Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 868
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Gut Microbes ; 16(1): 2337317, 2024.
Article in English | MEDLINE | ID: mdl-38619316

ABSTRACT

The diet during pregnancy, or antenatal diet, influences the offspring's intestinal health. We previously showed that antenatal butyrate supplementation reduces injury in adult murine offspring with dextran sulfate sodium (DSS)-induced colitis. Potential modulators of butyrate levels in the intestine include a high fiber diet or dietary supplementation with probiotics. To test this, we supplemented the diet of pregnant mice with high fiber, or with the probiotic bacteria Lactococcus lactis subspecies cremoris or Lactobacillus rhamnosus GG. We then induced chronic colitis with DSS in their adult offspring. We demonstrate that a high fiber antenatal diet, or supplementation with Lactococcus lactis subspecies cremoris during pregnancy diminished the injury from DSS-induced colitis in offspring. These data are evidence that antenatal dietary interventions impact offspring gut health and define the antenatal diet as a therapeutic modality to enhance offspring intestinal health.


Subject(s)
Colitis , Gastrointestinal Microbiome , Lactococcus lactis , Lactococcus , Female , Pregnancy , Animals , Mice , Lactococcus lactis/genetics , Dietary Supplements , Butyrates
2.
PLoS One ; 19(4): e0299198, 2024.
Article in English | MEDLINE | ID: mdl-38635661

ABSTRACT

Herpesviruses have two distinct life cycle stages, latency and lytic replication. Epstein-Barr virus (EBV), a gamma-herpesvirus, establishes latency in vivo and in cultured cells. Cell lines harboring latent EBV can be induced into the lytic cycle by treatment with chemical inducing agents. In the Burkitt lymphoma cell line HH514-16 the viral lytic cycle is triggered by butyrate, a histone deacetylase (HDAC) inhibitor. Butyrate also alters expression of thousands of cellular genes. However, valproic acid (VPA), another HDAC inhibitor with global effects on cellular gene expression blocks EBV lytic gene expression in Burkitt lymphoma cell lines. Valpromide (VPM), an amide derivative of VPA, is not an HDAC inhibitor, but like VPA blocks induction of the EBV lytic cycle. VPA and VPM are the first examples of inhibitors of initial stages of lytic reactivation. We compared the effects of VPA and VPM, alone and in combination with butyrate, on host cellular gene expression using whole transcriptome analysis (RNA-seq). Gene expression was analyzed 6 h after addition of the compounds, a time before the first EBV lytic transcripts are detected. The results address two alternative, yet possibly complementary, mechanisms for regulation of EBV lytic reactivation. First, cellular genes that were up- or down-regulated by butyrate, but no longer altered in the presence of VPA or VPM, represent genes that correlated with EBV lytic reactivation. Second, genes regulated similarly by VPA and VPM in the absence and presence of butyrate are candidates for suppressors of EBV reactivation. Two genes upregulated by the lytic cycle inhibitors, CHAC1 and SLC7A11, are related to redox status and the iron-dependent cell death pathway ferroptosis. This study generates new hypotheses for control of the latency to lytic cycle switch of EBV and provides the first description of effects of the anti-convulsant drug VPM on global human cellular gene expression.


Subject(s)
Burkitt Lymphoma , Epstein-Barr Virus Infections , Valproic Acid/analogs & derivatives , Humans , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/genetics , Herpesvirus 4, Human/physiology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/metabolism , Epstein-Barr Virus Infections/drug therapy , Virus Activation , Gene Expression Profiling , Butyrates/pharmacology
3.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38513071

ABSTRACT

This experiment was conducted to evaluate the effects of including a mixed-dimensional attapulgite clay (MDA) into a naturally moldly diet for Hu lambs. Fifty male Hu lambs with similar initial body weight (28.24 ±â€…1.80 kg) were randomly allocated into five dietary treatments: a basal diet containing naturally occurring mycotoxins with 0, 0.5, 1.0, and 2.0 kg/t MDA, and basal diet with a commercial mycotoxin adsorbent Solis with montmorillonite as the major component at 1 kg/t. Both MDA and Solis increased average daily gain (ADG) and dry matter intake (DMI; P ≤ 0.004), and there was no difference in growth performance between MDA and Solis (P ≥ 0.26). The final body weight, DMI, and ADG were linearly increased with increasing MDA supplementation (P < 0.01). Lambs treated with both MDA and Solis demonstrated greater apparent digestibility of dry matter (DM), organic matter (OM), and energy compared with the control group (P ≤ 0.03), and there were no differences in nutrient digestibilities between MDA and Solis (P ≥ 0.38). Digestibility of CP was linearly increased with the increasing MDA supplementation (P = 0.01). Neither MDA nor Solis affected rumen total volatile fatty acid (TVFA) concentration (P ≥ 0.39), but decreased the acetate-to-propionate ratio and molar proportion of n-butyrate (P ≤ 0.01), and MDA also increased the concentration of ammonia (P = 0.003). Besides, increasing MDA supplementation linearly reduced the acetate-to-propionate ratio and molar proportion of n-butyrate (P = 0.01), but linearly and quadratically increased the concentration of ammonia (P ≥ 0.003). These results showed that the incorporation of MDA into a naturally moldy diet of Hu lambs yielded comparable results to the Solis product, with higher growth performance and nutrient digestibility but lower acetate-to-propionate ratio observed. In conclusion, including ≥ 1 kg/t of MDA in high mycotoxin risk diets for growing lambs improves feed intake and rumen fermentation.


The issue of mycotoxin-contaminated animal feed has consistently presented a significant challenge in relation to animal health and production. The mixed-dimensional attapulgite clay (MDA) has been proven effective in binding polar mycotoxins such as aflatoxin, while also effectively adsorbing hydrophobic or weakly polar mycotoxins such as zearalenone (ZEN) and ochratoxin. Therefore, this study was undertaken to assess the impact of MDA inclusion in mycotoxin-contaminated diets on performance and rumen fermentation variables in lambs. The results indicated that MDA not only significantly improved the growth performance and nutrient digestibility of Hu lambs but also enhanced the molar proportion of propionate and ammonia concentration, and reduced the acetate to propionate ratio and the molar proportion of n-butyrate.


Subject(s)
Magnesium Compounds , Mycotoxins , Rumen , Silicon Compounds , Sheep , Animals , Male , Clay , Rumen/metabolism , Propionates/metabolism , Fermentation , Ammonia/metabolism , Digestion , Diet/veterinary , Sheep, Domestic , Eating , Acetates/metabolism , Butyrates/metabolism , Body Weight , Animal Feed/analysis
4.
Phytomedicine ; 128: 155536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513379

ABSTRACT

BACKGROUND: Lung cancer, a chronic and heterogeneous disease, is the leading cause of cancer-related death on a global scale. Presently, despite a variety of available treatments, their effectiveness is limited, often resulting in considerable toxicity and adverse effects. Additionally, the development of chemoresistance in cancer cells poses a challenge. Trilobolide-6-O-isobutyrate (TBB), a natural sesquiterpene lactone extracted from Sphagneticola trilobata, has exhibited antitumor effects. Its pharmacological properties in NSCLC lung cancer, however, have not been explored. PURPOSE: This study evaluated the impact of TBB on the A549 and NCI-H460 tumor cell lines in vitro, examining its antiproliferative properties and initial mechanisms of cell death. METHODS: TBB, obtained at 98 % purity from S. trilobata leaves, was characterized using chromatographic techniques. Subsequently, its impact on inhibiting tumor cell proliferation in vitro, TBB-induced cytotoxicity in LLC-MK2, THP-1, AMJ2-C11 cells, as well as its effects on sheep erythrocytes, and the underlying mechanisms of cell death, were assessed. RESULTS: In silico predictions have shown promising drug-likeness potential for TBB, indicating high oral bioavailability and intestinal absorption. Treatment of A549 and NCI-H460 human tumor cells with TBB demonstrated a direct impact, inducing significant morphological and structural alterations. TBB also reduced migratory capacity without causing toxicity at lower concentrations to LLC-MK2, THP-1 and AMJ2-C11 cell lines. This antiproliferative effect correlated with elevated oxidative stress, characterized by increased levels of ROS, superoxide anion radicals and NO, accompanied by a decrease in antioxidant markers: SOD and GSH. TBB-stress-induced led to changes in cell metabolism, fostering the accumulation of lipid droplets and autophagic vacuoles. Stress also resulted in compromised mitochondrial integrity, a crucial aspect of cellular function. Additionally, TBB prompted apoptosis-like cell death through activation of caspase 3/7 stressors. CONCLUSION: These findings underscore the potential of TBB as a promising candidate for future studies and suggest its viability as an additional component in the development of novel anticancer drugs prototypes.


Subject(s)
Butyrates , Lung Neoplasms , Sesquiterpenes , Sesquiterpenes/pharmacology , Butyrates/pharmacology , Tracheophyta/chemistry , Cell Line, Tumor , Lung Neoplasms/drug therapy , Humans , A549 Cells , THP-1 Cells , Toxicity Tests , Cell Movement/drug effects , Caspase 3/metabolism , Caspase 7/metabolism , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Animals
5.
Int J Mol Sci ; 25(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542173

ABSTRACT

This study aimed to investigate the effects of fermented corn-soybean meal mixed feed (FMF) on growth performance, intestinal barrier function, gut microbiota and short-chain fatty acids in weaned piglets. A total of 128 weaned piglets [Duroc×(Landrace×Yorkshire), male, 21-day-old] were randomly allocated to four groups. Piglets were fed a control diet (CON) or the control diet supplemented with 10%, 50% or 100% FMF (FMF-10, FMF-50 or FMF-100, respectively) for 14 d. The results showed that the FMF-100 group had higher average daily gain and average daily feed intake and lower diarrhea incidence than the CON group (p < 0.05). The FMF-50 and FMF-100 groups had greater villus height in the duodenum and jejunum, and the FMF-10 and FMF-100 groups had higher villus height-to-crypt depth ratio in the duodenum and jejunum than the CON group. Additionally, the FMF-100 group had higher protein expression of duodenal, jejunal and ileal ZO-1 and jejunal claudin-1; higher mRNA expression of duodenal and ileal TJP1 and jejunal CLDN1 and IL10; and lower jejunal IL1B mRNA expression (p < 0.05). The FMF-50 group showed higher jejunal ZO-1 and claudin-1 protein levels, higher mRNA expression levels of IL10 and TJP1 and lower levels of TNF in the jejunum; the FMF-10 group had higher mRNA expression levels of IL10 and lower levels of TNF in the jejunum than the CON group (p < 0.05). Furthermore, the FMF-10 and FMF-50 groups had higher colonic Lactobacillus abundance and butyrate levels; the FMF-100 group had higher abundance of colonic butyrate, Lactobacillus and Faecalibacterium than the CON group (p < 0.05). Collectively, our results suggest that FMF could improve intestinal mucosal barrier function, gut microbiota and their metabolites, thereby enhancing average daily gain and reducing diarrhea incidence in weaned piglets.


Subject(s)
Gastrointestinal Microbiome , Zea mays , Swine , Animals , Male , Interleukin-10 , Intestinal Barrier Function , Glycine max , Claudin-1 , Flour , Incidence , Dietary Supplements , Diarrhea/prevention & control , Diarrhea/veterinary , RNA, Messenger , Butyrates
6.
NPJ Biofilms Microbiomes ; 10(1): 18, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448452

ABSTRACT

Cranberry is associated with multiple health benefits, which are mostly attributed to its high content of (poly)phenols, particularly flavan-3-ols. However, clinical trials attempting to demonstrate these positive effects have yielded heterogeneous results, partly due to the high inter-individual variability associated with gut microbiota interaction with these molecules. In fact, several studies have demonstrated the ability of these molecules to modulate the gut microbiota in animal and in vitro models, but there is a scarcity of information in human subjects. In addition, it has been recently reported that cranberry also contains high concentrations of oligosaccharides, which could contribute to its bioactivity. Hence, the aim of this study was to fully characterize the (poly)phenolic and oligosaccharidic contents of a commercially available cranberry extract and evaluate its capacity to positively modulate the gut microbiota of 28 human subjects. After only four days, the (poly)phenols and oligosaccharides-rich cranberry extract, induced a strong bifidogenic effect, along with an increase in the abundance of several butyrate-producing bacteria, such as Clostridium and Anaerobutyricum. Plasmatic and fecal short-chain fatty acids profiles were also altered by the cranberry extract with a decrease in acetate ratio and an increase in butyrate ratio. Finally, to characterize the inter-individual variability, we stratified the participants according to the alterations observed in the fecal microbiota following supplementation. Interestingly, individuals having a microbiota characterized by the presence of Prevotella benefited from an increase in Faecalibacterium with the cranberry extract supplementation.


Subject(s)
Gastrointestinal Microbiome , Vaccinium macrocarpon , Animals , Humans , Butyrates , Phenols , Plant Extracts/pharmacology , Oligosaccharides , Dietary Supplements
7.
J Nutr Biochem ; 127: 109590, 2024 May.
Article in English | MEDLINE | ID: mdl-38311045

ABSTRACT

The role of the muscle circadian clock in regulating oxidative metabolism exerts a significant influence on whole-body energy metabolism; however, research on the connection between the muscle circadian clock and obesity is limited. Moreover, there is a lack of studies demonstrating the regulatory effects of dietary butyrate on muscle circadian clock and the resulting antiobesity effects. This study aimed to investigate the impacts of dietary butyrate on metabolic and microbiome alterations and muscle circadian clock in a diet-induced obesity model. Male Sprague-Dawley rats were fed a high-fat diet with or without butyrate. Gut microbiota and serum metabolome were analyzed, and molecular changes were examined using tissues and a cell line. Further correlation analysis was performed on butyrate-induced results. Butyrate supplementation reduced weight gain, even with increased food intake. Gut microbiome analysis revealed an increased abundance of Firmicutes in butyrate group. Serum metabolite profile in butyrate group exhibited reduced amino acid and increased fatty acid content. Muscle circadian clock genes were upregulated, resulting in increased transcription of fatty acid oxidation-related genes. In myoblast cells, butyrate also enhanced pan-histone acetylation via histone deacetylase inhibition, particularly modulating acetylation at the promoter of circadian clock genes. Correlation analysis revealed potential links between Firmicutes phylum, including certain genera within it, and butyrate-induced molecular changes in muscle as well as phenotypic alterations. The butyrate-driven effects on diet-induced obesity were associated with alterations in gut microbiota and a muscle-specific increase in histone acetylation, leading to the transcriptional activation of circadian clock genes and their controlled genes.


Subject(s)
Circadian Clocks , Gastrointestinal Microbiome , Animals , Rats , Male , Circadian Clocks/genetics , Butyrates/pharmacology , Butyrates/metabolism , Histones/metabolism , Epigenesis, Genetic , Rats, Sprague-Dawley , Obesity/metabolism , Diet, High-Fat/adverse effects , Fatty Acids/metabolism
8.
Food Chem ; 445: 138754, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38364496

ABSTRACT

The antioxidant activity of curcumin and curcumin esters was investigated in oleogel and emulgel produced by linseed oil. In the initiation phase, curcumin acetate at 1.086 mM concentration showed the highest antioxidant activity in linseed oil, while curcumin at 2.172 mM concentration showed the highest antioxidant activity in oleogel. In the propagation phase, curcumin and curcumin esters exhibited higher efficiency in linseed oil samples than those of oleogel samples. In the initiation phase, curcumin hexanoate showed higher antioxidant activity than curcumin acetate and curcumin butyrate, while curcumin hexanoate showed lower efficiency than curcumin acetate and curcumin butyrate in the propagation phase. Investigating the mechanism of action of curcumin and curcumin esters in oleogel and emulgel showed that in addition to inhibiting peroxyl radicals, curcumin and curcumin esters were likely to pro-oxidatively attack hydroperoxides. Also, curcumin and curcumin esters radicals were likely to attack lipid substrates in these systems.


Subject(s)
Antioxidants , Curcumin , Antioxidants/pharmacology , Linseed Oil/pharmacology , Curcumin/pharmacology , Caproates , Esters , Butyrates , Acetates , Organic Chemicals
9.
Gut Microbes ; 16(1): 2316575, 2024.
Article in English | MEDLINE | ID: mdl-38381494

ABSTRACT

Intestinal microbiota dysbiosis and metabolic disruption are considered essential characteristics in inflammatory bowel disorders (IBD). Reasonable butyrate supplementation can help patients regulate intestinal flora structure and promote mucosal repair. Here, to restore microbiota homeostasis and butyrate levels in the patient's intestines, we modified the genome of Saccharomyces cerevisiae to produce butyrate. We precisely regulated the relevant metabolic pathways to enable the yeast to produce sufficient butyrate in the intestine with uneven oxygen distribution. A series of engineered strains with different butyrate synthesis abilities was constructed to meet the needs of different patients, and the strongest can reach 1.8 g/L title of butyrate. Next, this series of strains was used to co-cultivate with gut microbiota collected from patients with mild-to-moderate ulcerative colitis. After receiving treatment with engineered strains, the gut microbiota and the butyrate content have been regulated to varying degrees depending on the synthetic ability of the strain. The abundance of probiotics such as Bifidobacterium and Lactobacillus increased, while the abundance of harmful bacteria like Candidatus Bacilloplasma decreased. Meanwhile, the series of butyrate-producing yeast significantly improved trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice by restoring butyrate content. Among the series of engineered yeasts, the strain with the second-highest butyrate synthesis ability showed the most significant regulatory and the best therapeutic effect on the gut microbiota from IBD patients and the colitis mouse model. This study confirmed the existence of a therapeutic window for IBD treatment by supplementing butyrate, and it is necessary to restore butyrate levels according to the actual situation of patients to restore intestinal flora.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Animals , Mice , Saccharomyces cerevisiae/genetics , Butyrates , Inflammatory Bowel Diseases/drug therapy , Dysbiosis , Dietary Supplements
10.
Gut Microbes ; 16(1): 2307542, 2024.
Article in English | MEDLINE | ID: mdl-38319728

ABSTRACT

The gut microbiota and Short-chain fatty acids (SCFAs) can influence the progression of diseases, yet the role of these factors on gastric cancer (GC) remains uncertain. In this work, the analysis of the gut microbiota composition and SCFA content in the blood and feces of both healthy individuals and GC patients indicated that significant reductions in the abundance of intestinal bacteria involved in SCFA production were observed in GC patients compared with the controls. ABX mice transplanted with fecal microbiota from GC patients developed more tumors during the induction of GC and had lower levels of butyric acid. Supplementation of butyrate during the induction of gastric cancer along with H. pylori and N-methyl-N-nitrosourea (MNU) in WT in GPR109A-/-mice resulted in fewer tumors and more IFN-γ+ CD8+ T cells, but this effect was significantly weakened after knockout of GPR109A. Furthermore, In vitro GC cells and co-cultured CD8+ T cells or CAR-Claudin 18.2+ CD8+ T cells, as well as in vivo tumor-bearing studies, have indicated that butyrate enhanced the killing function of CD8+ T cells or CAR-Claudin 18.2+ CD8+ T cells against GC cells through G protein-coupled receptor 109A (GPR109A) and homologous domain protein homologous box (HOPX). Together, these data highlighted that the restoration of gut microbial butyrate enhanced CD8+ T cell cytotoxicity via GPR109A/HOPX, thus inhibiting GC carcinogenesis, which suggests a novel theoretical foundation for GC management against GC.


Subject(s)
Gastrointestinal Microbiome , Stomach Neoplasms , Humans , Mice , Animals , Butyrates/metabolism , Gastrointestinal Microbiome/physiology , CD8-Positive T-Lymphocytes , Fatty Acids, Volatile/metabolism , Butyric Acid , Claudins
11.
Adv Sci (Weinh) ; 11(12): e2306571, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38235606

ABSTRACT

Most patients with inflammatory bowel disease (IBD) develop anemia, which is attributed to the dysregulation of iron metabolism. Reciprocally, impaired iron homeostasis also aggravates inflammation. How this iron-mediated, pathogenic anemia-inflammation crosstalk is regulated in the gut remains elusive. Herein, it is for the first time revealed that anemic IBD patients exhibit impaired production of short-chain fatty acids (SCFAs), particularly butyrate. Butyrate supplementation restores iron metabolism in multiple anemia models. Mechanistically, butyrate upregulates ferroportin (FPN) expression in macrophages by reducing the enrichment of histone deacetylase (HDAC) at the Slc40a1 promoter, thereby facilitating iron export. By preventing iron sequestration, butyrate not only mitigates colitis-induced anemia but also reduces TNF-α production in macrophages. Consistently, macrophage-conditional FPN knockout mice exhibit more severe anemia and inflammation. Finally, it is revealed that macrophage iron overload impairs the therapeutic effectiveness of anti-TNF-α antibodies in colitis, which can be reversed by butyrate supplementation. Hence, this study uncovers the pivotal role of butyrate in preventing the pathogenic circuit between anemia and inflammation.


Subject(s)
Anemia , Colitis , Inflammatory Bowel Diseases , Humans , Mice , Animals , Iron/metabolism , Butyrates/metabolism , Butyrates/pharmacology , Tumor Necrosis Factor Inhibitors/metabolism , Inflammation/metabolism , Anemia/metabolism , Macrophages/metabolism , Mice, Knockout
12.
J Dermatolog Treat ; 35(1): 2299107, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38164791

ABSTRACT

Objectives:We aimed to explore the potential role of omega-3 (ω-3) fatty acids on acne vulgaris by modulating gut microbiota.Materials and Methods:We randomly divided the untreated acne patients into two groups with or without ω-3 fatty acids intervention for 12 weeks. The Sprague Dawley (SD) rats with acne model were given isotretinoin, ω-3 fatty acids or their combination respectively. Then the colonic contents samples of the drug intervention SD rats were transferred to the pseudo sterile rats with acne model. The severity of the disease was assessed by the Global Acne Grading System (GAGS) score of the patients, and the swelling rate of auricle and the pathological section of the rat with acne model. The 16S rDNA gene sequencing was performed to detect the alteration of the gut microbiota.Results:ω-3 fatty acids could increase the diversity of the gut microbiota and regulate the flora structure positively both in the patients and rats, increase the abundance of butyric acid producing bacteria and GAGS score in the patients, and alleviate the inflammation and comedones of rats.Conclusion:Supplementation of ω-3 fatty acids could alleviate the inflammation of acne vulgaris by increasing the abundance of butyric acid producing bacteria.


Subject(s)
Acne Vulgaris , Fatty Acids, Omega-3 , Gastrointestinal Microbiome , Animals , Humans , Rats , Acne Vulgaris/microbiology , Adjuvants, Immunologic , Butyrates/therapeutic use , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Inflammation/drug therapy , Rats, Sprague-Dawley
13.
Carbohydr Polym ; 329: 121789, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38286556

ABSTRACT

Pectin, predominantly present within plant cell walls, is a dietary fiber that potentially induces distinct health effects depending on its molecular structure. Such structure-dependent health effects of pectin-derived galacturonic acid oligosaccharides (GalA-OS) are yet largely unknown. This study describes the influence of methyl-esterification and ∆4,5-unsaturation of GalA-OS through defined sets of GalA-OS made from pectin using defined pectinases, on the fermentability by individual fecal inocula. The metabolite production, OS utilization, quantity and size, methyl-esterification and saturation of remaining GalA-OS were monitored during the fermentation of GalA-OS. Fermentation of all GalA-OS predominantly induced the production of acetate, butyrate and propionate. Metabolization of unsaturated GalA-OS (uGalA-OS) significantly increased butyrate formation compared to saturated GalA-OS (satGalA-OS), while satGalA-OS significantly increased propionate formation. Absence of methyl-esters within GalA-OS improved substrate metabolization during the first 18 h of fermentation (99 %) compared to their esterified analogues (51 %). Furthermore, HPAEC and HILIC-LC-MS revealed accumulation of specific methyl-esterified GalA-OS, confirming that methyl-esterification delays fermentation. Fermentation of structurally distinct GalA-OS results in donor specific microbiota composition with uGalA-OS specifically stimulating the butyrate-producer Clostridium Butyricum. This study concludes that GalA-OS fermentation induces highly structure-dependent changes in the gut microbiota, further expanding their potential use as prebiotics.


Subject(s)
Pectins , Propionates , Fermentation , Pectins/chemistry , Oligosaccharides/chemistry , Feces , Butyrates
14.
Gut Microbes ; 16(1): 2297872, 2024.
Article in English | MEDLINE | ID: mdl-38165200

ABSTRACT

Hyperbaric oxygen (HBO) therapy is a well-established method for improving tissue oxygenation and is typically used for the treatment of various inflammatory conditions, including infectious diseases. However, its effect on the intestinal mucosa, a microenvironment known to be physiologically hypoxic, remains unclear. Here, we demonstrated that daily treatment with hyperbaric oxygen affects gut microbiome composition, worsening antibiotic-induced dysbiosis. Accordingly, HBO-treated mice were more susceptible to Clostridioides difficile infection (CDI), an enteric pathogen highly associated with antibiotic-induced colitis. These observations were closely linked with a decline in the level of microbiota-derived short-chain fatty acids (SCFAs). Butyrate, a SCFA produced primarily by anaerobic microbial species, mitigated HBO-induced susceptibility to CDI and increased epithelial barrier integrity by improving group 3 innate lymphoid cell (ILC3) responses. Mice displaying tissue-specific deletion of HIF-1 in RORγt-positive cells exhibited no protective effect of butyrate during CDI. In contrast, the reinforcement of HIF-1 signaling in RORγt-positive cells through the conditional deletion of VHL mitigated disease outcome, even after HBO therapy. Taken together, we conclude that HBO induces intestinal dysbiosis and impairs the production of SCFAs affecting the HIF-1α-IL-22 axis in ILC3 and worsening the response of mice to subsequent C. difficile infection.


Subject(s)
Clostridioides difficile , Clostridium Infections , Gastrointestinal Microbiome , Hyperbaric Oxygenation , Mice , Animals , Nuclear Receptor Subfamily 1, Group F, Member 3 , Immunity, Innate , Hyperbaric Oxygenation/adverse effects , Interleukin-22 , Dysbiosis/therapy , Lymphocytes , Butyrates/pharmacology , Fatty Acids, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology
15.
Curr Opin Nephrol Hypertens ; 33(2): 226-230, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38088374

ABSTRACT

PURPOSE OF REVIEW: The aim of this review is to highlight recent evidence on the role of the gastrointestinal tract and gut microbiome on chronic kidney disease-mineral bone disorder (CKD-MBD) outcomes, including intestinal phosphorus absorption and sensing, and the effect of gut-oriented therapies. RECENT FINDINGS: Recent evidence has revealed a complex interplay among mineral metabolism and novel gut-related factors, including paracellular intestinal phosphate absorption, the gut microbiome, and the immune system, prompting a reevaluation of treatment approaches for CKD-MBD. The inhibition of NHE3 limits phosphate transport in the intestine and may lead to changes in the gut microbiome. A study in rats with CKD showed that the supplementation of the fermentable dietary inulin delayed CKD-MBD, lowering circulating phosphorus and parathyroid hormone, reducing bone remodeling and improving cortical parameters, and lowering cardiovascular calcifications. In non-CKD preclinical studies, probiotics and prebiotics improved bone formation mediated through the effect of butyrate facilitating the differentiation of T cells into Tregs, and Tregs stimulating the osteogenic Wnt10b, and butyrate was also necessary for the parathyroid hormone (PTH) bone effects. SUMMARY: Recent findings support multiple possible roles for gut-oriented therapies in addressing CKD-MBD prevention and management that should be further explored through clinical and translational studies.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder , Gastrointestinal Microbiome , Renal Insufficiency, Chronic , Humans , Rats , Animals , Chronic Kidney Disease-Mineral and Bone Disorder/drug therapy , Parathyroid Hormone , Phosphorus , Phosphates , Minerals , Butyrates , Gastrointestinal Tract
16.
Shock ; 61(1): 120-131, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37962207

ABSTRACT

ABSTRACT: M1 macrophage-mediated inflammation is critical in sepsis. We previously found the protective role of astragaloside intravenous (AS-IV) in sepsis-associated gut impairment, whose specific mechanism remains unknown. Gut microbiota modulates gut homeostatic balance to avoid excessive inflammation. Here, we aimed to investigate effects of AS-IV on gut macrophages polarization and potential roles of gut microbiota and short chain fatty acids (SCFAs) in septic gut damage. Mice were pretreated by AS-IV gavage for 7 days before cecal ligation and puncture. M1 polarization of gut lamina propria macrophages (LpMs) was promoted by cecal ligation and puncture, accompanied by abnormal cytokines release and intestinal barrier dysfunction. NLRP3 inflammasome was activated in M1 LpMs. 16S rRNA sequencing demonstrated gut microbiota imbalance. The levels of acetate, propionate, and butyrate in fecal samples decreased. Notably, AS-IV reversed LpMs M1/M2 polarization, lightened gut inflammation and barrier injury, reduced NLRP3 inflammasome expression in LpMs, restored the diversity of gut microbiome, and increased butyrate levels. Similarly, these benefits were mimicked by fecal microbiota transplantation or exogenous butyrate supplementation. In Caco-2 and THP-1 cocultured model, LPS and interferon γ caused THP-1 M1 polarization, Caco-2 barrier impairment, abnormal cytokines release, and high NLRP3 inflammasome expression in THP-1 cells, all of which were mitigated by butyrate administration. However, these protective effects of butyrate were abrogated by NLRP3 gene overexpression in THP-1. In conclusion, AS-IV can ameliorate sepsis-induced gut inflammation and barrier dysfunction by modulating M1/M2 polarization of gut macrophages, whose underlying mechanism may be restoring gut microbiome and SCFA to restrain NLRP3 inflammasome activation.


Subject(s)
Gastrointestinal Microbiome , Saponins , Sepsis , Triterpenes , Humans , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Caco-2 Cells , RNA, Ribosomal, 16S/metabolism , Fatty Acids, Volatile/metabolism , Butyrates/metabolism , Inflammation/metabolism , Macrophages/metabolism , Sepsis/metabolism , Cytokines/metabolism
19.
Biochem Biophys Res Commun ; 695: 149440, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38157628

ABSTRACT

l-threonate is the metabolite of vitamin C, while d-erythronate is the metabolite of N-acetyl-d-glucosamine, the nutritional supplement for joint health. They are widely distributed in the environment and human biofluids. Nevertheless, the catabolisms of l-threonate and d-erythronate are sparsely reported. Here we explored the functional diversity of an acid sugar kinase family (Pfam families PF07005-PF17042), and discovered a novel 2-oxo-tetronate kinase. The conserved genome neighborhood of the 2-oxo-tetronate kinase encodes members of class-II fructose-bisphosphate aldolase family (F_bP_aldolase, PF01116) and a dehydrogenase family (PF03446-PF14833). Instructed by this analysis, we experimentally verified that these enzymes are capable of degrading l-threonate into dihydroxyacetone phosphate (DHAP) in Arthrobacter sp. ZBG10, Clostridium scindens ATCC 35704, and Pseudonocardia dioxanivorans ATCC 55486. Meanwhile, a convergent catabolic pathway for d-erythronate was characterized in P. dioxanivorans ATCC 55486. Moreover, the phylogenetic distribution analysis indicates that the biological range of the identified l-threonate and d-erythronate catabolic pathways appears to extend mostly to members of the Actinomycetota, Cyanobacteriota, Bacillota, Pseudomonadota, and Bacteroidota phyla.


Subject(s)
Bacteria , Butyrates , Fructose-Bisphosphate Aldolase , Humans , Phylogeny , Bacteria/metabolism , Aldehyde-Lyases , Phosphotransferases
20.
Respir Med ; 222: 107510, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135194

ABSTRACT

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is associated with an intestinal leak and neuromuscular junction (NMJ) degradation, which contributes to physical compromise and accelerated age-related muscle loss, called sarcopenia. However, the relevant interventions partly remain ineffective. We investigated the effects of exogenous butyrate on sarcopenia and physical capacity with relevance to intestinal permeability and NMJ integrity in COPD patients. METHODS: COPD patients were randomized into placebo (n = 67) and butyrate (n = 64) groups in a double-blind manner. The patients in the butyrate group received one 300 mg capsule a day for 12 weeks. We measured circulating markers of intestinal leak (zonulin), systemic bacterial load (LBP), and NMJ loss (CAF22), along with handgrip strength (HGS), and short physical performance battery (SPPB) at baseline and 12 weeks. RESULTS: Butyrate supplementation improved HGS and gait speed in COPD patients. Among SPPB indices, butyrate improved the ability to maintain postural balance and walking and prevented a decline in the ability to rise from a chair. Butyrate also reduced the plasma levels of zonulin, LBP, and CAF22 levels in COPD patients (all p < 0.05). Regression analysis revealed significant associations of plasma zonulin and CAF22 with HGS, gait speed, and cumulative SPPB scores in butyrate group. These changes were associated with reduced markers of inflammation and muscle damage. CONCLUSION: Butyrate may provide a therapeutic approach to sarcopenia and physical dependency in COPD by repairing intestinal leak and NMJ loss.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Sarcopenia , Humans , Sarcopenia/etiology , Sarcopenia/prevention & control , Hand Strength/physiology , Butyrates , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/drug therapy , Neuromuscular Junction , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL