanding of the evolution of allosteric regulation in these enzymes.


Subject(s)
Bryopsida , Chorismate Mutase/chemistry , Chorismate Mutase/genetics , Plant Extracts/chemistry , Plant Extracts/genetics , Selaginellaceae , Allosteric Regulation/physiology , Amino Acid Sequence , Arabidopsis , Chorismate Mutase/isolation & purification , Crystallography, X-Ray/methods , Evolution, Molecular , Plant Extracts/isolation & purification , Protein Structure, Secondary , Protein Structure, Tertiary
19.
J Nat Prod ; 80(6): 1791-1797, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28609099

ABSTRACT

Three new triketides, botrysphones A-C (1-3) and six new isopimarane-type diterpenoids, botrysphins A-F (4-9), together with the known triketides sphaeropsidone (10) and chlorosphaeropsidone (11) and diterpenoids sphaeropsidins A and B (12 and 13), were obtained from culture of the fungus Botrysphaeria laricina associated with the moss Rhodobryum umgiganteum. The structures of the new compounds were established on the basis of extensive spectroscopic techniques including HRMS and 1D and 2D NMR data. Compounds 7 and 12 showed significant quinone reductase inducing activity in Hepa 1c1c7 cells.


Subject(s)
Bryopsida/chemistry , Diterpenes/isolation & purification , Animals , Antineoplastic Agents, Phytogenic/chemistry , China , Diterpenes/chemistry , Diterpenes/pharmacology , Drug Screening Assays, Antitumor , Drugs, Chinese Herbal/chemistry , Mice , Molecular Structure , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , Nuclear Magnetic Resonance, Biomolecular , Polyketides
20.
Artif Cells Nanomed Biotechnol ; 45(7): 1363-1368, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28271902

ABSTRACT

In this presented work, Syntrichia papillosissima (Copp.) Loeske (S. papillosissima) was used as a natural phytosorbent for IgG purification. These moss species were collected for the natural habitat and prepared for IgG adsorption studies by cleaning, drying, and grinding to uniform size. Syntrichia papillosissima samples were characterized by using FTIR and SEM studies. Functional groups of S. papillosissima were identified by FTIR analysis, while surface characteristics were determined by SEM studies. A batch system was used for the adsorption of IgG onto S. papillosissima surface and physical conditions of the IgG adsorption medium were investigated by modifying the pH, IgG concentration and temperature. Maximum IgG adsorption onto S. papillosissima was found to be 68.01 mg/g moss by using pH 5.0 buffer system. Adsorption kinetic isotherms were also studied and it was found that, Langmuir adsorption model was appropriate for this adsorption study. Reusability profile of S. papillosissima was also investigated and IgG adsorption capacity did not decrease significantly after 5 reuse studies. Results indicated that S. papillosissima species have the capacity to be used as biosorbent for IgG purification, with its low cost, natural and biodegradable structure.


Subject(s)
Bryopsida/chemistry , Immunoglobulin G/chemistry , Plant Extracts/chemistry , Adsorption , Humans , Hydrogen-Ion Concentration , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL