Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
J Neuropathol Exp Neurol ; 82(5): 402-411, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36881691

ABSTRACT

Inflammatory responses in the brain contribute to cognitive deficits. Nuclear factor-κB (NF-κB), a critical transcription factor in inflammatory responses, is activated in post-stroke cognitive deficit. Baihui (DU20) and Shenting (DU24) acupoints, the main acupoints of Du Meridian, are widely used to improve cognitive deficits in Chinese patients with stroke. It has been reported that post-stroke cognitive deficits can be treated by electroacupuncture (EA) but the underlying mechanisms of these effects are unclear. Using the rat middle cerebral artery occlusion cerebral ischemia-reperfusion injury model, we found that EA at these 2 acupoints improved neurological function, decreased cerebral infarct lesion volumes, and ameliorated the inflammatory response in the hippocampal CA1 region. The treatment also ameliorated memory and learning deficits by inhibiting the NF-κB signaling pathway in the ischemic hippocampal CA 1 region. This coincided with downregulation of interleukin-1ß, interleukin-6, CD45, and tumor necrosis factor-α. We conclude that EA at these 2 acupoints ameliorates memory and learning deficits following experimental cerebral infarction by inhibiting NF-κB-mediated inflammatory injury in the hippocampal CA1 region.


Subject(s)
Brain Ischemia , Electroacupuncture , Ischemic Stroke , Reperfusion Injury , Stroke , Rats , Animals , NF-kappa B/metabolism , Ischemic Stroke/complications , Ischemic Stroke/therapy , Rats, Sprague-Dawley , Stroke/complications , Stroke/therapy , Brain Ischemia/complications , Brain Ischemia/therapy , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , CA1 Region, Hippocampal/pathology , Reperfusion Injury/complications , Reperfusion Injury/therapy , Reperfusion Injury/metabolism
2.
FASEB J ; 35(10): e21869, 2021 10.
Article in English | MEDLINE | ID: mdl-34469026

ABSTRACT

The leucine-rich repeat-containing family 8 member A (LRRC8A) is an essential subunit of the volume-regulated anion channel (VRAC). VRAC is critical for cell volume control, but its broader physiological functions remain under investigation. Recent studies in the field indicate that Lrrc8a disruption in the brain astrocytes reduces neuronal excitability, impairs synaptic plasticity and memory, and protects against cerebral ischemia. In the present work, we generated brain-wide conditional LRRC8A knockout mice (LRRC8A bKO) using NestinCre -driven Lrrc8aflox/flox excision in neurons, astrocytes, and oligodendroglia. LRRC8A bKO animals were born close to the expected Mendelian ratio and developed without overt histological abnormalities, but, surprisingly, all died between 5 and 9 weeks of age with a seizure phenotype, which was confirmed by video and EEG recordings. Brain slice electrophysiology detected changes in the excitability of pyramidal cells and modified GABAergic inputs in the hippocampal CA1 region of LRRC8A bKO. LRRC8A-null hippocampi showed increased immunoreactivity of the astrocytic marker GFAP, indicating reactive astrogliosis. We also found decreased whole-brain protein levels of the GABA transporter GAT-1, the glutamate transporter GLT-1, and the astrocytic enzyme glutamine synthetase. Complementary HPLC assays identified reduction in the tissue levels of the glutamate and GABA precursor glutamine. Together, these findings suggest that VRAC provides vital control of brain excitability in mouse adolescence. VRAC deletion leads to a lethal phenotype involving progressive astrogliosis and dysregulation of astrocytic uptake and supply of amino acid neurotransmitters and their precursors.


Subject(s)
Astrocytes/pathology , Gliosis/mortality , Glutamic Acid/metabolism , Membrane Proteins/physiology , Seizures/mortality , Animals , Astrocytes/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Female , Gliosis/etiology , Gliosis/pathology , Ion Transport , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Seizures/etiology , Seizures/pathology
3.
Biomed Pharmacother ; 137: 111306, 2021 May.
Article in English | MEDLINE | ID: mdl-33524786

ABSTRACT

Protective effects of Puerariae flos extract (PFE) on ethanol (EtOH) exposure have been previously verified. This study attempts to explore the protective effects of PEF on EtOH withdrawal models. Sixty male Kunming mice were involved which were randomly divided into five groups (intact control, EtOH group (35-day EtOH exposure), EtOH withdrawal group (28-day exposure + 7-day withdrawal), EtOH withdrawal group + positive control (Deanxit) group, and EtOH withdrawal group + PFE group). The changes of neuropsychological behaviors; hippocampal BDNF expression and CA1 neuronal density; and plasma corticotropin-releasing hormone (CRH), ACTH, and CORT levels were observed. It was found that depression-like behaviors reduced by EtOH exposure and increased by withdrawal under the 28-day EtOH exposure and 7-day withdrawal conditions. In addition, anxiety-like behaviors worsened by EtOH exposure and unchanged by withdrawal. Deanxit and PEF ameliorated such behaviors (vs. withdrawal group). Hippocampal BDNF expression was significantly downregulated by EtOH exposure and upregulated by withdrawal. Deanxit and PEF significantly upregulated the BDNF expression. The hippocampal CA1 neuronal density significantly decreased by EtOH exposure but unchanged by withdrawal and treatments. The plasma CRH, ACTH, and CORT levels show a significant enhancement by EtOH exposure and reduced by withdrawal. They were further reduced by Deanxit and PEF. The protective effects of PEF on EtOH chronic withdrawal mouse models were verified. The results of this study also indicated a complicated scenario of neuropsychological behaviors, hippocampal BDNF expression, and hypothalamic-pituitary-adrenal axis which are affected by the timing of EtOH exposure and withdrawal.


Subject(s)
Alcoholism/drug therapy , Anxiety/prevention & control , CA1 Region, Hippocampal/drug effects , Depression/prevention & control , Drugs, Chinese Herbal/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Pueraria , Substance Withdrawal Syndrome/drug therapy , Adrenocorticotropic Hormone/blood , Alcoholism/metabolism , Alcoholism/pathology , Alcoholism/psychology , Animals , Anxiety/metabolism , Anxiety/pathology , Anxiety/psychology , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Corticotropin-Releasing Hormone/blood , Depression/metabolism , Depression/pathology , Depression/psychology , Disease Models, Animal , Drugs, Chinese Herbal/isolation & purification , Hydrocortisone/blood , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/pathology , Male , Mice , Pueraria/chemistry , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/pathology , Substance Withdrawal Syndrome/psychology
4.
Nutrients ; 13(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33435613

ABSTRACT

Gynura procumbens has been used in Southeast Asia for the treatment of hypertension, hyperglycemia, and skin problems induced by ultraviolet irradiation. Although considerable studies have reported the biological properties of Gynura procumbens root extract (GPE-R), there are no studies on the effects of GPE-R in brain damages, for example following brain ischemia. In the present study, we screened the neuroprotective effects of GPE-R against ischemic damage and neuroinflammation in the hippocampus based on behavioral, morphological, and biological approaches. Gerbils received oral administration of GPE-R (30 and 300 mg/kg) every day for three weeks and 2 h after the last administration, ischemic surgery was done by occlusion of both common carotid arteries for 5 min. Administration of 300 mg/kg GPE-R significantly reduced ischemia-induced locomotor hyperactivity 1 day after ischemia. Significantly more NeuN-positive neurons were observed in the hippocampal CA1 regions of 300 mg/kg GPE-R-treated animals compared to those in the vehicle-treated group 4 days after ischemia. Administration of GPE-R significantly reduced levels of pro-inflammatory cytokines such as interleukin-1ß, -6, and tumor necrosis factor-α 6 h after ischemia/reperfusion. In addition, activated microglia were significantly decreased in the 300 mg/kg GPE-R-treated group four days after ischemia/reperfusion compared to the vehicle-treated group. These results suggest that GPE-R may be one of the possible agents to protect neurons from ischemic damage by reducing inflammatory responses.


Subject(s)
Brain Ischemia/drug therapy , CA1 Region, Hippocampal/drug effects , Inflammation/drug therapy , Neurons/drug effects , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Plant Roots/chemistry , Animals , Body Weight , Brain Ischemia/pathology , Brain Ischemia/surgery , CA1 Region, Hippocampal/pathology , Cytokines , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Gerbillinae , Hippocampus/drug effects , Male , Microglia , Reperfusion Injury/pathology
5.
Mol Cell Biochem ; 473(1-2): 39-50, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32779041

ABSTRACT

Hypoglycemia is a detrimental complication of rigorous management of type 1 diabetes mellitus. Moderate hypoglycemia (MH) preconditioning of male rats partially affords protection from loss of vulnerable brain neurons to severe hypoglycemia (SH). Current research investigated whether MH preconditioning exerts sex-dimorphic effects on hippocampal CA1 neuron bio-energetic and anti-oxidant responses to SH. SH up-regulated CA1 glucose or monocarboxylate transporter proteins in corresponding hypoglycemia-naïve male versus female rats; precedent MH amplified glucose transporter expression in SH irrespective of sex. Sex-differentiating SH effects on glycolytic and tricarboxylic pathway markers correlated with elevated tissue ATP content and diminished CA1 5'-AMP-activated protein kinase (AMPK) activation in females. MH-preconditioned suppression of mitochondrial energy pathway enzyme profiles and tissue ATP in SH rats coincided with amplified CA1 AMPK activity in both sexes. Anti-oxidative stress enzyme protein responses to SH were primarily sex-contingent; preconditioning amplified most of these profiles, yet exacerbated expression of lipid and protein oxidation markers in SH male and female rats, respectively. Results show that MH preconditioning abolishes female CA1 neuron neuroprotection of positive energy balance through SH, resulting in augmented CA1 AMPK activity and oxidative injury and diminished tissue ATP in hypoglycemia-conditioned versus naïve rats in each sex. It is unclear if SH elicits differential rates of CA1 neuronal destruction in the two sexes, or how MH may impact sex-specific cell loss. Further research is needed to determine if molecular mechanism(s) that maintain female CA1 neuron metabolic stability in the absence of MH preconditioning can be leveraged for therapeutic prevention of hypoglycemic nerve cell damage.


Subject(s)
CA1 Region, Hippocampal/metabolism , Glycolysis , Hypoglycemia/metabolism , Neurons/metabolism , Sex Characteristics , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , CA1 Region, Hippocampal/pathology , Female , Hypoglycemia/pathology , Male , Neurons/pathology , Oxidation-Reduction , Rats , Rats, Sprague-Dawley
6.
Mol Brain ; 13(1): 27, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32102661

ABSTRACT

Calcium (Ca2+)-permeable AMPA receptors may, in certain circumstances, contribute to normal synaptic plasticity or to neurodegeneration. AMPA receptors are Ca2+-permeable if they lack the GluA2 subunit or if GluA2 is unedited at a single nucleic acid, known as the Q/R site. In this study, we examined mice engineered with a point mutation in the intronic editing complementary sequence (ECS) of the GluA2 gene, Gria2. Mice heterozygous for the ECS mutation (named GluA2+/ECS(G)) had a ~ 20% reduction in GluA2 RNA editing at the Q/R site. We conducted an initial phenotypic analysis of these mice, finding altered current-voltage relations (confirming expression of Ca2+-permeable AMPA receptors at the synapse). Anatomically, we observed a loss of hippocampal CA1 neurons, altered dendritic morphology and reductions in CA1 pyramidal cell spine density. Behaviourally, GluA2+/ECS(G) mice exhibited reduced motor coordination, and learning and memory impairments. Notably, the mice also exhibited both NMDA receptor-independent long-term potentiation (LTP) and vulnerability to NMDA receptor-independent seizures. These NMDA receptor-independent seizures were rescued by the Ca2+-permeable AMPA receptor antagonist IEM-1460. In summary, unedited GluA2(Q) may have the potential to drive NMDA receptor-independent processes in brain function and disease. Our study provides an initial characterisation of a new mouse model for studying the role of unedited GluA2(Q) in synaptic and dendritic spine plasticity in disorders where unedited GluA2(Q), synapse loss, neurodegeneration, behavioural impairments and/or seizures are observed, such as ischemia, seizures and epilepsy, Huntington's disease, amyotrophic lateral sclerosis, astrocytoma, cocaine seeking behaviour and Alzheimer's disease.


Subject(s)
CA1 Region, Hippocampal/pathology , Dendritic Spines/metabolism , Learning , Memory Disorders/complications , Neurons/pathology , RNA Editing , Receptors, AMPA/metabolism , Seizures/complications , Animals , Base Sequence , Body Weight , CA1 Region, Hippocampal/physiopathology , Fear , Long-Term Potentiation , Memory Disorders/physiopathology , Mice , Motor Activity , Neuronal Plasticity , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/physiopathology , Survival Analysis , Synaptic Transmission
7.
Brain Res ; 1727: 146512, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31706953

ABSTRACT

Vascular dementia (VaD) is widely recognized as the second most common type of dementia, yet effective treatments are still lacking. Traditional Chinese medicine Yi-Gan San (YGS) has potent efficacy on treating VaD in clinical practice. However, the underlying mechanism is still unclear. In the present study, a UPLC-QTOFMS-based metabolomic method was established to explore the therapeutic mechanisms of YGS on VaD. Experimental VaD model was induced by bilateral occlusion of the common carotid arteries (two-vessel occlusion [2-VO]) in rats. Cognitive function, pathological changes and oxidative stress condition in the brains of VaD rats were assessed using Morris water maze tests, hematoxylin-eosin staining and antioxidant assays (MDA, SOD, GSH and GSH-Px), respectively. UPLC-QTOFMS combined with computational systems analysis were conducted to study the changes of metabolic networks in serum of rats. The results indicated that VaD model was established successfully and 2-VO caused a decline in spatial learning and memory and hippocampal histopathological abnormalities of rats. YGS significantly improved the cognitive impairment induced by 2VO and attenuated hippocampal histopathological abnormalities. The inducement of 2-VO significantly elevated the level of MDA, and reduced SOD and GSH-Px activities, and YGS can significantly regulate the levels. We have identified 34 significantly changed metabolites related to 2-VO-induced VaD, and YGS can significantly regulate the abnormalities of 24 metabolites. Metabolic pathway enrichment analysis revealed that the mechanisms of YGS against 2-VO-induced VaD may be attributed to modulating the metabolic disorders of arachidonic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, and sphingolipid metabolism. The present study provides new experimental information on the pathogenesis of VaD, unravels the potential targeted metabolic pathways of YGS against VaD on the whole metabolic network and highlights the importance of metabolomics as a potential tool for deciphering drug-targeted metabolic pathways.


Subject(s)
Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Drugs, Chinese Herbal/administration & dosage , Medicine, Chinese Traditional , Metabolomics , Animals , Antioxidants/metabolism , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/pathology , Disease Models, Animal , Lipid Metabolism/drug effects , Male , Maze Learning/drug effects , Rats, Sprague-Dawley
8.
Zhongguo Zhong Yao Za Zhi ; 44(13): 2701-2708, 2019 Jul.
Article in Chinese | MEDLINE | ID: mdl-31359680

ABSTRACT

The chemical constituents and action targets of Acori Tatarinowii Rhizoma and Curcumae Radix were screened by network pharmacological method,and the mechanism of the combination of Acori Tatarinowii Rhizoma and Curcumae Radix in the treatment of epilepsy was analyzed. All chemical constituents of Acori Tatarinowii Rhizoma and Curcumae Radix were retrieved by TCMSP,and their action targets were screened. Component target PPI network was constructed. Epilepsy-related genes were retrieved from PharmGkb database,and PPI networks of disease targets were drawn by Cytoscape software. Cytoscape software was used to merge the network,screen the core network,and further analyze the gene GO function and KEGG pathway enrichment,which was verified by experimental research. One hundred and five chemical constituents of Acori Tatarinowii Rhizoma and 222 chemical constituents of Curcumae Radix were retrieved. Nineteen compounds were selected as candidate compounds according to OB and DL values. Among them,4 chemical constituents of Acori Tatarinowii Rhizoma and 15 chemical constituents of Curcumae Radix were found. A total of 88 target proteins were retrieved by retrieving TCMSP data,and PPI network was constructed. Through PharmGkb database,29 epilepsy-related genes were retrieved and disease target network was established. Cytoscape software and plug-ins were used for network merging and core network screening,and 69 genes were screened out. Through GO function analysis and KEGG pathway analysis,the mechanism of anti-epilepsy is related to prolactin signaling pathway,HTLV-Ⅰ infection signaling pathway,MAPK signaling pathway and herpes simplex infection signaling pathway. Further experimental verification showed that the serum prolactin level in epileptic rats was significantly increased. The neurons in hippocampal CA1 area degenerated,necrotized and lost 24 hours after epileptic seizure,and some neuron interstitial edema occurred. The possible mechanism of compatibility of Acori Tatarinowii Rhizoma and Curcumae Radix is related to serum prolactin level,MAPK signaling pathway,HTLV-Ⅰ infection and herpes simplex infection. The analysis may be related to viral encephalitis caused by HTLV-Ⅰ virus and herpes simplex infection,which damages nerve cells and causes seizures.


Subject(s)
Acorus/chemistry , Curcuma/chemistry , Drugs, Chinese Herbal/pharmacology , Epilepsy/drug therapy , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/pathology , Hippocampus , Plant Roots/chemistry , Rats , Rhizome/chemistry
9.
J Stroke Cerebrovasc Dis ; 28(5): 1151-1159, 2019 May.
Article in English | MEDLINE | ID: mdl-30655039

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the effects of yokukansan on forebrain ischemia. Because we can measure nitric oxide production and hydroxyl radical metabolism continuously, we investigated the effect of yokukansan on nitric oxide production and hydroxyl radical metabolism in cerebral ischemia and reperfusion. METHODS: Yokukansan (300 mg per kg per day) was mixed into feed and given to 16 mice for 10days. Sixteen additional mice received normal feed (control). Nitric oxide production and hydroxyl radical metabolism were continuously monitored using the salicylate trapping method. Forebrain ischemia was producedin all mice by occluding the common carotid artery bilaterally for 10minutes. Levels of the nitric oxide metabolites nitrite and nitrate were determined using the Griess reaction. Survival rates of hippocampal CA1 neurons were calculated and 8-hydroxydeoxyguanosine-immunopositive cells were counted to evaluate the oxidative stress in hippocampal CA1 neurons 72hours after the start of reperfusion. RESULTS: Arterial blood pressure and regional cerebral blood flow were not significantly different between the 2 groups. The level of nitrate was significantly higher in the yokukansan group than in the control group during ischemia and reperfusion. Levels of 2,3- and 2,5-dihydroxybenzoic acid were significantly lower in the yokukansan group than in the control group during ischemia and reperfusion. Although survival rates in the CA1 did not differ significantly, there were fewer 8-hydroxydeoxyguanosine-immunopositive cells in animals that had received yokukansan than in control animals. CONCLUSIONS: These data suggest that yokukansan exerts reducing hydroxyl radicals in cerebral ischemic injury.


Subject(s)
Antioxidants/pharmacology , Brain Ischemia/drug therapy , CA1 Region, Hippocampal/drug effects , Drugs, Chinese Herbal/pharmacology , Hydroxyl Radical/metabolism , Neuroprotective Agents/pharmacology , Nitric Oxide/metabolism , Reperfusion Injury/prevention & control , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Disease Models, Animal , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Oxidative Stress/drug effects , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Time Factors
10.
J Tradit Chin Med ; 39(5): 649-657, 2019 10.
Article in English | MEDLINE | ID: mdl-32186114

ABSTRACT

OBJECTIVE: To investigate the role of Eclipta prostrata (E. prostrata) extract in improving spatial learning and memory deficits in D-galactose-induced aging in rats. METHODS: Rats were divided into five groups, with 10 animals in each group. Aging rats were produced by treatment with 100 mg·kg-1·d-1 of D-galactose for 6 weeks. Rats in the E. prostrata treatment groups received an aqueous extract of E. prostrata orally at a concentration of 50, 100, or 200 mg·kg-1·d-1 for 3 weeks. Animals in both the normal and model groups were treated with similar volumes of saline. Spatial memory performance was measured using the Morris water maze. The mRNA levels and enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were analyzed using real-time quantitative PCR and spectrophotometry, respectively. The levels of induced nitric oxide synthase (iNOS), nitric oxide (NO), dopamine (DA), norepinephrine (NE), and serotonin (5-HT) were determined using enzyme-linked immunosorbent assay and spectrophotometry. RESULTS: Compared with the normal group, rats in the D-galactose-treated model group exhibited significant memory loss. There was severe damage to the hippocampal CA1 area, and expression levels of SOD, CAT, GPx, and GR were significantly decreased in the model group compared with the normal group. In the model group, levels of iNOS and NO were significantly increased compared with the normal group. However, treatment with E. prostrata extract reversed the conditions caused by D-galactose-induced aging, especially in the groups with higher treatment concentrations. Compared with the normal group, the levels of DA, NE, and 5-HT were significantly lower in the D-galactose-treated model group. In the E. prostrata extract-treated groups, however, there was a dose-dependent upregulation of DA, NE, and 5-HT expression. CONCLUSION: Our results suggest that administration of E. prostrata extract can result in an improvement in the learning and memory impairments that are induced by D-galactose treatment in rats. This improvement may be the result of enhanced antioxidative ability, decreased iNOS and NO levels, and the induction of DA, NE, and 5-HT expression in the brain.


Subject(s)
Aging/drug effects , Eclipta/chemistry , Galactose/adverse effects , Memory Disorders/chemically induced , Memory Disorders/physiopathology , Plant Extracts/pharmacology , Spatial Learning/drug effects , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Catalase/genetics , Dopamine/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Glutathione Peroxidase/genetics , Glutathione Reductase/genetics , Male , Memory Disorders/drug therapy , Memory Disorders/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Norepinephrine/metabolism , Plant Extracts/therapeutic use , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Superoxide Dismutase/genetics
11.
Neurosci Lett ; 675: 48-53, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29601832

ABSTRACT

Given the importance of depression and the adverse effects of conventional treatment, it is necessary to seek complementary therapies. In a rat model of depression, this study aimed to assess the behavioral and morphological effects of embedding absorbable thread in acupoints (acu-catgut), and compare the results to those of fluoxetine treatment and the corresponding control groups. Therefore, depressive-like behavior was evaluated with the forced swimming test, and dendritic morphology (in the CA1 hippocampal region) with the Golgi-Cox technique and Sholl analysis. After weaning, male Sprague-Dawley rats were housed in social isolation for 8 weeks to induce depressive-like behavior. They were then given a 21-day treatment by stimulating acupoints with acu-catgut (AC) or fluoxetine (FX) (2 mg/kg). Rats were divided into six groups: Control (socially housed), social isolation (SI), SI + AC, SI + Sham (sham embedding of thread), SI + FX and SI + VH (vehicle). Compared to fluoxetine, acu-catgut treatment was more effective in reversing depressive-like behavior elicited by SI. The SI-induced reduction in dendritic length and spine density in hippocampal CA1 pyramidal neurons was attenuated after prolonged treatment with acu-catgut or fluoxetine. Hence, both treatments proved capable of reversing depressive-like alterations caused by SI, likely due to dendritic remodeling in the hippocampus.


Subject(s)
Acupuncture Points , Antidepressive Agents, Second-Generation/administration & dosage , CA1 Region, Hippocampal/pathology , Dendritic Spines/drug effects , Dendritic Spines/pathology , Depression/prevention & control , Fluoxetine/administration & dosage , Social Isolation , Animals , CA1 Region, Hippocampal/drug effects , Male , Physical Stimulation , Rats, Sprague-Dawley
12.
Chin J Integr Med ; 23(8): 605-610, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28634862

ABSTRACT

OBJECTIVE: To investigate the effect of GAPT, an extract mixture from Radix Ginseng, Rhizoma Acor tatarinowii, Radix Polygalae and Radix Curcuma (containing ingredient of turmeric), etc. on expression of tau protein and its phosphorylation related enzyme in hippocampal neurons of APPV717I transgenic mice. METHODS: Sixty three-month-old APPV717I transgenic mice were randomly divided into model group, donepezil group [0.92 mg/(kg•d)], the low, medium and high dosage of GAPT groups [0.075, 0.15, 0.30 g/(kg•d), 12 in each group], and 12 three-month-old C57BL/6J mice were set as a normal control group, treatments were administered orally once a day respectively, and both the normal group and model group were given 0.5% sodium carboxymethyl cellulose solution. Immunohistochemistry (IHC) and Western blot analysis were used to detect the expression of total tau protein (Tau-5), cyclin-dependent kinase 5 (CDK5) and protein phosphatase 2A (PP2A) in hippocampal neurons of experimental mice after 8-month drug administration (11 months old). RESULTS: In the model group, the expression of Tau-5 and CDK5 were increased, whereas the expression of PP2A was decreased in hippocampal neurons, which were signifificantly different compared with that in the normal group (all P<0.01). IHC test indicated the number and area of either Tau-5 or CDK5 positive cells were decreased with a dose-depended way in GAPT groups, and an increase of PP2A. Compared with the model group, the changes were signifificant in GAPT groups (P<0.05 or P<0.01). Similar results were shown by Western blot. CONCLUSION: GAPT could attenuate abnormal hyperphosphorylation of tau protein in hippocampal neurons of APPV717I transgenic mice via inhibiting the expression of CDK5 and activating the expression of PP2A.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Hippocampus/pathology , Neurons/enzymology , tau Proteins/metabolism , Animals , CA1 Region, Hippocampal/pathology , Cyclin-Dependent Kinase 5/metabolism , Female , Immunohistochemistry , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Phosphorylation/drug effects , Protein Phosphatase 2/metabolism
13.
Neural Plast ; 2017: 9545646, 2017.
Article in English | MEDLINE | ID: mdl-28116173

ABSTRACT

MircoRNAs (miRs) have been implicated in learning and memory, by regulating LIM domain kinase (LIMK1) to induce synaptic-dendritic plasticity. The study aimed to investigate whether miRNAs/LIMK1 signaling was involved in electroacupuncture- (EA-) mediated synaptic-dendritic plasticity in a rat model of middle cerebral artery occlusion induced cognitive deficit (MICD). Compared to untreatment or non-acupoint-EA treatment, EA at DU20 and DU24 acupoints could shorten escape latency and increase the frequency of crossing platform in Morris water maze test. T2-weighted imaging showed that the MICD rat brain lesions were located in cortex, hippocampus, corpus striatum, and thalamus regions and injured volumes were reduced after EA. Furthermore, we found that the density of dendritic spine and the number of synapses in the hippocampal CA1 pyramidal cells were obviously reduced at Day 14 after MICD. However, synaptic-dendritic loss could be rescued after EA. Moreover, the synaptic-dendritic plasticity was associated with increases of the total LIMK1 and phospho-LIMK1 levels in hippocampal CA1 region, wherein EA decreased the expression of miR-134, negatively regulating LIMK1 to enhance synaptic-dendritic plasticity. Therefore, miR-134-mediated LIMK1 was involved in EA-induced hippocampal synaptic plasticity, which served as a contributor to improving learning and memory during the recovery stage of ischemic stroke.


Subject(s)
Brain Ischemia/metabolism , CA1 Region, Hippocampal/metabolism , Cognitive Dysfunction/metabolism , Electroacupuncture , Lim Kinases/metabolism , MicroRNAs/metabolism , Neuronal Plasticity , Stroke/metabolism , Animals , Brain/metabolism , Brain/pathology , CA1 Region, Hippocampal/pathology , Cognitive Dysfunction/etiology , Dendritic Spines/pathology , Male , Maze Learning , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Rats , Rats, Sprague-Dawley , Synapses/metabolism , Synapses/physiology
14.
Chin J Integr Med ; 23(6): 445-452, 2017 Jun.
Article in English | MEDLINE | ID: mdl-25804195

ABSTRACT

OBJECTIVE: To explore the effects and molecular mechanisms of the combination between total Astragalus extract (TAE) and total Panax notoginseng saponins (TPNS) against cerebral ischemia-reperfusion injury. METHODS: C57BL/6 mice were randomly divided into sham-operated group, model group, TAE (110 mg/kg) group, TPNS (115 mg/kg) group, TAE-TPNS combination group and Edaravone (4 mg/kg) group, treated for 4 days, then, cerebral ischemia-reperfusion injury was established by bilateral common carotid artery (CCA) ligation for 20 min followed by reperfusion for 1 and 24 h. RESULTS: TPNS could increase adenosine triphosphate (ATP) level, TAE and TAE-TPNS combination increased ATP, adenosine diphosphate (ADP) contents and Na+-K+-ATPase activity, and the effects of TAE-TPNS combination were stronger than those of TAE or TPNS alone after reperfusion for 1 h. After reperfusion for 24 h, TAE, TPNS and TAE-TPNS combination significantly increased neurocyte survival rate and decreased the apoptosis rate as well as down-regulated the expression of phosphorylated c-June N-terminal kinase1/2 (p-JNK1/2), cytochrome C (Cyt C), cysteine aspartic acid-specific protease (Caspase)-9 and Caspase-3. Furthermore, the effects in TAE-TPNS combination were better than those in TAE or TPNS alone. CONCLUSION: The combination of TAE 110 mg/kg and TPNS 115 mg/kg could strengthen protective effects on cerebral ischemia injury, the mechanism underlying might be related to improving jointly the early energy metabolism, and relieving the delayed apoptosis via inhibiting the mitochondrial apoptosis pathway of JNK signal transduction.


Subject(s)
Apoptosis , Astragalus Plant/chemistry , Brain Ischemia/drug therapy , Energy Metabolism , Neuroprotective Agents/therapeutic use , Panax notoginseng/chemistry , Reperfusion Injury/drug therapy , Saponins/therapeutic use , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Brain/enzymology , Brain/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , CA1 Region, Hippocampal/pathology , Caspase 3/metabolism , Caspase 9/metabolism , Cell Survival/drug effects , Cytochromes c/metabolism , Energy Metabolism/drug effects , JNK Mitogen-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Neurons/drug effects , Neurons/pathology , Neuroprotective Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Reperfusion Injury/pathology , Saponins/chemistry , Saponins/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism
15.
Neurobiol Aging ; 49: 165-182, 2017 01.
Article in English | MEDLINE | ID: mdl-27815990

ABSTRACT

Beta amyloid (Aß) is well accepted to play a central role in the pathogenesis of Alzheimer's disease (AD). The present work evaluated the therapeutic effects of low-level laser irradiation (LLI) on Aß-induced neurotoxicity in rat hippocampus. Aß 1-42 was injected bilaterally to the hippocampus CA1 region of adult male rats, and 2-minute daily LLI treatment was applied transcranially after Aß injection for 5 consecutive days. LLI treatment suppressed Aß-induced hippocampal neurodegeneration and long-term spatial and recognition memory impairments. Molecular studies revealed that LLI treatment: (1) restored mitochondrial dynamics, by altering fission and fusion protein levels thereby suppressing Aß-induced extensive fragmentation; (2) suppressed Aß-induced collapse of mitochondrial membrane potential; (3) reduced oxidized mitochondrial DNA and excessive mitophagy; (4) facilitated mitochondrial homeostasis via modulation of the Bcl-2-associated X protein/B-cell lymphoma 2 ratio and of mitochondrial antioxidant expression; (5) promoted cytochrome c oxidase activity and adenosine triphosphate synthesis; (6) suppressed Aß-induced glucose-6-phosphate dehydrogenase and nicotinamide adenine dinucleotide phosphate oxidase activity; (7) enhanced the total antioxidant capacity of hippocampal CA1 neurons, whereas reduced the oxidative damage; and (8) suppressed Aß-induced reactive gliosis, inflammation, and tau hyperphosphorylation. Although development of AD treatments has focused on reducing cerebral Aß levels, by the time the clinical diagnosis of AD or mild cognitive impairment is made, the brain is likely to have already been exposed to years of elevated Aß levels with dire consequences for multiple cellular pathways. By alleviating a broad spectrum of Aß-induced pathology that includes mitochondrial dysfunction, oxidative stress, neuroinflammation, neuronal apoptosis, and tau pathology, LLI could represent a new promising therapeutic strategy for AD.


Subject(s)
Alzheimer Disease/etiology , Alzheimer Disease/radiotherapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , CA1 Region, Hippocampal/metabolism , Low-Level Light Therapy , Mitochondrial Dynamics , Peptide Fragments/metabolism , Peptide Fragments/toxicity , Alzheimer Disease/psychology , Animals , Apoptosis , CA1 Region, Hippocampal/pathology , Inflammation , Lasers, Semiconductor/therapeutic use , Low-Level Light Therapy/methods , Male , Neurons/pathology , Oxidative Stress , Rats, Sprague-Dawley , Recognition, Psychology , Spatial Memory , Tauopathies/etiology , Tauopathies/radiotherapy
16.
Brain Res ; 1657: 208-214, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28034723

ABSTRACT

The pathogenesis of Alzheimer's disease (AD) is well documented to involve mitochondrial dysfunction which causes subsequent oxidative stress and energy metabolic failure in hippocampus. Methylene blue (MB) has been implicated to be neuroprotective in a variety of neurodegenerative diseases by restoring mitochondrial function. The present work was to examine if MB was able to improve streptozotocin (STZ)-induced Alzheimer's type dementia in a rat model by attenuating mitochondrial dysfunction-derived oxidative stress and ATP synthesis decline. MB was administrated at a dose of 0.5mg/kg/day for consecutive 7days after bilateral STZ intracerebroventricular (ICV) injection (2.5mg/kg). We first demonstrated that MB treatment significantly ameliorated STZ-induced hippocampus-dependent memory loss in passive avoidance test. We also found that MB has the properties to preserve neuron survival and attenuate neuronal degeneration in hippocampus CA1 region after STZ injection. In addition, oxidative stress was subsequently evaluated by measuring the content of lipid peroxidation products malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Importantly, results from our study showed a remarkable suppression of MB treatment on both MDA production and 4-HNE immunoactivity. Finally, energy metabolism in CA1 region was examined by detecting mitochondrial cytochrome c oxidase (CCO) activity and the resultant ATP production. Of significant interest, our result displayed a robust facilitation of MB on CCO activity and the consequent ATP synthesis. The current study indicates that MB may be a promising therapeutic agent targeting oxidative damage and ATP synthesis failure during AD progression.


Subject(s)
Memory Disorders/drug therapy , Methylene Blue/pharmacology , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Nootropic Agents/pharmacology , Adenosine Triphosphate/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Disease Models, Animal , Drug Evaluation, Preclinical , Electron Transport Complex IV/metabolism , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Male , Memory Disorders/metabolism , Memory Disorders/pathology , Mitochondria/metabolism , Mitochondria/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Random Allocation , Rats, Sprague-Dawley , Streptozocin
17.
eNeuro ; 3(5)2016.
Article in English | MEDLINE | ID: mdl-27844057

ABSTRACT

Intellectual disability in Down syndrome (DS) is accompanied by altered neuro-architecture, deficient synaptic plasticity, and excitation-inhibition imbalance in critical brain regions for learning and memory. Recently, we have demonstrated beneficial effects of a combined treatment with green tea extract containing (-)-epigallocatechin-3-gallate (EGCG) and cognitive stimulation in young adult DS individuals. Although we could reproduce the cognitive-enhancing effects in mouse models, the underlying mechanisms of these beneficial effects are unknown. Here, we explored the effects of a combined therapy with environmental enrichment (EE) and EGCG in the Ts65Dn mouse model of DS at young age. Our results show that combined EE-EGCG treatment improved corticohippocampal-dependent learning and memory. Cognitive improvements were accompanied by a rescue of cornu ammonis 1 (CA1) dendritic spine density and a normalization of the proportion of excitatory and inhibitory synaptic markers in CA1 and dentate gyrus.


Subject(s)
CA1 Region, Hippocampal/pathology , Catechin/analogs & derivatives , Down Syndrome/therapy , Housing, Animal , Learning , Nootropic Agents/pharmacology , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Catechin/pharmacology , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Dendritic Spines/pathology , Disease Models, Animal , Down Syndrome/metabolism , Down Syndrome/pathology , Learning/drug effects , Mice, Transgenic , Plant Extracts/pharmacology , Random Allocation , Recognition, Psychology/drug effects , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Tea , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
18.
J Neurol Sci ; 370: 229-236, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27772765

ABSTRACT

Duloxetine (DXT), a serotonin/norepinephrine reuptake inhibitor, is widely used for the treatment of major depressive disorders. In the present study, we investigated the neuroprotective effect of pre-treated DXT in the hippocampal CA1 region following transient global cerebral ischemia. Pre-treatment with 40mg/kg DXT protected pyramidal neurons in the CA1 region from ischemia-reperfusion injury. In addition, pre-treatment with DXT reduced ischemia-induced activations of microglia and astrocytes in the ischemic CA1 region. On the other hand, we found that pre-treatment with DXT did not increase 4-hydroxy-2-noneal (a marker for lipid peroxidation) and significantly increased the expression of Cu, Zn-superoxide dismutase, an antioxidant, in the CA1 pyramidal neurons compared with non-treated those after ischemia-reperfusion. These results indicate that pre-treated DXT has neuroprotective effect against transient global cerebral ischemia and suggest that the neuroprotective effect of DXT may be due to the attenuation of ischemia-induced glial activation as well as the decrease of oxidative stress.


Subject(s)
Brain Ischemia/drug therapy , CA1 Region, Hippocampal/drug effects , Duloxetine Hydrochloride/pharmacology , Neuroprotective Agents/pharmacology , Pyramidal Cells/drug effects , Reperfusion Injury/drug therapy , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Drug Evaluation, Preclinical , Gerbillinae , Male , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacology , Superoxide Dismutase-1/metabolism
19.
J Ethnopharmacol ; 192: 390-397, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27616028

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In-vitro cultured calculus bovis (ICCB) is a quality substitute for natural bezoar which is used for the therapeutic purpose of treating encephalopathy. ICCB has been authorized to use on clinic. The aim of the study is to evaluate the effects and the potential mechanisms of in-vitro cultured calculus bovis (ICCB) on learning and memory impairments of hyperlipemia vascular dementia (HVD) rats. MATERIALS AND METHODS: The HVD model was established by permanent occlusion of bilateral common carotid arteries based on hyperlipemia rats. Learning and memory abilities were evaluated by morris water maze test and shuttle box test. Ultraviolet-visible spectrophotometry (UV-vis) was employed to determine the SOD, MDA and NO in cerebral tissue, as well as the TG in serum. HE staining and toluidine blue staining were employed to evaluate cone cells damage in hippocampus CA1. An immunohistochemistry was used to measure the Bax and Bcl-2 expressions in cerebral tissue. RESULTS: Compared with control group, the abilities of spatial learning and memory and conditional memory were decreased significantly in HVD group (P<0.01, P<0.05). MDA content in cerebral tissue was remarkably increased while the SOD activity and NO content were both decreased (P<0.01). TG content in serum was increased remarkably (P<0.01). And the cone cells in hippocampus CA1 were damaged obviously. Compared with HVD group, ICCB treatment improved the abilities of learning and memory, elevated the SOD activity (P<0.01, P<0.05), reduced the MDA content (P<0.01) as well as the TG content in serum (P<0.01), increased the NO content (P<0.01), improved the damaged cone cells in hippocampus CA1, increased the number of cones cells (P<0.01), decreased the Bax expression, and increased the Bcl-2 expression (P<0.01). CONCLUSION: ICCB could improve the abilities of learning and memory in HVD rats. It might be related to anti-oxidative, regulation of Bax and Bcl-2 expressions, and the alleviation of cone cells damage.


Subject(s)
Behavior, Animal/drug effects , Bezoars , CA1 Region, Hippocampal/drug effects , Dementia, Vascular/drug therapy , Gallstones/chemistry , Hyperlipidemias/complications , Memory Disorders/drug therapy , Memory/drug effects , Nootropic Agents/pharmacology , Animals , Apoptosis/drug effects , Avoidance Learning/drug effects , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Carotid Stenosis/complications , Cattle , Dementia, Vascular/blood , Dementia, Vascular/etiology , Dementia, Vascular/psychology , Disease Models, Animal , Dose-Response Relationship, Drug , Hyperlipidemias/blood , Male , Malondialdehyde/metabolism , Maze Learning/drug effects , Memory Disorders/blood , Memory Disorders/etiology , Memory Disorders/psychology , Nitric Oxide/metabolism , Nootropic Agents/isolation & purification , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Triglycerides/blood , bcl-2-Associated X Protein/metabolism
20.
J Nutr Biochem ; 35: 87-95, 2016 09.
Article in English | MEDLINE | ID: mdl-27469996

ABSTRACT

Docosahexaenoic acid (22:6n-3; DHA) is known to play a critical role in postnatal brain development. However, there have been no studies investigating the preventive effect of DHA on prenatal valproic acid (VPA)-induced behavioral and molecular alterations in offspring. The present study was to evaluate the neuroprotective effects in offspring using maternal feeding of DHA to rats exposed to VPA in pregnancy. In the present study, rats were exposed to VPA on day 12.5 of pregnancy; DHA was administered at the dosages of 100, 300 and 500 mg/kg/day for 3 weeks from day 1 to 21 of pregnancy. The results showed that maternal feeding of DHA to the prenatal exposed to VPA (1) prevented VPA-induced learning and memory impairment but did not change social-related behavior, (2) increased total DHA content in offspring plasma and hippocampus, (3) rescued VPA-induced neuronal loss and apoptosis of pyramidal cells in hippocampal CA1, (4) influenced the content of malondialdehyde and glutathione and the activities of superoxide dismutase and glutathione in the hippocampus, (5) altered levels of apoptosis-related proteins (Bcl-2, Bax and caspase-3) and inhibited the activity of caspase-3 in offspring hippocampus and (6) enhanced relative levels of p-CaMKII and p-CREB proteins in the hippocampus. These findings suggest that maternal feeding with DHA may prevent prenatal VPA-induced impairment of learning and memory, normalize several different molecules associated with oxidative stress and apoptosis in the hippocampus of offspring, and exert preventive effects on prenatal VPA-induced brain dysfunction.


Subject(s)
Anticonvulsants/adverse effects , Docosahexaenoic Acids/therapeutic use , Learning Disabilities/prevention & control , Maternal Nutritional Physiological Phenomena , Memory Disorders/prevention & control , Prenatal Exposure Delayed Effects , Valproic Acid/adverse effects , Animals , Anticonvulsants/chemistry , Behavior, Animal/drug effects , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Dietary Supplements , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/metabolism , Female , Learning Disabilities/chemically induced , Learning Disabilities/metabolism , Learning Disabilities/pathology , Male , Maze Learning/drug effects , Memory Disorders/chemically induced , Memory Disorders/metabolism , Memory Disorders/pathology , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/therapeutic use , Phosphorylation/drug effects , Pregnancy , Protein Processing, Post-Translational/drug effects , Rats, Wistar , Social Behavior , Valproic Acid/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL