Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 933
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Int Soc Sports Nutr ; 21(1): 2337252, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38572744

ABSTRACT

BACKGROUND: Rapid regeneration after intense exercise is essential for competitive athletes. Based on this assumption, supplementation strategies, focusing on food supplements, are increasing to improve the recovery processes. One such supplement is cannabidiol (CBD) which is gaining more attention in competitive sports. However, the evidence is still lacking and there are no data available about the effect of a short-term chronic application. METHODS: A three-arm double-blind cross-over study was conducted to determine the effects of two different CBD products on performance, muscle damage and inflammatory processes in well-trained athletes. In total 17 subjects took successfully part in this study. Each subject underwent the six-day, high-intensity training protocol three times. After each training session, each subject took either a placebo or a CBD product (60 mg of oil or solubilisate). Between the intervention phases, at least four weeks of washout period was conducted. Before and after the training protocols the performance capacity in countermovement jump (CMJ), back squat (BS), bench press (BP) and 1-mile run were measured and biomarkers for muscle damage (creatine kinase, myoglobin), inflammatory processes (interleukin 6 and 10) and immune cell activity (ratios of neutrophil granulocytes, lymphocytes and, platelets) were analyzed. For statistical analyses, the current version of R and a linear mixed model was used. RESULTS: It could identify different effects of the training protocol depending on performance level (advanced or highly advanced athletes) (p < .05). Regardless of the performance level, muscle damage and a reduction in performance could be induced by the training protocol. Only CBD oil was associated with a reduction in myoglobin concentration (p < .05) in advanced athletes. Concerning immune activity, a significant decrease in platelets lymphocyte ratios was observed in advanced athletes after placebo treatment (p < .05). CBD oil application showed a slight inhibitory effect (p < .10). Moreover, the reduction in performance differs between the performance levels. A significant decrease in CMJ was observed in advanced athletes and a decreasing trend in BS was observed in highly advanced athletes after placebo treatment (p < 0.10). Both CBD products do not affect performance parameters. For inflammatory parameters, no effects were observed. CONCLUSION: It was found that the performance level of the subjects was a decisive factor and that they responded differently to the training protocol and the CBD application. However, no clear effects of either CBD product were found and further research is needed to identify the long-term effects of CBD application.


Subject(s)
Cannabidiol , Sports , Humans , Cross-Over Studies , Cannabidiol/pharmacology , Myoglobin , Muscle, Skeletal , Athletes , Double-Blind Method , Dietary Supplements , Randomized Controlled Trials as Topic
2.
Molecules ; 29(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38611847

ABSTRACT

Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and inhibits lipolysis; in brown adipose tissue, it decreases mitochondrial thermogenesis and biogenesis. This study compared the availability of phytocannabinoids [CBD and Δ9-tetrahydrocannabinol (THC)] and polyunsaturated fatty acids [omega 3 (ω3) and omega 6 (ω6)] in different hemp seed oils (HSO). The study also examined the effect of HSO on adipocyte lipid accumulation by suppressing cannabinoid receptors in adipogenesis-stimulated human mesenchymal stem cells (hMSCs). Most importantly, Oil-Red-O' and Nile red tests showed that HSO induced adipogenic hMSC differentiation without differentiation agents. Additionally, HSO-treated cells showed increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to controls (hMSC). HSO reduced PPARγ mRNA expression after differentiation media (DM) treatment. After treatment with HSO, DM-hMSCs had significantly lower CB1 mRNA and protein expressions than normal hMSCs. HSO treatment also decreased transient receptor potential vanilloid 1 (TRPV1), fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MGL) mRNAs in hMSC and DM-hMSCs. HSO treatment significantly decreased CB1, CB2, TRPV1, and G-protein-coupled receptor 55 (GPCR55) protein levels in DM-hMSC compared to hMSC in western blot analysis. In this study, HSO initiated adipogenic differentiation in hMSC without DM, but it suppressed CB1 gene and protein expression, potentially decreasing adipocyte lipid accumulation and lipogenic enzymes.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Mesenchymal Stem Cells , Plant Extracts , Humans , Cannabinoids/pharmacology , Cannabidiol/pharmacology , PPAR gamma , Endocannabinoids , Adipose Tissue, Brown , RNA, Messenger
3.
BMC Psychiatry ; 24(1): 175, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433233

ABSTRACT

BACKGROUND: Cannabis use disorder (CUD) is increasingly common and contributes to a range of health and social problems. Cannabidiol (CBD) is a non-intoxicating cannabinoid recognised for its anticonvulsant, anxiolytic and antipsychotic effects with no habit-forming qualities. Results from a Phase IIa randomised clinical trial suggest that treatment with CBD for four weeks reduced non-prescribed cannabis use in people with CUD. This study examines the efficacy, safety and quality of life of longer-term CBD treatment for patients with moderate-to-severe CUD. METHODS/DESIGN: A phase III multi-site, randomised, double-blinded, placebo controlled parallel design of a 12-week course of CBD to placebo, with follow-up at 24 weeks after enrolment. Two hundred and fifty adults with moderate-to-severe CUD (target 20% Aboriginal), with no significant medical, psychiatric or other substance use disorders from seven drug and alcohol clinics across NSW and VIC, Australia will be enrolled. Participants will be administered a daily dose of either 4 mL (100 mg/mL) of CBD or a placebo dispensed every 3-weeks. All participants will receive four-sessions of Cognitive Behavioural Therapy (CBT) based counselling. Primary endpoints are self-reported cannabis use days and analysis of cannabis metabolites in urine. Secondary endpoints include severity of CUD, withdrawal severity, cravings, quantity of use, motivation to stop and abstinence, medication safety, quality of life, physical/mental health, cognitive functioning, and patient treatment satisfaction. Qualitative research interviews will be conducted with Aboriginal participants to explore their perspectives on treatment. DISCUSSION: Current psychosocial and behavioural treatments for CUD indicate that over 80% of patients relapse within 1-6 months of treatment. Pharmacological treatments are highly effective with other substance use disorders but there are no approved pharmacological treatments for CUD. CBD is a promising candidate for CUD treatment due to its potential efficacy for this indication and excellent safety profile. The anxiolytic, antipsychotic and neuroprotective effects of CBD may have added benefits by reducing many of the mental health and cognitive impairments reported in people with regular cannabis use. TRIAL REGISTRATION: Australian and New Zealand Clinical Trial Registry: ACTRN12623000526673 (Registered 19 May 2023).


Subject(s)
Anti-Anxiety Agents , Antipsychotic Agents , Cannabidiol , Cannabis , Hallucinogens , Marijuana Abuse , Substance-Related Disorders , Adult , Humans , Cannabidiol/therapeutic use , Quality of Life , Australia , Randomized Controlled Trials as Topic , Clinical Trials, Phase III as Topic
4.
Basic Clin Pharmacol Toxicol ; 134(5): 574-601, 2024 May.
Article in English | MEDLINE | ID: mdl-38477419

ABSTRACT

Studies have demonstrated the neuroprotective effect of cannabidiol (CBD) and other Cannabis sativa L. derivatives on diseases of the central nervous system caused by their direct or indirect interaction with endocannabinoid system-related receptors and other molecular targets, such as the 5-HT1A receptor, which is a potential pharmacological target of CBD. Interestingly, CBD binding with the 5-HT1A receptor may be suitable for the treatment of epilepsies, parkinsonian syndromes and amyotrophic lateral sclerosis, in which the 5-HT1A serotonergic receptor plays a key role. The aim of this review was to provide an overview of cannabinoid effects on neurological disorders, such as epilepsy, multiple sclerosis and Parkinson's diseases, and discuss their possible mechanism of action, highlighting interactions with molecular targets and the potential neuroprotective effects of phytocannabinoids. CBD has been shown to have significant therapeutic effects on epilepsy and Parkinson's disease, while nabiximols contribute to a reduction in spasticity and are a frequent option for the treatment of multiple sclerosis. Although there are multiple theories on the therapeutic potential of cannabinoids for neurological disorders, substantially greater progress in the search for strong scientific evidence of their pharmacological effectiveness is needed.


Subject(s)
Cannabidiol , Cannabinoids , Epilepsy , Mental Disorders , Multiple Sclerosis , Parkinson Disease , Humans , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Parkinson Disease/drug therapy , Multiple Sclerosis/drug therapy , Receptor, Serotonin, 5-HT1A/therapeutic use , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Epilepsy/drug therapy , Mental Disorders/drug therapy , Comorbidity
5.
Chem Biodivers ; 21(5): e202400274, 2024 May.
Article in English | MEDLINE | ID: mdl-38466647

ABSTRACT

The aim of the current study was to compare some biological activities of edible oils enriched with 10 % of cannabidiol (CBD samples) from the Slovak market. In addition, hemp, coconut, argan, and pumpkin pure oils were also examined. The study evaluated the fatty acids content, as well as antibacterial, antifungal, antioxidant, cytotoxic, and phytotoxic activities. The CBD samples presented antimicrobial activity against the tested bacterial strains at higher concentrations (10000 and 5000 mg/L) and antifungal activity against Alternaria alternata, Penicillium italicum and Aspergillus flavus. DPPH⋅ and FRAP assays showed greater activity in CBD-supplemented samples compared to pure oils and vitamin E. In cell lines (IPEC-J2 and Caco-2), a reduced cell proliferation and viability were observed after 24 hours of incubation with CBD samples. The oils showed pro-germinative effects. The tested activities were linked to the presence of CBD in the oils.


Subject(s)
Antioxidants , Cannabidiol , Cell Proliferation , Cannabidiol/pharmacology , Cannabidiol/chemistry , Humans , Cell Proliferation/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Microbial Sensitivity Tests , Caco-2 Cells , Cell Survival/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Penicillium/drug effects , Alternaria/drug effects , Aspergillus flavus/drug effects
6.
Pharmacopsychiatry ; 57(3): 133-140, 2024 May.
Article in English | MEDLINE | ID: mdl-38471525

ABSTRACT

BACKGROUND: Up to now, it is unclear whether different medicinal cannabis (MC) strains are differently efficacious across different medical conditions. In this study, the effectiveness of different MC strains was compared depending on the disease to be treated. METHODS: This was an online survey conducted in Germany between June 2020 and August 2020. Patients were allowed to participate only if they received a cannabis-based treatment from pharmacies in the form of cannabis flowers prescribed by a physician. RESULTS: The survey was completed by n=1,028 participants. Most participants (58%) have used MC for more than 1 year, on average, 5.9 different strains. Bedrocan (pure tetrahydrocannabinol to pure cannabidiol [THC:CBD]=22:<1) was the most frequently prescribed strain, followed by Bakerstreet (THC:CBD=19:<1) and Pedanios 22/1 (THC:CBD=22:1). The most frequent conditions MC was prescribed for were different pain disorders, psychiatric and neurological diseases, and gastrointestinal symptoms. Overall, the mean patient-reported effectiveness was 80.1% (range, 0-100%). A regression model revealed no association between the patient-reported effectiveness and the variety. Furthermore, no influence of the disease on the choice of the MC strain was detected. On average, 2.1 side effects were reported (most commonly dry mouth (19.5%), increased appetite (17.1%), and tiredness (13.0%)). However, 29% of participants did not report any side effects. Only 398 participants (38.7%) indicated that costs for MC were covered by their health insurance. CONCLUSIONS: Patients self-reported very good efficacy and tolerability of MC. There was no evidence suggesting that specific MC strains are superior depending on the disease to be treated.


Subject(s)
Medical Marijuana , Humans , Germany , Male , Medical Marijuana/therapeutic use , Female , Adult , Middle Aged , Prospective Studies , Aged , Young Adult , Cannabidiol/therapeutic use , Surveys and Questionnaires , Adolescent , Dronabinol/therapeutic use , Cannabis , Treatment Outcome
7.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38406827

ABSTRACT

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Subject(s)
Cannabidiol , Neoplasms , Humans , Cisplatin/toxicity , Cannabidiol/pharmacology , Cannabidiol/metabolism , Cannabidiol/therapeutic use , Cachexia/metabolism , Catalase/metabolism , Quality of Life , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/prevention & control , Muscular Atrophy/drug therapy , Oxidative Stress , Neoplasms/metabolism , RNA, Messenger/metabolism
8.
Mini Rev Med Chem ; 24(15): 1427-1448, 2024.
Article in English | MEDLINE | ID: mdl-38318827

ABSTRACT

Sativex is a cannabis-based medicine that comes in the form of an oromucosal spray. It contains equal amounts of Δ9-tetrahydrocannabinol and cannabidiol, two compounds derived from cannabis plants. Sativex has been shown to have positive effects on symptoms of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and sleep disorders. It also has analgesic, antiinflammatory, antitumoral, and neuroprotective properties, which make it a potential treatment option for other neurological disorders. The article reviews the results of recent preclinical and clinical studies that support the therapeutic potential of Sativex and the molecular mechanisms behind its neuroprotective benefits in various neurological disorders. The article also discusses the possible advantages and disadvantages of using Sativex as a neurotherapeutic agent, such as its safety, efficacy, availability, and legal status.


Subject(s)
Cannabidiol , Dronabinol , Neuroprotective Agents , Plant Extracts , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cannabidiol/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Dronabinol/pharmacology , Dronabinol/chemistry , Dronabinol/therapeutic use , Animals , Multiple Sclerosis/drug therapy , Cannabis/chemistry , Drug Combinations
9.
Neurodegener Dis Manag ; 14(1): 11-20, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38318862

ABSTRACT

Aim: This prospective, multicenter, open-label, noninterventional 12-week study investigated the effectiveness and tolerability of add-on nabiximols oromucosal spray (Sativex®) in the real-world setting in Germany. Patients & methods: The main analysis set comprised 51 adult patients (49 nabiximols responders) with multiple sclerosis (MS) spasticity. Results: The mean overall goal attainment scale score (primary outcome measure) increased by 46% from baseline to week 12 (35.2 vs 51.4; p < 0.001). Mean gait speed was improved by 23% at 4 and 12 weeks. Clinically meaningful improvements in mean 0-10 numerical rating scale scores for spasticity, pain, sleep quality and urinary bladder dysfunction were recorded at 4 and 12 weeks. Conclusion: Nabiximols is a useful therapeutic option for patients with MS spasticity.


People with multiple sclerosis (MS) spasticity experience a variety of symptoms and have individual expectations about a new treatment. This study investigated patients' perceptions about the effectiveness and tolerability of nabiximols oromucosal spray (Sativex®) when added to current medications for spasticity. Common treatment goals for patients (n = 51) were less pain, better walking and improved sleep. After 12 weeks of treatment, 62% of selected treatment goals were achieved 'as expected' or 'better than expected' and 65% of patients considered their spasticity to be 'much improved'. Meaningful improvements were recorded in spasticity-related symptoms of pain, sleep quality and bladder problems. Few side effects were reported. Nabiximols may be useful for MS patients with a poor response to usual spasticity medications.


Subject(s)
Cannabidiol , Multiple Sclerosis , Adult , Humans , Cannabidiol/therapeutic use , Dronabinol/therapeutic use , Drug Combinations , Multiple Sclerosis/complications , Multiple Sclerosis/drug therapy , Muscle Spasticity/drug therapy , Muscle Spasticity/etiology , Patient Reported Outcome Measures , Plant Extracts/therapeutic use , Prospective Studies , Treatment Outcome
10.
Int Immunopharmacol ; 129: 111654, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38335658

ABSTRACT

Previous studies demonstrated that cannabinoids exhibit immunosuppressive effects in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). To ask questions about treatment timing and investigate mechanisms for immune suppression by the plant-derived cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), an in vitro peptide stimulation of naive splenocytes (SPLC) was developed to mimic T cell activation in EAE. The peptide was derived from the myelin oligodendrocyte glycoprotein (MOG) protein, which is one component of the myelin sheath. MOG peptide is typically used with an immune adjuvant to trigger MOG-reactive T cells that attack MOG-containing tissues, causing demyelination and clinical disease in EAE. To develop the in vitro model, naïve SPLC were stimulated with MOG peptide on day 0 and restimulated on day 4. Cytokine analyses revealed that CBD and THC suppressed MOG peptide-stimulated cytokine production. Flow cytometric analysis showed that intracellular cytokines could be detected in CD4+ and CD8+ T cells. To determine if intracellular calcium was altered in the cultures, cells were stimulated for 4 days to assess the state of the cells at the time of MOG peptide restimulation. Both cannabinoid-treated cultures had a smaller population of the calcium-positive population as compared to vehicle-treated cells. These results demonstrate the establishment of an in vitro model that can be used to mimic MOG-reactive T cell stimulation in vivo.


Subject(s)
Cannabidiol , Cannabinoids , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Mice , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Calcium , Multiple Sclerosis/drug therapy , Myelin-Oligodendrocyte Glycoprotein , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cytokines/therapeutic use , Mice, Inbred C57BL , Peptide Fragments
11.
Neuropharmacology ; 248: 109870, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38401791

ABSTRACT

Delayed therapeutic responses and limited efficacy are the main challenges of existing antidepressant drugs, thereby incentivizing the search for new potential treatments. Cannabidiol (CBD), non-psychotomimetic component of cannabis, has shown promising antidepressant effects in different rodent models, but its mechanism of action remains unclear. Herein, we investigated the antidepressant-like effects of repeated CBD treatment on behavior, neuroplasticity markers and lipidomic profile in the prefrontal cortex (PFC) of Flinders Sensitive Line (FSL), a genetic animal model of depression, and their control counterparts Flinders Resistant Line (FRL) rats. Male FSL animals were treated with CBD (10 mg/kg; i.p.) or vehicle (7 days) followed by Open Field Test (OFT) and the Forced Swimming Test (FST). The PFC was analyzed by a) western blotting to assess markers of synaptic plasticity and cannabinoid signaling in synaptosome and cytosolic fractions; b) mass spectrometry-based lipidomics to investigate endocannabinoid levels (eCB). CBD attenuated the increased immobility observed in FSL, compared to FRL in FST, without changing the locomotor behavior in the OFT. In synaptosomes, CBD increased ERK1, mGluR5, and Synaptophysin, but failed to reverse the reduced CB1 and CB2 levels in FSL rats. In the cytosolic fraction, CBD increased ERK2 and decreased mGluR5 expression in FSL rats. Surprisingly, there were no significant changes in eCB levels in response to CBD treatment. These findings suggest that CBD effects in FSL animals are associated with changes in synaptic plasticity markers involving mGluR5, ERK1, ERK2, and synaptophysin signaling in the PFC, without increasing the levels of endocannabinoids in this brain region.


Subject(s)
Cannabidiol , Depression , Rats , Male , Animals , Depression/drug therapy , Depression/genetics , Cannabidiol/pharmacology , Endocannabinoids/metabolism , Synaptophysin/metabolism , Antidepressive Agents/pharmacology , Prefrontal Cortex , Neuronal Plasticity , Disease Models, Animal
12.
Anticancer Res ; 44(3): 895-900, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38423660

ABSTRACT

Pain is a debilitating phenomenon that dramatically impairs the quality of life of patients. Many chronic conditions, including cancer, are associated with chronic pain. Despite pharmacological efforts that have been conducted, many patients suffering from cancer pain remain without treatment. To date, opioids are considered the preferred therapeutic choice for cancer-related pain management. Unfortunately, opioid treatment causes side effects and inefficiently relieves patients from pain, therefore alternative therapies have been considered, including Cannabis Sativa and cannabinoids. Accumulating evidence has highlighted that an increasing number of patients are choosing to use cannabis and cannabinoids for the management of their soothing and non-palliative cancer pain and other cancer-related symptoms. However, their clinical application must be supported by convincing and reproducible clinical trials. In this review, we provide an update on cannabinoid use for cancer pain management. Moreover, we tried to turn a light on the potential use of cannabis as a possible therapeutic option for cancer-related pain relief.


Subject(s)
Cancer Pain , Cannabidiol , Cannabinoids , Cannabis , Neoplasms , Humans , Cannabinoids/therapeutic use , Cancer Pain/drug therapy , Cancer Pain/etiology , Quality of Life , Pain/drug therapy , Pain/etiology , Neoplasms/complications , Neoplasms/drug therapy , Cannabidiol/therapeutic use
13.
Mol Pharm ; 21(4): 1609-1624, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38412451

ABSTRACT

Cannabidiol (CBD) is the most relevant nonpsychostimulant phytocompound found in Cannabis sativa. CBD has been extensively studied and has been proposed as a therapeutic candidate for neuroinflammation-related conditions. However, being a highly lipophilic drug, it has several drawbacks for pharmaceutical use, including low solubility and high permeability. Synthetic polymers can be used as drug delivery systems to improve CBD's stability, half-life, and biodistribution. Here, we propose using a synthetic polymer as a nanoparticulate vehicle for CBD (NPCBD) to overcome the pharmacological drawbacks of free drugs. We tested the NPCBD-engineered system in the context of ischemic events in a relevant oxygen and glucose deprivation (OGD) model in primary cortical cells (PCC). Moreover, we have characterized the inflammatory response of relevant cell types, such as THP-1 (human monocytes), HMC3 (human microglia), and PCC, to NPCBD and observed a shift in the inflammatory state of the treated cells after the ischemic event. In addition, NPCBD exhibited a promising ability to restore mitochondrial function after OGD insult in both HMC3 and PCC cells at low doses of 1 and 0.2 µM CBD. Taken together, these results suggest the potential for preclinical use.


Subject(s)
Cannabidiol , Humans , Cannabidiol/therapeutic use , Cannabidiol/pharmacology , Neuroinflammatory Diseases , Tissue Distribution , Brain , Oxygen
14.
Neurosci Lett ; 825: 137689, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38401641

ABSTRACT

PURPOSE: The ischemia-reperfusion (I/R) injury seen in the heart can cause severe damage to essential organs such as the brain. Cannabidiol (CBD) obtained from Cannabis sativa is used today to treat various diseases. This study aimed to demonstrate CBD's neuroprotective and therapeutic properties in rats with brain damage caused by I/R in the heart. MATERIALS: Rats were divided into four groups; sham, I/R, I/R + Prophylactic CBD, and I/R + Therapeutic CBD. End of the experiment, brain tissues were collected for biochemical, histopathological, and genetic examinations. RESULTS: I/R damage increased the number of degenerative neurons, caspase-3 and TNF-α immunoexpression, total oxidant status levels, and oxidative stress index. Both prophylactic and therapeutic CBD administration reduced these increased values. In addition, the relative fold changes of AMPK, PGC-1α, SIRT1, and Bcl 2 decreased in the I/R group, and the relative fold change of Bax increased, which are indicators of ER stress and apoptosis. Both administrations of CBD reversed these genes' relative fold changes. CONCLUSION: CBD can be protective against brain injury caused by cardiac I/R damage through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.


Subject(s)
Acute Coronary Syndrome , Cannabidiol , Reperfusion Injury , Rats , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Acute Coronary Syndrome/drug therapy , Oxidative Stress , Antioxidants/pharmacology , Reperfusion Injury/pathology
15.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256146

ABSTRACT

The prevalence of obesity and obesity-related pathologies is lower in frequent cannabis users compared to non-users. It is well established that the endocannabinoid system has an important role in the development of obesity. We recently demonstrated that prolonged oral consumption of purified Δ-9 Tetrahydrocannabinol (THC), but not of cannabidiol (CBD), ameliorates diet-induced obesity and improves obesity-related metabolic complications in a high-fat diet mouse model. However, the effect of commercially available medical cannabis oils that contain numerous additional active molecules has not been examined. We tested herein the effects of THC- and CBD-enriched medical cannabis oils on obesity parameters and the gut microbiota composition of C57BL/6 male mice fed with either a high-fat or standard diet. We also assessed the levels of prominent endocannabinoids and endocannabinoid-like lipid mediators in the liver. THC-enriched extract prevented weight gain by a high-fat diet and attenuated diet-induced liver steatosis concomitantly with reduced levels of the lipid mediators palmitoyl ethanolamide (PEA) and docosahexaenoyl ethanolamide (DHEA) in the liver. In contrast, CBD-enriched extract had no effect on weight gain, but, on the contrary, it even exacerbated liver steatosis. An analysis of the gut microbiota revealed that mainly time but not treatment exerted a strong effect on gut microbiota alterations. From our data, we conclude that THC-enriched cannabis oil where THC is the main constituent exerts the optimal anti-obesity effects.


Subject(s)
Cannabidiol , Cannabis , Fatty Liver , Hallucinogens , Medical Marijuana , Microbiota , Male , Animals , Mice , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Endocannabinoids , Cannabinoid Receptor Agonists , Cannabidiol/pharmacology , Obesity/drug therapy , Obesity/etiology , Weight Gain , Oils , Plant Extracts/pharmacology
16.
Molecules ; 29(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38257323

ABSTRACT

Cannabis, renowned for its historical medicinal use, harbours various bioactive compounds-cannabinoids, terpenes, and flavonoids. While major cannabinoids like delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have received extensive scrutiny for their pharmacological properties, emerging evidence underscores the collaborative interactions among these constituents, suggesting a collective therapeutic potential. This comprehensive review explores the intricate relationships and synergies between cannabinoids, terpenes, and flavonoids in cannabis. Cannabinoids, pivotal in cannabis's bioactivity, exhibit well-documented analgesic, anti-inflammatory, and neuroprotective effects. Terpenes, aromatic compounds imbuing distinct flavours, not only contribute to cannabis's sensory profile but also modulate cannabinoid effects through diverse molecular mechanisms. Flavonoids, another cannabis component, demonstrate anti-inflammatory, antioxidant, and neuroprotective properties, particularly relevant to neuroinflammation. The entourage hypothesis posits that combined cannabinoid, terpene, and flavonoid action yields synergistic or additive effects, surpassing individual compound efficacy. Recognizing the nuanced interactions is crucial for unravelling cannabis's complete therapeutic potential. Tailoring treatments based on the holistic composition of cannabis strains allows optimization of therapeutic outcomes while minimizing potential side effects. This review underscores the imperative to delve into the intricate roles of cannabinoids, terpenes, and flavonoids, offering promising prospects for innovative therapeutic interventions and advocating continued research to unlock cannabis's full therapeutic potential within the realm of natural plant-based medicine.


Subject(s)
Cannabidiol , Cannabis , Hallucinogens , Neuroinflammatory Diseases , Terpenes/pharmacology , Cannabinoid Receptor Agonists , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Flavonoids/pharmacology , Flavonoids/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
17.
Cells ; 13(2)2024 01 18.
Article in English | MEDLINE | ID: mdl-38247877

ABSTRACT

Cannabis sativa is a well-known plant for its psychoactive effects; however, its many derivatives, such as Cannabidiol (CBD), contain several therapeutic applications. Tetrahydrocannabinol (THC) is the main cannabis derivative responsible for psychoactive properties, while CBD is non-psychotropic. For this reason, CBD has been more exploited in the last decade. CBD has been connected to multiple anticancer properties, and when combined with photodynamic therapy (PDT), it is possible to eradicate tumors more effectively. In this study, CBD was utilized to treat MCF-7 breast cancer cells, followed by in vitro PDT combination therapy. Conventional breast cancer treatment modalities such as chemotherapy, radiotherapy, etc. have been reported for inducing a number of undesirable side effects, recurrence of the disease, and low quality of life. In this study, cells were exposed to varying concentrations of CBD (i.e., 1.25, 2.5, 5, 10, and 20 µg/mL) and incubated 12 and 24 h after treatment. The optimal doses were then used in combination therapy. Morphology and biochemical assays, including lactate dehydrogenase (LDH) for membrane integrity, adenosine triphosphate (ATP) for viability, and trypan blue exclusion assay for viability, were used to examine cellular responses after treatments. The optimal concentration was then utilized in Hypericin-Gold nanoparticles mediated PDT combination. The results revealed that, in a dose-dependent manner, conventional morphological characteristics of cell death, such as vacuolization, blebbing, and floating were observed in treated cells. The biochemical responses demonstrated an increase in LDH, a decrease in ATP, and a reduction in viability. This study demonstrated that CBD induces cell death in MCF-7 breast cancer cells cultured in vitro. The immunofluorescence results of combination therapy indicated that cell death occurred via apoptosis. In conclusion, this study proposes that the CBD and PDT combination therapy is effective in killing MCF-7 breast cancer cells in vitro by induction of apoptosis.


Subject(s)
Cannabidiol , Metal Nanoparticles , Neoplasms , Photochemotherapy , Humans , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Gold , MCF-7 Cells , Quality of Life , Adenosine Triphosphate , L-Lactate Dehydrogenase
18.
Food Chem ; 441: 138295, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38183719

ABSTRACT

This study evaluated the physicochemical characteristics of nanostructured lipid carriers (NLCs) as a potential vehicle for cannabidiol (CBD), a lipophilic molecule with great potential to promote health benefits. NLCs were produced using hemp seed oil and fully-hydrogenated soybean oil at different proportions. The emulsifiers evaluated were soybean lecithin (SL), Tween 80 (T80) and a mixture of SL:T80 (50:50). CBD was tested in the form of CBD-rich extract or isolate CBD, to verify if it affects the NLCs characteristics. Based on particle size and polydispersity, SL was considered the most suitable emulsifier to produce the NLCs. All lipid proportions evaluated had no remarkable effect on the physicochemical characteristics of NLCs, resulting in CBD-loaded NLCs with particle size below 250 nm, high CBD entrapment efficiency and CBD retention rate of 100% for 30 days, demonstrating that NLCs are a suitable vehicle for both CBD-rich extract or isolate CBD.


Subject(s)
Cannabidiol , Nanoparticles , Nanostructures , Nanoparticles/chemistry , Drug Carriers/chemistry , Health Promotion , Nanostructures/chemistry , Soybean Oil , Emulsifying Agents/chemistry , Particle Size , Polysorbates
19.
Epilepsy Res ; 200: 107300, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38241756

ABSTRACT

OBJECTIVE: Evaluate adherence, discontinuation rates, and reasons for non-adherence and discontinuation of prescription CBD during the 12-months post-initiation period at an integrated care center. METHODS: This was a prospective study of patients prescribed CBD by a neurology clinic provider with initial prescription fulfillment through the center's specialty pharmacy from January 2019 through April 2020. Baseline demographics and reasons for non-adherence and/or discontinuation were collected from the electronic health record and pharmacy claims history was used to calculate adherence using proportion of days covered (PDC). Patients were included in the PDC analysis if they had at least 3 fills during the study period. Non-adherence was defined as a PDC < 0.8. Descriptive statistics were used to summarize data with categorical variables represented as frequencies and percentages and continuous variables as medians and interquartile ranges (IQRs). RESULTS: We included 136 patients with a median age of 14 years (IQR 9 - 21). Most patients were white (n = 115, 85%), with a diagnosis of intractable epilepsy (n = 100, 74%). Among the 128 patients with 3 or more fills, the median PDC was 0.99 (IQR 0.95 - 1.00) with non-adherence seen in 6% (n = 8) of patients. The most common reason for non-adherence was side effects (n = 2, 25%). Prescription CBD was discontinued by 23% (n = 31) of patients with a median time to discontinuation of 117 days (IQR 68 - 216). The most common reason for discontinuation was major side effects (n = 12, 39%). The most common side effects leading to discontinuation were agitation/irritability (n = 4), mood changes (n = 4), aggressive behavior (n = 3), and increased seizure frequency (n = 3). CONCLUSION: Adherence to prescription CBD at an integrated care center was high with approximately 94% of patients considered adherent. Providers and pharmacists may improve adherence and discontinuation rates by educating patients on the timeline of response, potential side effects, and potential for dose adjustments.


Subject(s)
Cannabidiol , Delivery of Health Care, Integrated , Epilepsy , Humans , Child , Adolescent , Young Adult , Adult , Cannabidiol/adverse effects , Medication Adherence , Prospective Studies , Prescriptions , Epilepsy/drug therapy , Retrospective Studies
20.
Expert Opin Emerg Drugs ; 29(1): 65-79, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38226593

ABSTRACT

INTRODUCTION: Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting approximately 3% of school-age children. The core symptoms are deficits in social communication and restricted and repetitive patterns of behavior. Associated problems in cognition, language, behavior, sleep and mood are prevalent. Currently, no established pharmacological treatment exists for core ASD symptoms. Risperidone and aripiprazole are used to manage associated irritability, but their effectiveness is limited and adverse events are common. AREAS COVERED: This mini-review summarizes existing scientific literature and ongoing clinical trials concerning cannabinoid treatment for ASD. Uncontrolled case series have documented improvements in both core ASD symptoms and related behavioral challenges in children treated with cannabis extracts rich in cannabidiol (CBD). Placebo-controlled studies involving CBD-rich cannabis extracts and/or pure CBD in children with ASD have demonstrated mixed efficacy results. A similar outcome was observed in a placebo-controlled study of pure CBD addressing social avoidance in Fragile X syndrome. Importantly, these studies have shown relatively high safety and tolerability. EXPERT OPINION: While current clinical data suggest the potential of CBD and CBD-rich cannabis extract in managing core and behavioral deficits in ASD, it is prudent to await the results of ongoing placebo-controlled trials before considering CBD treatment for ASD.


Subject(s)
Autism Spectrum Disorder , Cannabinoids , Child , Humans , Aripiprazole/adverse effects , Autism Spectrum Disorder/drug therapy , Cannabidiol/therapeutic use , Cannabinoids/therapeutic use , Irritable Mood , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL