Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Pediatr Endocrinol Metab ; 36(9): 873-878, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37427576

ABSTRACT

OBJECTIVES: Carbamoyl phosphate synthetase 1 (CPS1) deficiency is a severe urea cycle disorder. Patients can present with hyperammonemic coma in the first days of life. Treatment includes nitrogen scavengers, reduced protein intake and supplementation with L-arginine and/or L-citrulline. N-carbamoyl glutamate (NCG) has been hypothesized to stimulate the residual CPS1 function, although only few patients are reported. CASE PRESENTATION: We report a patient with neonatal-onset CPS1 deficiency who received NCG in association with nitrogen scavenger and L-citrulline. The patient carried the novel variants CPS1-c.2447A>G p.(Gln816Arg) and CPS1-c.4489T>C p.(Tyr1497His). The latter is localized in the C-terminal allosteric domain of the protein, and is implicated in the binding of the natural activator N-acetyl-L-glutamate. NCG therapy was effective in controlling ammonia levels, allowing to increase the protein intake. CONCLUSIONS: Our data show that the response to NCG can be indicated based on the protein structure. We hypothesize that variants in the C-terminal domain may be responsive to NCG therapy.


Subject(s)
Carbamoyl-Phosphate Synthase I Deficiency Disease , Urea Cycle Disorders, Inborn , Humans , Infant, Newborn , Carbamoyl-Phosphate Synthase (Ammonia)/chemistry , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Carbamoyl-Phosphate Synthase I Deficiency Disease/metabolism , Carbamoyl-Phosphate Synthase I Deficiency Disease/therapy , Citrulline/therapeutic use , Glutamic Acid
2.
Eur Rev Med Pharmacol Sci ; 24(19): 10051-10053, 2020 10.
Article in English | MEDLINE | ID: mdl-33090410

ABSTRACT

OBJECTIVE: Long-term survival of patients with neonatal-onset carbamoyl-phosphate synthetase 1 deficiency (CPS1D), an autosomal recessive disorder characterized by repeated, life-threatening hyperammonemia, is rare. We describe the diagnosis and clinical management of a teenager with neonatal-onset CPS1D who did not undergo therapeutic liver transplantation. CASE REPORT: Following emergent neonatal therapy, the patient was diagnosed with CPS1D based on clinical, radiological, biochemical and genetic analyses. Her clinical course, neurobehavioral development and therapeutic interventions are presented and discussed. RESULTS: Born from nonconsanguineous parents, the proband underwent phototherapy for neonatal jaundice, associated with acute encephalopathy, apnea and cerebral edema. Based on blood and urinary biochemical abnormalities, neonatal-onset CPS1D was diagnosed. Her hyperammonemia was corrected by hemodialysis, followed by sodium benzoate, L-arginine, levocarnitine and protein-free diet therapy. Because of a relapse and persistent neurobehavioral regression by age 1, a planned liver transplantation was cancelled. At age 10, sodium phenylbutyrate was substituted as ammonia scavenger. Genetic testing revealed compound heterozygote c.2359C>T (R787X) and c.236+6T>C variants of CPS1, confirming her diagnosis. Despite severe neurological sequelae, the patient is 16 and in stable condition. CONCLUSIONS: Our case suggests that early hemodialysis and pharmacologic interventions for acute neonatal hyperammonemia can improve the prognosis of patients with neonatal-onset CPS1D.


Subject(s)
Arginine/therapeutic use , Brain Diseases, Metabolic/therapy , Carbamoyl-Phosphate Synthase I Deficiency Disease/therapy , Carnitine/therapeutic use , Hyperammonemia/therapy , Phenylbutyrates/therapeutic use , Renal Dialysis , Sodium Benzoate/therapeutic use , Female , Humans , Infant, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL