Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Phytochem Anal ; 35(3): 579-585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38130156

ABSTRACT

INTRODUCTION: The active compound (E)-1-(3',4'-dimethoxyphenyl)butadiene (DMPBD) isolated from the rhizomes of Zingiber cassumunar Roxb. has potent anti-inflammatory and anticancer activities. Although DMPBD is one of the promising drug candidates for phytomedicine, its limited stability impedes its widespread use. For the development of new drugs, the assessment of their chemical stability is essential, ensuring they maintain their properties within specified limits throughout the period from production until use. OBJECTIVE: In the present study, we aimed to evaluate the stability of DMPBD under various conditions, including different solvents, temperatures, and lighting conditions, to identify the factors affecting stability and optimize the storage and handling conditions. METHODOLOGY: DMPBD samples subjected to the different conditions tested were monitored by quantitative 1H NMR (qHNMR), using an internal standard for the determination of the absolute quantity of DMPBD as a function of time and the changes thereof within 1 month. RESULTS: Significant decomposition of DMPBD was observed in chloroform-d1, whereas its content remained constant in methanol-d4. The content of DMPBD was maintained upon storage at temperatures below 4°C, both as methanolic solution and in the crude extract. Exposure to light had a slight negative impact on its contents. Some degradation products could be identified as resulting from O2-induced cleavage of the diene moiety. CONCLUSIONS: For pharmacological/therapeutic applications, DMPBD should be stored in the form of the crude extract or as a purified material in methanolic solution. Ideally, the storage temperature should be below 4°C and O2 should be excluded.


Subject(s)
Plant Extracts , Zingiberaceae , Plant Extracts/chemistry , Butadienes/analysis , Butadienes/pharmacology , Rhizome/chemistry , Zingiberaceae/chemistry
2.
Sci Total Environ ; 850: 157983, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35973540

ABSTRACT

Freshwater pollution is a huge concern. A study aiming to evaluate physico-chemical characteristics, microbiota, occurrence of two groups of persistent environmental pollutants with similar chemical properties (polycyclic aromatic hydrocarbons- PAHs and microplastics - MPs) in Alqueva's surface water was performed during 2021. Water samples were collected at three spots related to touristic activities (two beaches and one marina) during the Winter, Spring, Summer and Autumn seasons. In addition, the presence of biofilms on plastic and natural materials (stone, wood/ vegetal materials) were assessed and compared. Water quality based on physicochemical parameters was acceptable with a low eutrophication level. PAHs concentration levels were lower than the standard limits established for surface waters by international organizations. However, carcinogenic compounds were detected in two sampling locations, which can pose a problem for aquatic ecosystems. PAHs profiles showed significant differences when comparing the dry seasons with the rainy seasons, with a higher number of different compounds detected in Spring. Low molecular weigh compounds, usually associated with the atmospheric deposition and petroleum contamination, were more prevalent. MPs were detected in all samples except one during the Winter season. The polymers detected were poly(methyl-2-methylpropenoate), polystyrene, polyethylene terephthalate, polyamide, polypropylene, styrene butadiene, polyvinyl chloride and low /high density polyethylene with the last being the most frequent. Biofilms were more often detected on plastics than on natural materials. In addition, biofilms detected on plastics were more complex with higher microbial diversity (e.g., bacteria, fungi/yeast and phytoplancton organisms) and richer in extrapolymeric material. Based on morphological analysis a good agreement between microbiota and microorganism present in the biofilms was found. Among microbiota were identified microorganisms previously linked to plastic and PAHs detoxification suggesting the need for further studies to evaluate the viability of using biofilms as part of a green bioremediation strategy to mitigate water pollution.


Subject(s)
Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Biofilms , Butadienes/analysis , Ecosystem , Environmental Monitoring , Microplastics , Nylons , Petroleum/analysis , Plastics/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polyethylene/analysis , Polyethylene Terephthalates , Polypropylenes/analysis , Polystyrenes/analysis , Polyvinyl Chloride/analysis , Water Pollutants, Chemical/analysis
3.
Bioresour Technol ; 349: 126829, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35143984

ABSTRACT

This study attempted to remove acrylonitrile and acetophenone from simulated acrylonitrile butadiene styrene (ABS) based wastewater while recovering nitrogen and phosphorus using the carbohydrate-rich filamentous microalgae Tribonema sp.. Results showed that typical acetophenone and acrylonitrile presented significant inhibitory effect on Tribonema sp. growth and co-metabolism of CO2 improved the tolerance of Tribonema sp. to toxic pollutants. The microalgae biomass increased by 34.47% (3.16 g/L) and 58.17% (3.97 g/L) via supplementing 2% CO2 in the 100 mg/L acrylonitrile and acetophenone groups, respectively. The filamentous microalga was rich in carbohydrates and its productivity was further enhanced by 32.52% and 70.34%, respectively, in 100 mg/L acrylonitrile and acetophenone groups with 2% CO2 supplement. The synergistic CO2 supply strategy effectively enhanced the biomass production of filamentous microalgae, and moreover, improved the treatment efficiency of ABS based wastewater simulated by acetophenone or acrylonitrile addition, while at same time enhanced the recovery of nitrogen and phosphorus nutrients.


Subject(s)
Acrylonitrile , Microalgae , Biomass , Butadienes , Carbohydrates , Carbon Dioxide , Nitrogen/analysis , Nutrients , Phosphorus , Styrene , Wastewater
4.
Biomed Pharmacother ; 147: 112664, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35131655

ABSTRACT

The lymphatic vascular system is crucial for maintaining tissue fluid homeostasis and immune surveillance. Promoting lymphatic function represents a new strategy to treat several diseases including lymphedema, chronic inflammation and impaired wound healing. By screening a plant extract library, a petroleum ether extract from the aerial parts of Eupatorium perfoliatum (E. perfoliatum) was found to possess lymphangiogenic properties. With the aid of HPLC activity profiling the active compound was identified as pheophorbide a. Both plant extract and pheophorbide a induced the sprouting and tube formation of human primary lymphatic endothelial cells (LECs). The proliferation of the LECs was increased upon treatment with pheophorbide a but not the E. perfoliatum extract. Treatment with the MEK1/2 inhibitor U0126 reduced the LEC sprouting activity, indicating a potential mechanism of action. These studies suggest that pheophorbide a could represent novel natural therapeutic agent to treat human lymphatic vascular insufficiencies.


Subject(s)
Chlorophyll/analogs & derivatives , Endothelial Cells/drug effects , Eupatorium , Lymphangiogenesis/drug effects , Plant Extracts/pharmacology , Butadienes/pharmacology , Cell Line , Chlorophyll/pharmacology , Humans , Lymphatic Vessels/drug effects , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Nitriles/pharmacology
5.
Eur J Pharmacol ; 916: 174730, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34968462

ABSTRACT

Ulcerative colitis (UC) is a major inflammatory disease worldwide. We previously demonstrated that licorice residue flavones (LFs) showed satisfactory efficacy in the treatment of UC. Therefore, research into the ingredients of LFs may lead to the discovery of novel anti-UC targets. In the current study, we separated licoflavone B (LB) from LFs and administered it to dextran sodium sulfate (DSS)-exposed C57BL/6 mice for 14 days. Our results demonstrated that high dose LB (120 mg/kg) significantly prevented DSS-induced weight loss, disease activity index (DAI) increase, histological damage, and colonic inflammation, indicating that LB has ameliorative effects on UC. We also investigated the composition of the intestinal barrier and microflora in an attempt to explore the mechanisms of LB against UC. As a result, we found that LB preserved the integrity of the colonic barrier by inhibiting colonic cell apoptosis and protecting the expression of occludin, claudin-1, and ZO-1. Moreover, LB reshaped the microflora composition by suppressing harmful bacteria (Enterococcus et al.) and boosting beneficial microorganisms (Bacteroides et al.). Further molecular exploration implied that LB exerted anti-UC activity through blocking the MAPK pathway. Here, we explored anti-UC activity of LB for the first time and clarified its mechanisms. These results will provide valuable clues for the discovery of novel anti-UC agents.


Subject(s)
Colitis, Ulcerative , Colitis , Flavones , Gastrointestinal Microbiome , Glycyrrhiza , Animals , Butadienes , Colitis/pathology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colon , Dextran Sulfate/adverse effects , Disease Models, Animal , Flavones/pharmacology , Flavonoids/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Hemiterpenes , Intestinal Mucosa , Mice , Mice, Inbred C57BL , Sulfates
6.
Ecotoxicol Environ Saf ; 227: 112903, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34673417

ABSTRACT

As a new pollutant, microplastics have increasingly drawn public attention to its toxic behavior in the environment. The aim was to investigate the effect of styrene-butadiene-rubber microplastics (mSBR) with different degrees of aging on petroleum hydrocarbon (PHC) degrading bacteria in an environment with simultaneously existing pollutants. A series of experiments were carried out to investigate the changes in the physical and chemical properties of mSBR with aging and to examine the influence of these changes on the inhibition of PHC-degrading bacteria by mSBR in the vicinity of coexisting pollutants. The results showed that in the early stage of ultraviolet aging (10d), the particle surface shows wrinkles, but the structure is intact. After reaching the late stage of aging (20d), nano-scale fragments were generated on the surface of mSBR, the average particle size decreased from 3.074 µm to 2.297 µm, and the zeta potential increased from - 25.1 mV to - 33.1 mV. The inhibitory effect of bacteria is greater. At the same time, these changes in the physicochemical properties increase the adsorption effect of Cd by 20%, and also improve the stability of mSBR in solution, whereby bacterial growth is inhibited by inhibiting the LPO activity and protein concentration of PHC degrading bacteria.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Bacteria , Biodegradation, Environmental , Butadienes/toxicity , Elastomers , Hydrocarbons , Microplastics , Petroleum/toxicity , Plastics/toxicity , Styrenes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
Molecules ; 26(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34684771

ABSTRACT

Excessive host inflammation following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with severity and mortality in coronavirus disease 2019 (COVID-19). We recently reported that the SARS-CoV-2 spike protein S1 subunit (S1) induces pro-inflammatory responses by activating toll-like receptor 4 (TLR4) signaling in macrophages. A standardized extract of Asparagus officinalis stem (EAS) is a unique functional food that elicits anti-photoaging effects by suppressing pro-inflammatory signaling in hydrogen peroxide and ultraviolet B-exposed skin fibroblasts. To elucidate its potential in preventing excessive inflammation in COVID-19, we examined the effects of EAS on pro-inflammatory responses in S1-stimulated macrophages. Murine peritoneal exudate macrophages were co-treated with EAS and S1. Concentrations and mRNA levels of pro-inflammatory cytokines were assessed using enzyme-linked immunosorbent assay and reverse transcription and real-time polymerase chain reaction, respectively. Expression and phosphorylation levels of signaling proteins were analyzed using western blotting and fluorescence immunomicroscopy. EAS significantly attenuated S1-induced secretion of interleukin (IL)-6 in a concentration-dependent manner without reducing cell viability. EAS also markedly suppressed the S1-induced transcription of IL-6 and IL-1ß. However, among the TLR4 signaling proteins, EAS did not affect the degradation of inhibitor κBα, nuclear translocation of nuclear factor-κB p65 subunit, and phosphorylation of c-Jun N-terminal kinase p54 subunit after S1 exposure. In contrast, EAS significantly suppressed S1-induced phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) and Akt. Attenuation of S1-induced transcription of IL-6 and IL-1ß by the MAPK kinase inhibitor U0126 was greater than that by the Akt inhibitor perifosine, and the effects were potentiated by simultaneous treatment with both inhibitors. These results suggest that EAS attenuates S1-induced IL-6 and IL-1ß production by suppressing p44/42 MAPK and Akt signaling in macrophages. Therefore, EAS may be beneficial in regulating excessive inflammation in patients with COVID-19.


Subject(s)
Asparagus Plant/chemistry , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Macrophages/drug effects , Plant Extracts/pharmacology , Signal Transduction/drug effects , Animals , Asparagus Plant/metabolism , Butadienes/pharmacology , Cell Survival/drug effects , Interleukin-1beta/genetics , Interleukin-6/genetics , Macrophages/cytology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Nitriles/pharmacology , Phosphorylation/drug effects , Plant Extracts/chemistry , Plant Stems/chemistry , Plant Stems/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Spike Glycoprotein, Coronavirus/pharmacology , Toll-Like Receptor 4/metabolism , Transcription, Genetic/drug effects
8.
Environ Pollut ; 267: 115679, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33254661

ABSTRACT

Tropospheric ozone (O3) impairs physiological processes of plants while nitrogen (N) deposition may cause imbalances in soil N and other nutrients such as phosphorus (P) suggesting an increase of P demand for plants. However, the combined effect of O3, soil N and P on isoprene emission from leaves has never been tested. We therefore examined isoprene emission in leaves of Oxford poplar clone exposed to O3 (ambient, AA [35.0 nmol mol-1 as daily mean]; 1.5 × AA; 2.0 × AA), soil N (0 and 80 kg N ha-1) and soil P (0, 40 and 80 kg P ha-1) in July and September in a Free-Air Controlled Exposure (FACE) facility. We also investigated the response of isoprene emission to foliar N, P and abscisic acid (ABA) contents in September because the 2-C-methylerythritol-5-phosphate (MEP) pathway of isoprenoid biosynthesis produces ABA. We found that O3 increased isoprene emission in July, which was associated to increased dark respiration, suggesting an activation of metabolism against O3 stress as an initial response. However, O3 decreased isoprene emission in September which was associated to reduced net photosynthesis. In September, isoprene emission was positively correlated with leaf N content and negatively correlated with leaf P content in AA. However, no response of isoprene emission to foliar N and P was found in elevated O3, suggesting that the isoprene responses to foliar N and P depended on the O3 exposure levels. Isoprene emission rate in 1.5 × AA and 2.0 × AA increased with increasing leaf ABA content, indicating accelerated senescence of injured leaves to favor new leaf growth when high O3 and nutritional availability in the soil were combined. Even though foliar N and P usually act as a proxy for isoprene emission rate, the impact of recent abiotic factors such as O3 should be always considered for modeling isoprene emission under climate change.


Subject(s)
Ozone , Populus , Butadienes , Hemiterpenes , Nitrogen , Ozone/toxicity , Phosphorus , Photosynthesis , Plant Leaves
9.
Int J Mol Sci ; 21(18)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906784

ABSTRACT

The root bark of Morus has long been appreciated as an antiphlogistic, diuretic and expectorant drug in Chinese herbal medicine, albeit with barely known targets and mechanisms of action. In the 1970s, the development of analytic chemistry allowed for the discovery of morusin as one of 7 different isoprene flavonoid derivatives in the root bark of Morus. However, the remarkable antioxidant capacity of morusin with the unexpected potential for health benefits over the other flavonoid derivatives has recently sparked scientific interest in the biochemical identification of target proteins and signaling pathways and further clinical relevance. In this review, we discuss recent advances in the understanding of the functional roles of morusin in multiple biological processes such as inflammation, apoptosis, metabolism and autophagy. We also highlight recent in vivo and in vitro evidence on the clinical potential of morusin treatment for multiple human pathologies including inflammatory diseases, neurological disorders, diabetes, cancer and the underlying mechanisms.


Subject(s)
Flavonoids/metabolism , Flavonoids/pharmacology , Morus/metabolism , Antioxidants/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Butadienes/chemistry , Flavonoids/chemistry , Hemiterpenes/chemistry , Humans , Inflammation/drug therapy , Plant Bark/metabolism , Plant Extracts/pharmacology , Plant Roots/metabolism , Signal Transduction/drug effects , Stress, Physiological/drug effects
10.
J Cell Mol Med ; 24(18): 10924-10934, 2020 09.
Article in English | MEDLINE | ID: mdl-32794652

ABSTRACT

In the present study, we have investigated potential cardioprotective properties of Isosteviol analogue we recently synthesized and named JC105. Treatment of heart embryonic H9c2 cells with JC105 (10 µM) significantly increased survival of cells exposed to hypoxia-reoxygenation. JC105 (10 µM) activated ERK1/2, DRP1 and increased levels of cardioprotective SUR2A in hypoxia-reoxygenation, but did not have any effects on ERK1/2, DRP1 and/or SUR2A in normoxia. U0126 (10 µM) inhibited JC105-mediated phosphorylation of ERK1/2 and DRP1 without affecting AKT or AMPK, which were also not regulated by JC105. Seahorse bioenergetic analysis demonstrated that JC105 (10 µM) did not affect mitochondria at rest, but it counteracted all mitochondrial effects of hypoxia-reoxygenation. Cytoprotection afforded by JC105 was inhibited by U0126 (10 µM). Taken all together, these demonstrate that (a) JC105 protects H9c2 cells against hypoxia-reoxygenation and that (b) this effect is mediated via ERK1/2. The unique property of JC105 is that selectively activates ERK1/2 in cells exposed to stress, but not in cells under non-stress conditions.


Subject(s)
Cardiotonic Agents/therapeutic use , Cell Hypoxia/drug effects , Diterpenes, Kaurane/therapeutic use , MAP Kinase Signaling System/drug effects , Myocytes, Cardiac/drug effects , Oxygen/pharmacology , Animals , Butadienes/pharmacology , Cardiotonic Agents/pharmacology , Cell Hypoxia/physiology , Cell Line , Diterpenes, Kaurane/chemistry , Diterpenes, Kaurane/pharmacology , Dynamins/metabolism , Enzyme Activation/drug effects , Glycolysis/drug effects , Hydrogen-Ion Concentration , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Myocardial Reperfusion , Myocytes, Cardiac/enzymology , Nitriles/pharmacology , Oxygen Consumption/drug effects , Phosphorylation , Protein Processing, Post-Translational/drug effects , Rats
11.
Chemosphere ; 259: 127402, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32593819

ABSTRACT

Plastic waste has caused severe environmental problems. Some additives in plastics, like organophosphates, enter the environment with plastic waste, causing significant harm to plants and creatures. However, the primary method of recycling phosphorus-containing plastic, especially polycarbonate and acrylonitrile-butadiene-styrene copolymer (PC/ABS), is a mechanical method, which not only does not effectively separate plastics and organophosphates but also tends to cause polymer degradation during recycling. In order to overcome these problems, we proposed an efficient and sustainable approach to recycle of phosphorus-containing plastic. In this method, N, N-dimethylcyclohexylamine (DMCHA), a switchable hydrophilicity solvent (SHS), was used to react with and extract organophosphates in plastic, achieving the goal of complete separation of plastic and organophosphates. PC/ABS can be recovered by precipitation. Dissolved organophosphates can also be easily recovered due to the switching characteristics of SHS. Both of recovered materials were of high purity and were close to virgin materials. This technique is an easy and efficient approach to separate plastic and organophosphates, which has excellent application prospects in recycling phosphorus-containing plastic.


Subject(s)
Phosphorus/chemistry , Plastics/chemistry , Recycling/methods , Acrylonitrile , Butadienes , Hydrophobic and Hydrophilic Interactions , Polycarboxylate Cement , Polymers , Polystyrenes , Solvents
12.
Biochem Biophys Res Commun ; 525(3): 626-632, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32122653

ABSTRACT

BACKGROUND: When proliferating tumor cells expand to areas distant from vascular sites, poor diffusion of oxygen and nutrients occur, generating a restrictive hypoxic gradient in which susceptible tumor cells die. The heterogeneous population surviving hypoxia and metabolic starvation include de-differentiated cancer stem cells (CSC), capable of self-renewing tumor-initiating cells (TICs), or those that divide asymmetrically to produce non-tumor-initiating differentiated (NTI-D) cell progeny. Under such restrictive conditions, both populations slowly proliferate, entering quiescence or senescence, when exiting from cell cycle progression. This may drive chemoresistance and tumor recurrence, since most anti-cancer treatments target rapidly proliferating cells. PURPOSE: Since persistent or additional stress may increase NTI-D cells conversion to TICs, we investigated whether nutrient depletion or hypoxia influence expression of tyrosinase, a crucial enzyme for melanin synthesis, and B16 melanoma survival, when exposed to iron-dependent cell death oxidative stress produced by the Fenton reaction, resembling ferroptosis. RESULTS: -a) proliferating B16 melanoma with 10% serum-supplementation (10%S) normoxically express hypoxia inducible factor 1α (HIF1α) but lose tyrosinase, in contrast to those transiently exposed to (SF) serum-free medium, in which both HIF1α and tyrosinase are co-expressed; b) in contrast to the resistance to SNP toxicity in (SF) cells with higher tyrosinase expression, those in (10%S) are killed by iron from nitroprusside/ferricyanide (SNP) irrespective of exogenous H2O2, in a reaction antagonized by the anti-oxidant and MEK inhibitor UO126; c) Moreover, under transient serum depletion, SNP cooperates with hypoxia (1.5% oxygen), prolonging B16 melanoma (SF) survival; d) the hypoxia mimetic CoCl2 inhibits proliferation-associated cyclin A, irrespective of SNP, in (10%S) cells or in transiently serum-depleted (SF) cells. However, only in the latter cells, CoCl2 but not SNP, induce loss of HIF1α and apoptosis-associated PARP cleavage; e) longer term adaptation to survive serum depletion, generates (SS) cells resistant to SNP toxicity, which aerobically co-express HIF1α and tyrosinase. In SS B16 melanoma, exogenous non-toxic 100 µM H2O2 super-induces the ratio of tyrosinase to HIF1α. However, co-treatment of SS-B16 cells with SNP plus exogenous H2O2, partly increases PARP cleavage by reciprocally decreasing tyrosinase expression. SIGNIFICANCE: - These results suggest that a phenotypic plasticity in response to depletion of nutrients and/or oxygen, helps decide whether melanoma cells undergo either death by ferroptosis, or resistance to it, when challenged by the same exogenous oxidative stress (iron ± H2O2).


Subject(s)
Ferroptosis/drug effects , Melanoma, Experimental/pathology , Nitroprusside/pharmacology , Serum/metabolism , Animals , Butadienes/pharmacology , Cell Hypoxia/drug effects , Cell Survival/drug effects , Cobalt/pharmacology , Culture Media, Serum-Free , Cyclin A/metabolism , Hydrogen Peroxide/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Monophenol Monooxygenase/metabolism , Nitriles/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Transferrin/deficiency , Transferrin/metabolism
13.
Med Sci Monit ; 25: 6836-6845, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31509521

ABSTRACT

BACKGROUND Ginkgo biloba extract (EGb761), a standard extract of the Chinese traditional medicine Ginkgo biloba, plays an anti-tumor role in various cancers. However, whether EGb761 is involved in the invasion and metastasis of gastric cancer remains unclear. MATERIAL AND METHODS In the current study, cell viability assay, Western blotting, wound-healing assay, Transwell invasion assay, and orthotopic transplantation model were performed to explore the effects of EGb761 on gastric cancer. RESULTS In vitro, the results showed that EGb761 suppressed the proliferation of gastric cancer cells in a dose-dependent manner. Furthermore, the migration and invasiveness were weakened and the protein levels of p-ERK1/2, NF-kappaB P65, NF-kappaB p-P65, and MMP2 were decreased by EGb761 or U0126 (an inhibitor of ERK signaling pathway) exposure in gastric cancer cells. Moreover, the combined treatment with EGb761 and U0126 significantly inhibited ERK, NF-kappaB signaling pathway, and the expression of MMP2 than those of single drug. In vivo, EGb761 inhibited the tumor growth and hepatic metastasis of gastric cancer in the mouse model. Results of immunohistochemistry indicated that the expression of ERK1/2, NF-kappaB P65 and MMP2 were decreased by EGb761 in the tumor tissues. CONCLUSIONS EGb761 plays a vital role in the suppression of metastasis and ERK/NF-kappaB signaling pathway in gastric cancer.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , NF-kappa B/metabolism , Plant Extracts/therapeutic use , Signal Transduction , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Animals , Butadienes/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Ginkgo biloba , Humans , MAP Kinase Signaling System/drug effects , Matrix Metalloproteinase 2/metabolism , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Nitriles/pharmacology , Phosphorylation/drug effects , Signal Transduction/drug effects
14.
Sci Rep ; 9(1): 10482, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324835

ABSTRACT

Hidden Markov models representing 167 protein sequence families were used to infer the presence or absence of homologs within the transcriptomes of 183 algal species/strains. Statistical analyses of the distribution of HMM hits across major clades of algae, or at branch points on the phylogenetic tree of 98 chlorophytes, confirmed and extended known cases of metabolic loss and gain, most notably the loss of the mevalonate pathway for terpenoid synthesis in green algae but not, as we show here, in the streptophyte algae. Evidence for novel events was found as well, most remarkably in the recurrent and coordinated gain or loss of enzymes for the glyoxylate shunt. We find, as well, a curious pattern of retention (or re-gain) of HMG-CoA synthase in chlorophytes that have otherwise lost the mevalonate pathway, suggesting a novel, co-opted function for this enzyme in select lineages. Finally, we find striking, phylogenetically linked distributions of coding sequences for three pathways that synthesize the major membrane lipid phosphatidylcholine, and a complementary phylogenetic distribution pattern for the non-phospholipid DGTS (diacyl-glyceryl-trimethylhomoserine). Mass spectrometric analysis of lipids from 25 species was used to validate the inference of DGTS synthesis from sequence data.


Subject(s)
Chlorophyta/genetics , Streptophyta/genetics , Butadienes/metabolism , Chlorophyta/metabolism , Gene Expression Profiling , Glyoxylates/metabolism , Hemiterpenes/metabolism , Metabolic Networks and Pathways/genetics , Mevalonic Acid/metabolism , Phosphatidylcholines/metabolism , Phylogeny , Streptophyta/metabolism , Terpenes/metabolism
15.
Cytogenet Genome Res ; 158(1): 17-24, 2019.
Article in English | MEDLINE | ID: mdl-31261155

ABSTRACT

Osteoarthritis (OA) is a degenerative disease characterized by progressive articular cartilage destruction and joint marginal osteophyte formation with different degrees of synovitis. Docosahexaenoic acid (DHA) is an unsaturated fatty acid with anti-inflammatory, antioxidant, and antiapoptotic functions. In this study, the human chondrosarcoma cell line SW1353 was cultured in vitro, and an OA cell model was constructed with inflammatory factor IL-1ß stimulation. After cells were treated with DHA, cell apoptosis was measured. Western blot assay was used to detect protein expression of apoptosis-related factors (Bax, Bcl-2, and cleaved caspase-3) and mitogen-activated protein kinase (MAPK) signaling pathway family members, including extracellular signal-regulated kinase (ERK), c-JUN N-terminal kinase (JNK), and p38 MAPK. Our results show that IL-1ß promotes the apoptosis of SW1353 cells, increases the expression of Bax and cleaved caspase-3, and activates the MAPK signaling pathway. In contrast, DHA inhibits the expression of IL-1ß, inhibits IL-1ß-induced cell apoptosis, and has a certain inhibitory effect on the activation of the MAPK signaling pathway. When the MAPK signaling pathway is inhibited by its inhibitors, the effects of DHA on SW1353 cells are weakened. Thus, DHA enhances the apoptosis of SW1353 cells through the MAPK signaling pathway.


Subject(s)
Apoptosis/drug effects , Bone Neoplasms/pathology , Chondrosarcoma/pathology , Docosahexaenoic Acids/pharmacology , Interleukin-1beta/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Osteoarthritis/drug therapy , Apoptosis Regulatory Proteins/biosynthesis , Apoptosis Regulatory Proteins/genetics , Butadienes/pharmacology , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Enzyme Induction/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Interleukin-1beta/biosynthesis , Interleukin-1beta/genetics , Interleukin-1beta/pharmacology , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinases/biosynthesis , Mitogen-Activated Protein Kinases/genetics , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology
16.
Hepatol Int ; 13(4): 440-453, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31250351

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide. Chemotherapy is an alternative treatment for advanced HCCs, but chemo-resistance prevents cancer therapies from achieving stable and complete responses. Understanding the underlying mechanisms in chemo-resistance is critical to improve the efficacy of HCC. METHODS: The expression levels of Id-1 and CCN2 were detected in large cohorts of HCCs, and functional analyses of Id-1 and CCN2 were performed both in vitro and in vivo. cDNA microarrays were performed to evaluate the alterations of expression profiling of HCC cells with overexpression of CCN2. Finally, the role of downstream signaling of MAPK/Id-1 signaling pathway in oxaliplatin resistance were also explored. RESULTS: The increased expression of Id-1 and CCN2 were closely related to oxaliplatin resistance in HCC. Upregulation of CCN2 and Id-1 was independently associated with shorter survival and increased recurrence in HCC patients, and significantly enhanced oxaliplatin resistance and promoted lung metastasis in vivo, whereas knock-down of their expression significantly reversed the chemo-resistance and inhibited HCC cell stemness. cDNA microarrays and PCR revealed that Id-1 and MAPK pathway were the downstream signaling of CCN2. CCN2 significantly enhanced oxaliplatin resistance by activating the MAPK/Id-1 signaling pathway, and Id-1 could upregulate CCN2 in a positive feedback manner. CONCLUSIONS: CCN2/MAPK/Id-1 loop feedback amplification is involved in oxaliplatin resistance, and the combination of oxaliplatin with inhibitor of CCN2 or MAPK signaling could provide a promising approach to ameliorating oxaliplatin resistance in HCC.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Connective Tissue Growth Factor/metabolism , Liver Neoplasms/drug therapy , Oxaliplatin/therapeutic use , Adult , Aged , Animals , Biomarkers, Tumor/metabolism , Butadienes/pharmacology , Cell Line, Tumor , Down-Regulation/drug effects , Drug Resistance, Neoplasm , Feedback/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/physiology , Heterografts , Humans , MAP Kinase Signaling System/drug effects , Male , Mice, Nude , Middle Aged , Mitogen-Activated Protein Kinase 1/metabolism , Neoplasm Recurrence, Local , Neoplasm Transplantation , Neoplastic Stem Cells/drug effects , Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , RNA, Messenger/metabolism , Sorafenib/pharmacology , Up-Regulation/drug effects
17.
Drug Res (Stuttg) ; 69(8): 434-438, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30822796

ABSTRACT

Hexachlorobutadien is nephrotoxic agent in rodents. The mechanism of toxicity includes generation of free radicals, depletion of thiol groups and production of toxic metabolites. Antioxidant compounds may reduce HCBD-nephrotoxicity. In this research we investigated the effect of Rheum turkeatanicum extract against HCBD-toxicity. The animals were divided to 4 groups which were including control (saline, 1 mL/kg), HCBD (100 mg/kg) and treatment groups which received extract at doses 100 and 200 mg/kg. The extract were administered as intraperitoneally (i.p.) 1 h before HCBD injection (i.p.). The animals were anesthetized by ether, 24 h after HCBD administration. The results showed elevation of serum creatinine, serum urea, urinary protein, urinary glucose, malondialdehyde levels in kidney and reduction of thiol in kidney by HCBD. The histopathological studies showed that there was apoptosis and necrosis in HCBD treated groups. Administration of R.turkestanicum reduced HCBD toxicity. The extract reduced hitopathological changes in kidney. It may be concluded that the nephroprotective effect of extract may be due to different mechanisms such as antioxidant activity or by decreasing the toxic metabolites of HCBD or inhibition of enzymes which are involved in the bioactivation of HCBD such as glutathione-S-transferase (GST) or cysteine-S-conjugate ß-lyase.


Subject(s)
Butadienes/toxicity , Fungicides, Industrial/toxicity , Kidney Diseases/chemically induced , Kidney/drug effects , Plant Extracts/therapeutic use , Rheum/chemistry , Animals , Glycosuria/chemically induced , Kidney Diseases/drug therapy , Male , Proteinuria/chemically induced , Rats , Rats, Wistar
18.
Mediators Inflamm ; 2019: 6085801, 2019.
Article in English | MEDLINE | ID: mdl-30918469

ABSTRACT

IL-37 is an immunomodulatory cytokine that suppresses inflammation in various cell types and disease models. However, its role in keratinocytes has not been clearly understood, and there has been no report on the agents that can increase the expression of IL-37 in keratinocytes. In this study, we investigated the effects of silencing IL37 in HaCaT keratinocytes and the molecular mechanisms involved in the upregulation of IL-37 by PG102, a water-soluble extract from Actinidia arguta. It was found that knockdown of IL37 resulted in the augmented expression of antimicrobial peptides (AMPs) in response to cytokine stimulation. PG102 increased the expression of IL-37 at both mRNA and protein levels presumably by enhancing the phosphorylation of Smad3, ERK, and p38. Indeed, when cells were treated with specific inhibitors for these signaling molecules, the expression level of IL-37 was reduced. PG102 also promoted colocalization of phospho-Smad3 and IL-37. Our results suggest that IL-37 inhibits the expression of AMPs and that PG102 upregulates IL-37 through p38, ERK, and Smad3 pathways in HaCaT cells.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-1/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Plant Extracts/pharmacology , Smad3 Protein/metabolism , Butadienes/pharmacology , Cell Line , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Humans , Imidazoles/pharmacology , Isoquinolines/pharmacology , Nitriles/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Up-Regulation
19.
Med Sci Monit Basic Res ; 25: 26-32, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30700692

ABSTRACT

BACKGROUND The aim of this study was to investigate the effects of electroacupuncture (EA) on expression of the D1 receptor (D1R), phosphorylation of extracellular-regulated protein kinase 1/2 (p-ERK1/2) and c-Fos in the insular cortex (IC) of ketamine-addicted rats. MATERIAL AND METHODS Sprague-Dawley rats were randomly divided into 7 groups: the normal group, the normal saline (NS) group, the ketamine (Ket) group, the U0126+Ket group, the SCH23390+Ket group, the Ket+acupoints EA (EA1) group, and the Ket+ non-acupoints EA (EA2) group. We used immunohistochemistry to detect the expression of D1R, p-ERK1/2, and c-Fos. We also used Nissl staining techniques to study the morphology of IC neurons. RESULTS Our study demonstrated that the ketamine group had sparsely distributed neurons, large intracellular vacuoles, nuclei shift, and unclear nucleolus. The number of Nissl-positive (neuronal) cells in the ketamine group were decreased than in the normal group. Our results also indicated that there was significantly lower expression of D1R, p-ERK1/2, and c-Fos in the IC of the U0126+Ket group, SCH23390+Ket group, and Ket+EA1 group as compared with that of the Ket group. CONCLUSIONS Ketamine addiction induces c-Fos overexpression in the IC by increasing the expression of D1R and p-ERK1/2. Acupoints EA downregulate D1R and p-ERK1/2 by reducing the overexpression of c-Fos.


Subject(s)
Cerebral Cortex/metabolism , MAP Kinase Signaling System/drug effects , Receptors, Dopamine D1/drug effects , Acupuncture Points , Animals , Butadienes/pharmacology , Electroacupuncture/methods , Genes, fos/drug effects , Genes, fos/physiology , Ketamine/pharmacology , MAP Kinase Signaling System/physiology , Male , Neurons/drug effects , Nitriles/pharmacology , Phosphorylation , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1/metabolism
20.
J Cell Biochem ; 120(1): 321-331, 2019 01.
Article in English | MEDLINE | ID: mdl-30171713

ABSTRACT

OBJECTIVE: We aimed to find out the underlying mechanism of forskolin (Fsk) and 3-isobutyl-1-methylxanthine (IBMX) on glioma stem cells (GSCs). METHODS: The expression of cAMP-related protein CREB and pCREB as well as apoptosis-related proteins were detected through Western blot analysis. The level of proliferation and growth rate of human GSCs was measured through thiazolyl blue tetrazolium bromide assay and stem cells forming sphere assay. The apoptosis-related gene expression was measured through reverse transcription-polymerase chain reaction. RESULTS: cAMP signaling pathway was activated in GSCs with Fsk-IBMX administration. Fsk-IBMX could inhibit the proliferation as well as invasion and promote the apoptosis of U87 cells. Besides, U0126 could inhibit MAPK signaling pathway to increase the sensitivity of GSCs to cAMP signaling pathway. As a result, Fsk-IBMX combined with U0126 had more negative effect on GSCs. CONCLUSIONS: The relationship of cAMP and MAPK signaling pathway in GSCs may provide a potential therapeutic strategy in glioma.


Subject(s)
1-Methyl-3-isobutylxanthine/pharmacology , Apoptosis/drug effects , Brain Neoplasms/metabolism , Cell Proliferation/drug effects , Colforsin/pharmacology , Cyclic AMP/metabolism , Glioma/metabolism , Neoplastic Stem Cells/metabolism , Plant Extracts/pharmacology , Apoptosis/genetics , Brain Neoplasms/pathology , Butadienes/pharmacology , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/metabolism , Glioma/pathology , Humans , Mitogen-Activated Protein Kinases/metabolism , Nitriles/pharmacology , Plant Roots/chemistry , Plectranthus/chemistry , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL