Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 285: 114826, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34767833

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Indigofera linifolia (L.f.) Retz. is used in subcontinent for liver disorders, in wounds, febrile eruption and as diuretic. AIM OF STUDY: The current study evaluates the protective effects of the methanol extract of Indigofera linifolia (ILM) on CCl4-induced endoplasmic reticulum (ER) stress in liver of rat. METHODS: ILM was analyzed for phytochemical classes, total phenolic (TPC) and flavonoid content (TFC) as well as multidimensional in vitro antioxidant assays. Male (Sprague Dawley) rats were dispersed into seven groups (6 rats/group) receiving 0.9% saline (1 ml/kg bw), CCl4 (1 ml/kg bw) diluted in olive oil (3:7 v/v), silymarin (200 mg/kg bw) + CCl4 (30% v/v), ILM (150 mg/kg bw) + CCl4 (30% v/v), ILM (300 mg/kg bw) + CCl4 and ILM alone (either 150 mg/kg bw or 300 mg/kg bw). RESULTS: ILM extract was constituted of different phytochemical classes. Co-administration of ILM along with CCl4 to rat revert the level of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and total bilirubin in blood serum and antioxidant parameters in liver. Further, CCl4 increased the level of ER stress markers and inflammatory mediators while decreased level of GCLC and Nrf-2 in liver tissues of rat. CCl4-induced histopathological variations were reduced with ILM co-administration in liver tissues. CONCLUSION: The results suggest that active phyto-constituents of I. linifolia might be responsible for its antioxidant, anti-inflammatory and gene-regulating activities.


Subject(s)
Carbon Tetrachloride Poisoning , Endoplasmic Reticulum Stress/drug effects , Glutamate-Cysteine Ligase/metabolism , Indigofera , Liver , NF-E2-Related Factor 2/metabolism , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Carbon Tetrachloride/adverse effects , Carbon Tetrachloride/metabolism , Carbon Tetrachloride Poisoning/drug therapy , Carbon Tetrachloride Poisoning/metabolism , Flavonoids/pharmacology , Gene Expression Regulation/drug effects , Liver/drug effects , Liver/metabolism , Rats , Rats, Sprague-Dawley
2.
Sci Rep ; 11(1): 16575, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400737

ABSTRACT

Carbon tetrachloride (CCl4) is an abundant environmental pollutant that can generate free radicals and induce oxidative stress in different human and animal organs like the kidney, lung, brain, and spleen, causing toxicity. The present study evaluated the alleviative mechanism of the isolated polyphenolic fraction from seedless (pulp and skin) black Vitis vinifera (VVPF) on systemic oxidative and necroinflammatory stress in CCl4-intoxicated rats. Here, we found that the administration of VVPF to CCl4-intoxicated rats for ten days was obviously ameliorated the CCl4-induced systemic elevation in ROS, NO and TBARS levels, as well as MPO activity. Also, it upregulated the cellular activities of the enzymatic (SOD, and GPx) and non-enzymatic (TAC and GSH) antioxidants. Furthermore, the gene expression of the ROS-related necroinflammatory mediators (NF-κB, iNOS, COX-2, and TNF-α) in the kidney, brain, and spleen, as well as IL-1ß, and IL-8 in the lung were greatly restored. The histopathological studies confirmed these biochemical results and showed a noticeable enhancing effect in the architecture of the studied organs after VVPF intake. Thus, this study indicated that VVPF had an alleviative effect on CCl4-induced necroinflammation and oxidative stress in rat kidney, lung, brain, and spleen via controlling the ROS/NF-κB pathway.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Carbon Tetrachloride Poisoning/drug therapy , NF-kappa B/antagonists & inhibitors , Phytotherapy , Polyphenols/therapeutic use , Reactive Oxygen Species/antagonists & inhibitors , Vitis/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Antioxidants/isolation & purification , Brain/drug effects , Brain/metabolism , Carbon Tetrachloride Poisoning/metabolism , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , Cytokines/biosynthesis , Cytokines/genetics , Drug Evaluation, Preclinical , Fruit/chemistry , Inhibitory Concentration 50 , Kidney/drug effects , Kidney/metabolism , Lung/drug effects , Lung/metabolism , Nitric Oxide Synthase Type II/biosynthesis , Nitric Oxide Synthase Type II/genetics , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Polyphenols/chemistry , Polyphenols/isolation & purification , Rats , Signal Transduction/drug effects , Spleen/drug effects , Spleen/metabolism , Thiobarbituric Acid Reactive Substances/analysis
3.
Mol Biol Rep ; 48(6): 5305-5318, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34244886

ABSTRACT

BACKGROUND: Industrial toxicants such as Carbon tetrachloride (CCl4) are known to disrupt the oxidative-antioxidative balance, which generates excessive amounts of free radicals leading to chronic or acute liver damage. Natural antioxidants, including Ajwa, play an important role in protecting against hepatotoxicity. METHODS AND RESULTS: This study investigated the prophylactic impacts of ajwa seeds aqueous extract (ASE) against hepatic oxidative injury in rats induced by CCl4. Eighty male Wistar albino rats were equally assigned to eight groups: one group receive no treatment, four groups were received CCl4-olive oil mixture [1:1(v/v)] (0.2 ml/100 g body weight (bw), intraperitoneally) two times/week for 4 weeks/rat alone or with 200 mg Vit. C/kg bw or 5 ml ASE/rat or both, and three groups received olive oil, Vit. C, or ASE. Vitamin C and ASE were orally administrated two weeks before CCl4 injection and 4 weeks concomitant with CCl4. Lipid peroxidation, lipogenesis-related genes, hepatic histopathology, Bax immunostaining and DNA fragmentation were assessed. ASE protected hepatic damage by suppressing oxidative stress and elevating activities of antioxidant enzymes, including superoxide dismutase and catalase. ASE also regulated hepatic dyslipidemia, hepatic lipid accumulation and expression of SREBP-1 and FAS genes in CCl4-treated rats. ASE decreased apoptosis through inhibition of CCl4 induced Bax activation in hepatocytes. CONCLUSION: These observations provide evidence for the hepatoprotective potential of ASE via inhibiting hepatic lipogenesis and oxidative stress, suggesting being used as a natural product in attenuating CCl4 induced oxidative damage, hepatotoxicity and associated dysfunction.


Subject(s)
Carbon Tetrachloride Poisoning/drug therapy , Liver Diseases/drug therapy , Phoeniceae/metabolism , Animals , Antioxidants/metabolism , Carbon Tetrachloride/adverse effects , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Lipid Peroxidation , Liver/metabolism , Liver Diseases/metabolism , Male , Oxidative Stress/drug effects , Phytotherapy , Plant Extracts/pharmacology , Pre-Exposure Prophylaxis/methods , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
4.
Biosci Biotechnol Biochem ; 85(4): 775-785, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33686395

ABSTRACT

This research aimed to evaluate the antihepatic fibrosis effect and explore the mechanism of Qiwei Qinggan Powder (QGS-7) in vivo and in vitro. Carbon tetrachloride (CCl4)-treated rats and hepatic stellate cells (HSCs) were used. QGS-7 treatment significantly improved the liver function of rats as indicated by decreased serum enzymatic activities of alanine aminotransferase, aspartate transaminase, and alkaline phosphatase. Meanwhile, the hydroxyproline of liver was significantly decreased. Histopathological results indicated that QGS-7 alleviated liver damage and reduced the formation of fibrosis septa. Moreover, QGS-7 significantly attenuated expressions of Alpha smooth muscle actin, Collagen I, Janus kinase 2 (JAK2), phosphorylation-JAK2, signal transducer and activator of transcription 3 (STAT3), phosphorylation-STAT3 in the rat hepatic fibrosis model. QGS-7 inhibited HSC proliferation and promoted it apoptosis. QGS-7 may affect hepatic fibrosis through JAK2/STAT3 signaling pathway so as to play an antihepatic fibrosis role.


Subject(s)
Carbon Tetrachloride Poisoning/drug therapy , Liver Cirrhosis/drug therapy , Medicine, Mongolian Traditional , Animals , Carbon Tetrachloride Poisoning/metabolism , Cell Proliferation/drug effects , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Hydroxyproline/metabolism , Janus Kinase 2/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Function Tests , Mongolia , Phosphorylation , Powders , Rats , STAT3 Transcription Factor/metabolism
5.
Article in English | MEDLINE | ID: mdl-31971911

ABSTRACT

The active component in cullilawan oil can be synthesized into curcumin analogue product, which has pharmacological activity. The synthesis process by using conventional and microwave methods can produce different isomer products. Different synthesis products and models of animal are used to provide different hepatoprotective effects. The aim of this study was to use the curcumin analogue synthetic products (AKS-k and AKS-m) from cullilawan oil in male mice (Mus musculus L.) liver damage treatment induced by carbon tetrachloride (CCl4). The in vivo method was employed using biochemical of blood and histopathological images of liver cells as indicators. The results showed that the curcumin analogue synthetic product using microwave methods had better pharmacological effects than the conventional method product in terms of the results of blood biochemical analysis and microscopic images of liver cells.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Cinnamomum/chemistry , Curcumin/analogs & derivatives , Curcumin/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/metabolism , Carbon Tetrachloride Poisoning/drug therapy , Carbon Tetrachloride Poisoning/pathology , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Liver Function Tests/methods , Male , Mice , Plant Bark/chemistry , Plant Oils/chemistry
6.
Int J Biol Macromol ; 145: 500-509, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31874267

ABSTRACT

The in vivo antifibrotic effect of a fucoidan extract (FE) from Sargassum fluitans Borgesen was evaluated in a carbon tetrachloride-induced liver damage model in rats over twelve weeks. Chemical analysis showed the FE to contain carbohydrates, sulfates, uronic acids, protein, phenols, and to have a molecular weight of ~60 kDa. Physiological, biochemical, histological and genetic assays were done. Daily oral administration of FE (50 mg/kg) reduced liver enzymatic activity, liver infiltration of inflammatory cells, collagen fiber deposition and gene expression cytokines such as interleukin beta 1 (IL-ß1), tumor necrosis factor alpha (TNF-α), transforming growth factor beta 1 (TGF-ß1), Smad-3, Smad-2, collagen 1 alpha 1 (col1α1) and tissue inhibitor of metalloproteinase 1 (TIMP-1). It also increased RNA expression of Smad-7 and metalloproteinase 2 and 9 (MMP2 and MMP9). The fucoidan extract exhibited an antifibrotic effect mediated by the inhibiting TGF-ß1/Smad pathway, as well as anti-inflammatory effects.


Subject(s)
Liver Cirrhosis/drug therapy , Plant Extracts/pharmacology , Polysaccharides/chemistry , Sargassum/chemistry , Animals , Carbon Tetrachloride/toxicity , Carbon Tetrachloride Poisoning/drug therapy , Carbon Tetrachloride Poisoning/genetics , Carbon Tetrachloride Poisoning/pathology , Disease Models, Animal , Gene Expression Regulation/drug effects , Humans , Liver/drug effects , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Plant Extracts/chemistry , Polysaccharides/pharmacology , Rats , Signal Transduction/drug effects , Smad Proteins/genetics , Smad3 Protein/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta1/genetics
7.
BMC Complement Altern Med ; 19(1): 154, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31269948

ABSTRACT

BACKGROUND: Of over 35 Saudi plants traditionally used to treat liver disorders, majority still lack scientific validations. We therefore, evaluated the anti-oxidative, anti-apoptotic and hepatoprotective potential of Solanum surattense leaves total ethanol-extract (SSEE). METHODS: The cytoprotective (4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide/ MTT assay) and anti-apoptotic (caspase-3/7) potential of SSEE (25-200 µg/mL) were assessed in cultured HepG2 cells against dichlorofluorescein (DCFH)-induced toxicity. The hepatoprotective salutation of SSEE (100 and 200 mg/kg.bw/day) in carbon tetrachloride (CCl4)-intoxicated rats was evaluated by serum biochemistry and histopathology. The anti-oxidative activity of SSEE (31.25-500 µg/mL) was tested by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging and linoleic acid bleaching assays. Also, SSEE was subjected to qualitative phytochemical analysis, and standardized by validated high-performance liquid chromatography (HPTLC). RESULTS: SSEE at doses 50, 100 and 200 µg/mL showed HepG2 cell proliferative and protective potential by about 61.0, 67.2 and 95%, respectively through inhibition of caspase-3/7 against DCFH-toxicity. In CCl4-injured rats, SSEE (200 mg/kg) significantly (P < 0.001) normalized serum transaminases, alkaline phosphatase, bilirubin, cholesterol, triglycerides, and total protein, including tissue malondialdehyde and nonprotein sulfhydryls levels, supported by the liver histopathology. SSEE further showed strong in vitro anti-oxidative and anti-lipid peroxidative activities, evidenced by the presence of alkaloids, flavonoids, tannins, sterols and saponins. Identification of ß-sitosterol (3.46 µg/mg) strongly supported the anti-oxidative and hepatoprotective salutation of SSEE. CONCLUSION: Our findings suggest the therapeutic potential of S. surattense against chemical-induced oxidative stress and liver damage. However, isolation of the active principles and elucidation of mechanism of action remain to be addressed.


Subject(s)
Antioxidants/analysis , Chemical and Drug Induced Liver Injury/drug therapy , Liver/drug effects , Plant Extracts/pharmacology , Solanum/chemistry , Animals , Apoptosis/drug effects , Carbon Tetrachloride Poisoning/drug therapy , Drug Evaluation, Preclinical , Hep G2 Cells , Humans , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Rats, Wistar , Sitosterols/analysis
8.
J Biol Regul Homeost Agents ; 32(3): 699-704, 2018.
Article in English | MEDLINE | ID: mdl-29921402

ABSTRACT

Herpetospermum caudigerum (H. caudigerum; HC), popularly known as “Sejimeiduo” in Tibet, it is widely used in Tibetan traditional medicine for the treatment of dyspepsia, liver and colic diseases. This study was designed to evaluate the effect of H. caudigerum extract (HCE) on suppressing liver injury induced by carbon tetra chloride (CCl4). For this purpose, we used CCl4 to induce acute liver injury in mouse model. The protective effects of HCE against liver injury were evaluated by biochemical parameters, histopathological and immunohistochemical staining. The results showed that the superoxide dismutase (SOD) activity was significantly increased with the increasing dose of HCE as compared to the CCl4-treated group (p less than 0.01); while AST and ALT levels in serum, MDA and MPO in liver were reduced in a dose-dependent manner. The histopathology showed that HCE treatment promoted the recovery of histopathological changes in liver in a dose-dependent way. Meanwhile, there was a higher expression of caspase-3 and NF-κB in the nucleus of several liver cells in the CCl4-induced group, and a low expression of caspase-3 and NF-κB were found with the increasing dose of HCE. Therefore, the present study suggests that HCE is a potent hepatoprotective agent that can treat acute liver injury and this ability may be attributed towards its anti-inflammatory and antioxidant potential.


Subject(s)
Aristolochiaceae/chemistry , Carbon Tetrachloride Poisoning/drug therapy , Chemical and Drug Induced Liver Injury/drug therapy , Liver/metabolism , Plant Extracts/pharmacology , Animals , Carbon Tetrachloride Poisoning/metabolism , Carbon Tetrachloride Poisoning/pathology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Dose-Response Relationship, Drug , Liver/pathology , Mice , Plant Extracts/chemistry
9.
Mol Biol Rep ; 45(5): 787-797, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29931536

ABSTRACT

Wild and cultured mushrooms have been extensively used for food and medicinal purposes all around the world. However, there is limited information on chemical composition, health enhancing effects and contributions on diet of some mushrooms (e.g., Agaricus arvensis) widely distributed in many countries including United Kingdom, Australia, Turkey etc. Therefore, the present study was aimed to analyse the bioactive composition and ameliorative effects of A. arvensis via evaluating in vitro and in vivo antioxidant properties in CCl4 induced rat model. The extract exhibited higher antioxidant capacities in vitro than that of the positive control (Reishi-Shiitake-Maitake standardized extract). Administration of the extract had significant regulative effects in the levels of AST, ALT, LDH, Urea and TRIG levels according to CCl4 group. Additionally, lipid peroxidation and GSH in the brain, kidney and liver tissues was regulated by extract treated groups compared to the CCI4 group. The supplementation of the extract at the dose of 100 mg/kg regulated the levels of GST, GR, CAT and GPx enzyme activities in brain and liver, but not in kidney tissue. There was approximately three fold increase in CAT enzyme activity in kidney tissue of extract treated groups compared to Control and CCl4 groups. The extract contained a rich composition of bioactive compounds including phenolics (protocatechuic acid and p-hydroxybenzoic acid), volatile compounds (benzaldehyde, palmitic acid and linoleic acid) and mineral compounds (K, Si, Mg and Na). Data obtained within this study suggests that A. arvensis might be used for food industries in order to obtain nutritional products.


Subject(s)
Agaricus/chemistry , Agaricus/metabolism , Oxidative Stress/drug effects , Agaricus/physiology , Alanine Transaminase/metabolism , Animals , Antioxidants/metabolism , Aspartate Aminotransferases/metabolism , Carbon Tetrachloride/pharmacology , Carbon Tetrachloride Poisoning/drug therapy , Chemical and Drug Induced Liver Injury/drug therapy , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Lipid Peroxidation/drug effects , Liver/metabolism , Male , Phytotherapy , Plant Extracts/pharmacology , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
10.
Int J Pharm ; 547(1-2): 83-96, 2018 Aug 25.
Article in English | MEDLINE | ID: mdl-29777765

ABSTRACT

The objective of this study was to innovate an effective oral sustained release hepatoprotective formula for - the water soluble drug - caffeine. Caffeine is rapidly absorbed and eliminated which dictates frequent administration to achieve adequate therapeutic effect. A w/o Pickering emulsion incorporating caffeine in the internal phase was primed. It contained wheat germ oil and was stabilized by synthesized magnesium oxide nanoparticles (MgO NPs). Components selection was based on their antioxidant, hepatoprotective and anticarcinogenic effects. The MgO NPs were prepared via sol-gel method, and then were characterized using X-ray diffractometry, transmission electron microscopy, contact angle and cytotoxicity. The Pickering emulsion formula stabilized by MgO NPs (F1) was compared to another stabilized by conventional MgO particles (F2). Both were evaluated regarding droplet size, stability and caffeine release. F1 was stable against phase separation for a 2 months period. Its droplets mean size was 665.9 ±â€¯90 nm. F1 afforded sustained release for caffeine that reached 70% within 48 h that followed zero order kinetics. 100 ppm of F1 showed nearly 36% growth inhibition of hepatocellular carcinoma (HEPG2). In vivo and histopathalogical evaluations were conducted on CCl4 intoxicated rats. Biochemical analysis for liver enzymes - (ALT and AST), oxidative stress biomarkers and the inflammation marker (protein kinase C) - revealed that the selected formula elicited significant hepatoprotection. This formula acted as an economical approach to multiple therapy and afforded safe effective sustained level for caffeine.


Subject(s)
Caffeine/administration & dosage , Carbon Tetrachloride Poisoning/drug therapy , Liver/drug effects , Protective Agents/administration & dosage , Administration, Oral , Animals , Caffeine/chemistry , Caffeine/pharmacology , Caffeine/therapeutic use , Carbon Tetrachloride Poisoning/pathology , Cell Line , Cell Survival/drug effects , Delayed-Action Preparations , Drug Liberation , Emulsions , Hep G2 Cells , Humans , Liver/pathology , Magnesium Oxide/administration & dosage , Magnesium Oxide/chemistry , Magnesium Oxide/pharmacology , Magnesium Oxide/therapeutic use , Male , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Plant Oils/administration & dosage , Plant Oils/chemistry , Plant Oils/pharmacology , Plant Oils/therapeutic use , Protective Agents/chemistry , Protective Agents/pharmacology , Protective Agents/therapeutic use , Rats, Wistar , Rheology
11.
Life Sci ; 192: 205-212, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29196051

ABSTRACT

Lycium barbarum polysaccharides (LBPs) have multiple biological and pharmacological functions, including antioxidant, anti-inflammatory and anticancer activities. This research was conducted to evaluate whether LBPs could alleviate carbon tetrachloride (CCl4)-induced liver fibrosis and the underlying signaling pathway mechanism. Fifty male wistar rats were randomly allocated to five groups (n=10): control, CCl4 and CCl4 with 400, 800 or 1600mg/kg LBPs, respectively. Each wistar rat from each group was used for blood and tissue collections at the end of experiment. The results showed that CCl4 induced liver fibrosis as demonstrated by increasing histopathological damage, α-smooth muscle actin expression, aspartate transaminase activities, alkaline phosphatase activities and alanine aminotransferase activities. LBPs supplementation alleviated CCl4-induced liver fibrosis as demonstrated by reversing the above parameters. In addition, CCl4 treatment induced the oxidative injury, increased the mRNA levels of tumor necrosis factor-α, monocyte chemoattractant protein-1 and interleukin-1ß, and up-regulated the protein expressions of toll-like receptor 4 (TLR4), TLR2, myeloid differentiation factor 88, nuclear factor-kappa B (NF-kB) and p-p65. LBPs supplementation alleviated CCl4-induced oxidative injury, inflammatory response and TLRs/NF-kB signaling pathway expression by reversing the above some parameters. These results suggest that the alleviating effects of LBPs on CCl4-induced liver fibrosis in wistar rats may be through inhibiting the TLRs/NF-kB signaling pathway expression.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Carbon Tetrachloride Poisoning/drug therapy , Liver Cirrhosis/drug therapy , Lycium/chemistry , NF-kappa B/drug effects , Polysaccharides/therapeutic use , Toll-Like Receptors/drug effects , Animals , Carbon Tetrachloride Poisoning/pathology , Cytokines/biosynthesis , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Liver Cirrhosis/pathology , Male , Malondialdehyde/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Superoxide Dismutase-1/metabolism
12.
Arch Physiol Biochem ; 124(1): 1-9, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28714319

ABSTRACT

This study aimed to investigate the protective effects of Teucrium polium (TP) on carbon tetrachloride (CCl4) induced spleen, erythrocyte's oxidative stress, and genotoxicity in rats. TP was found to contain large amounts of polyphenols (150 mg GAE/G of dry plant) and flavonoids (60 mg QE/g of quercetin dry plant). The CCl4 (0.5 ml/kg) treated rats exhibited significant reductions in serum vitamin A (VA), vitamin E (VE) and total antioxidant status (TAS). Thiobarbituric acid reactive substances (TBARS) and conjugated dienes (CD) were significantly high in the CCl4 group compared to controls. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were significantly decreased in CCl4 rats. Cytogenetic trials revealed remarkable increases in the frequency of chromosomal aberrations (CAs) and sister chromatid exchange (SCE) following CCl4 administration. Pretreatment with TP prevented damages caused by CCl4. Spleen characterised by necrosis was detected in CCl4 as compared to controls. Pretreatment with TP considerably decreased the perturbation.


Subject(s)
Carbon Tetrachloride Poisoning/drug therapy , DNA Damage/drug effects , Oxidative Stress/drug effects , Plant Components, Aerial/chemistry , Plant Extracts/therapeutic use , Protective Agents/therapeutic use , Teucrium/chemistry , Animals , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/therapeutic use , Carbon Tetrachloride Poisoning/blood , Carbon Tetrachloride Poisoning/metabolism , Carbon Tetrachloride Poisoning/pathology , Chromosome Aberrations/chemically induced , Chromosome Aberrations/drug effects , Erythrocytes/drug effects , Erythrocytes/enzymology , Erythrocytes/metabolism , Ethnopharmacology , Flavonoids/analysis , Flavonoids/therapeutic use , Lipid Peroxidation/drug effects , Male , Medicine, African Traditional , Necrosis , Plant Components, Aerial/growth & development , Plant Extracts/chemistry , Protective Agents/chemistry , Random Allocation , Rats, Wistar , Sister Chromatid Exchange/drug effects , Spleen/drug effects , Spleen/metabolism , Spleen/pathology , Teucrium/growth & development , Tunisia
13.
Sci Rep ; 7(1): 15627, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29142221

ABSTRACT

Elemental selenium nanoparticles (SeNPs) have multiple biological activities. In this study, we investigated the protective effects of biogenic SeNPs (BioSeNPs) on CCl4-induced liver damage in mice. The results showed that: (i) when compared to sodium selenite (SS), BioSeNPs has a similar tissue distribution after intragastrical administration to mice; (ii) BioSeNPs and SS showed comparable efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase in liver cell lines, mice blood and liver; (iii) pretreatment with BioSeNPs inhibiting the elevation of activities of various enzymes significantly which included aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase and liver lipid peroxide (p < 0.05 or p < 0.01) in CCl4-treated mice; (iv) activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) were significantly increased (p < 0.05 or p < 0.01) after a pretreatment with BioSeNPs in CCl4-treated mice; (v) histopathological damages in the liver from CCl4-treated mice were ameliorated by a pretreatment with BioSeNPs. In conclusion, these results have shown that BioSeNPs is able to protect the liver from CCl4-induced hepatic damage via increasing the antioxidant capacity and inhibiting oxidative damage. BioSeNPs may have the potential to be used as a trace element food supplement inducing antioxidant bioactivities.


Subject(s)
Carbon Tetrachloride Poisoning/drug therapy , Chemical and Drug Induced Liver Injury/drug therapy , Metal Nanoparticles/administration & dosage , Selenium/administration & dosage , Animals , Antioxidants/administration & dosage , Carbon Tetrachloride/toxicity , Carbon Tetrachloride Poisoning/metabolism , Carbon Tetrachloride Poisoning/pathology , Cell Line , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Glutathione Peroxidase/genetics , Humans , Metal Nanoparticles/chemistry , Mice , Selenium/metabolism , Sodium Selenite/administration & dosage , Thioredoxin-Disulfide Reductase/genetics
14.
J Ethnopharmacol ; 206: 31-39, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28506899

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Antrodia camphorata (AC) is a rare and precious fungus indigenous to Taiwan used as a traditional medicine for the treatment of liver injury. Triterpenoids are the major bioactive constituents of A. camphorata and have been reported to possess hepatoprotective activities. To meet the increasing demand, artificial cultivation techniques have been developed. AIM OF THE STUDY: This study aims to evaluate the hepatoprotective activities of AC samples derived from different cultivation techniques and to dissect the main active triterpenoid compounds. MATERIALS AND METHODS: The ethanol extracts of five batches of AC samples, including wild growing fruiting bodies, cutting wood culture fruiting bodies, dish cultures, cutting wood culture mycelia, and submerged fermentation mycelia were orally administered (50mg/kg or 200mg/kg) to ICR mice for 7 days. On the last day, CCl4 (0.2%, 7mL/kg, i.p.) was used to induce liver injury, and the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined 24h after the injection. Moreover, a HepG2 cell model treated with CCl4 (0.35%) was used to screen the protective activities of 29 AC triterpenoids. After incubation for 6h, viabilities of the cells were tested using MTS assay. The in vivo hepatoprotective activities of antcin B and antcin K were further studied on the mice model by ALT and AST tests and histopathologic examinations. To elucidate the mechanisms, the mRNA levels of iNOS, COX2, TNF-α and IL-1ß, and the protein levels of NF-κB (p65/p-p65), iNOS and COX2 in liver tissues were determined. RESULTS: The wild growing or cutting wood culture fruiting bodies, and the dish cultures of AC showed more potent activities than the mycelia (P<0.001). At 20µM, 16 of 29 triterpenoids showed significant protective activities, increasing HepG2 cell viability from 46% of the CCl4 group to >90%. Antcin B and antcin K could dose-dependently (10 or 50mg/kg, 7 days, i.g.) decrease the serum levels of ALT and AST, and decrease the incidence of liver necrosis. The effects of 50mg/kg of antcin K or antcin B were almost identical to those of 100mg/kg silymarin. Furthermore, qRT-PCR and Western blotting analyses revealed they could down-regulate IL-1ß, TNF-α, iNOS, COX-2 and NF-κB in liver tissues at both transcriptional and translational levels. CONCLUSION: The results indicate that cultivation techniques remarkably affect the hepatoprotective activities of AC. Antcin K and antcin B are the major hepatoprotective compounds of A. camphorata, and the mechanism is related with anti-inflammation. Given its high natural abundance and good oral absorption, antcin K could be a promising drug candidate for liver injury.


Subject(s)
Antrodia/chemistry , Carbon Tetrachloride Poisoning/drug therapy , Chemical and Drug Induced Liver Injury/drug therapy , Liver/drug effects , Triterpenes/therapeutic use , Animals , Carbon Tetrachloride Poisoning/physiopathology , Chemical and Drug Induced Liver Injury/physiopathology , Chromatography, High Pressure Liquid , Ethanol , Fruiting Bodies, Fungal/chemistry , Hep G2 Cells , Humans , Liver/physiopathology , Liver Function Tests , Male , Mice , Mice, Inbred ICR
15.
Biomed Pharmacother ; 85: 763-771, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27923690

ABSTRACT

Dicranostiga Leptodu (Maxim.) fedde (DLF), a poppy plant, has been reported have many benefits and medicinal properties, including free radicals scavenging and detoxifying. However, the protective effect of DLF extracts against carbon tetrachloride (CCl4)-induced damage in mice liver has not been elucidated. Here, we demonstrated that DLF extracts attenuated CCl4-induced liver damage in mice through increasing anti-oxidative enzyme activity to improve mitochondrial function. In this study, the mice liver damage evoked by CCl4 was marked by morphology changes, significant rise in lipid peroxidation, as well as alterations of mitochondrial respiratory function. Interestingly, pretreatment with DLF extracts attenuated CCl4-induced morphological damage and increasing of lipid peroxidation in mice liver. Additionally, DLF extracts improved mitochondrial function by preventing the disruption of respiratory chain and suppression of mitochondrial Na+K+-ATPase and Ca2+-ATPase activity. Furthermore, administration with DLF extracts elevated superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels and maintained the balance of redox status. This results showed that toxic protection effect of DLF extracts on mice liver is mediated by improving mitochondrial respiratory function and keeping the balance of redox status, which suggesting that DLF extracts could be used as potential toxic protection agent for the liver against hepatotoxic agent.


Subject(s)
Antioxidants/metabolism , Carbon Tetrachloride Poisoning/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Mitochondria/drug effects , Papaveraceae/chemistry , Plant Extracts/pharmacology , Animals , Calcium-Transporting ATPases/genetics , Calcium-Transporting ATPases/metabolism , Chemical and Drug Induced Liver Injury/pathology , Gene Expression Regulation, Enzymologic/drug effects , Lethal Dose 50 , Mice , Mitochondria/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism
16.
J Nutr Biochem ; 38: 93-101, 2016 12.
Article in English | MEDLINE | ID: mdl-27732914

ABSTRACT

Exposure to the halogenated hydrocarbon carbon tetrachloride (CCl4) leads to hepatic lipid peroxidation, inflammation and fibrosis. Dietary supplementation of ω-3 fatty acids has been increasingly advocated as being generally anti-inflammatory, though its effect in models of liver fibrosis is mixed. This raises the question of whether diets high in ω-3 fatty acids will result in a greater sensitivity or resistance to liver fibrosis as a result of environmental toxicants like CCl4. In this study, we fed CCl4-treated mice a high ω-3 diet (using a mix of docosahexaenoic acid and eicosapentaenoic acid ethyl esters). We also co-administered an inhibitor of soluble epoxide hydrolase, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), which has been shown to boost anti-inflammatory epoxy fatty acids that are produced from both ω-3 and ω-6 dietary lipids. We showed that soluble epoxide inhibitors reduced CCl4-induced liver fibrosis. Three major results were obtained. First, the ω-3-enriched diet did not attenuate CCl4-induced liver fibrosis as judged by collagen deposition and collagen mRNA expression. Second, the ω-3-enriched diet raised hepatic tissue levels of several inflammatory lipoxygenase metabolites and prostaglandins, including PGE2. Third, treatment with TPPU in drinking water in conjunction with the ω-3-enriched diet resulted in a reduction in liver fibrosis compared to all other groups. Taken together, these results indicate that dietary ω-3 supplementation alone did not attenuate CCl4-induced liver fibrosis. Additionally, oxylipin signaling molecules may play role in the CCl4-induced liver fibrosis in the high ω-3 diet groups.


Subject(s)
Carbon Tetrachloride Poisoning/diet therapy , Dietary Supplements , Enzyme Inhibitors/therapeutic use , Epoxide Hydrolases/antagonists & inhibitors , Fatty Acids, Omega-3/therapeutic use , Liver Cirrhosis, Experimental/prevention & control , Liver/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Biomarkers/metabolism , Carbon Tetrachloride Poisoning/drug therapy , Carbon Tetrachloride Poisoning/metabolism , Carbon Tetrachloride Poisoning/pathology , Collagen Type I/antagonists & inhibitors , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Combined Modality Therapy , Dinoprostone/agonists , Dinoprostone/antagonists & inhibitors , Dinoprostone/metabolism , Down-Regulation/drug effects , Enzyme Inhibitors/blood , Enzyme Inhibitors/pharmacokinetics , Epoxide Hydrolases/metabolism , Female , Liver/immunology , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Experimental/etiology , Liver Cirrhosis, Experimental/immunology , Male , Mice, Inbred C57BL , Phenylurea Compounds/blood , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/therapeutic use , Piperidines/blood , Piperidines/pharmacokinetics , Piperidines/therapeutic use , RNA, Messenger/metabolism , Reproducibility of Results
17.
Phytomedicine ; 23(6): 583-8, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27161399

ABSTRACT

BACKGROUND: AMP-activated protein kinase (AMPK) is one of the principal cellular energy sensors participating in maintenance of energy balance but recent evidences also suggested that AMPK might be involved in the regulation of inflammation. STUDY DESIGN/METHODS: Ginsenoside Rg1 (Rg1) was used to investigate the potential roles of AMPK in carbon tetrachloride (CCl4)-induced hepato-toxicity. The experimental data indicated that treatment with Rg1 significantly decreased the elevation of plasma aminotransferases and alleviated hepatic histological abnormalities in CCl4-exposed mice. Treatment with Rg1 also inhibited the increase of myeloperoxidase (MPO) and malondialdehyde (MDA), the induction of TNF-α, IL-6, inducible nitric oxide synthase (iNOS), nitric oxide and the upregulation of matrix metalloproteinase 2 (MMP-2), MMP-3 and MMP-9 in mice exposed to CCl4. These effects were associated with suppressed nuclear accumulation of NF-κB p65. CONCLUSION: These results indicated that Rg1 effectively suppressed the inflammatory responses and alleviated liver damage induced by CCl4, implying that AMPK activation might be beneficial for ameliorating inflammation-based liver damage.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Carbon Tetrachloride Poisoning/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/physiopathology , Ginsenosides/pharmacology , Inflammation/metabolism , Liver/drug effects , Animals , Anti-Inflammatory Agents/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , China , Ginsenosides/therapeutic use , Inflammation/drug therapy , Inflammation/etiology , Male , Mice , Protective Agents/pharmacology
18.
Article in English | MEDLINE | ID: mdl-28480355

ABSTRACT

BACKGROUND: The current trend globally is the utilization of natural products as therapeutic agents given its minimum side effects. The leaves of Stevia contain several active ingredient compounds such as rebaudioside. Stevia extract have been used for many purposes. Active oxygen radicals can induce base modifications, DNA breakage, and intracellular protein crosslink's. This study was done to evaluate the potential of stevia extract as antibacterial and antioxidants actions. MATERIALS AND METHODS: Antibacterial activity of different extracts of stevia was tested in vitro against different species of bacteria and hepato-protective efficacy was testes in rats injected with CCl4 as hepatotoxic. RESULTS: Acetone extract exhibited antibacterial activity against selected five bacteria species. The acetone extract suppressed the elevation of serum ALT (p <0.05) and AST (p <0.001) activities induced by CCl4. Animals given stevia extract showed prevention against deleterious effects of CCl4 by lowering lipid peroxidation and enhancement of antioxidant activities as SOD and CAT. The protection trial is better than treatment trial. Total phenolic content of aqueous and acetone extracts were found 30 mg and 85 mg gallic /gm extract respectively. While the total flavonoids were 40 mg and 80 mg quercetin/g respectively. The GC-MS analysis showed that monoterpene and indole are the main components. Aqueous extract don't show any antibacterial activity against the tested strains. The antioxidant properties were attributable to its phenolic content to scavenge free radicals. CONCLUSION: Acetone extract possess a potent antimicrobial and activity against deleterious effect of CCl4-caused liver damage.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Phytotherapy/methods , Plant Extracts/pharmacology , Plant Leaves/chemistry , Stevia/chemistry , Acetone/pharmacology , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Carbon Tetrachloride Poisoning/blood , Carbon Tetrachloride Poisoning/drug therapy , Carbon Tetrachloride Poisoning/etiology , Catalase/drug effects , Flavonoids/analysis , Free Radical Scavengers/pharmacology , Lipid Peroxidation/drug effects , Liver/drug effects , Male , Phenols/analysis , Rats , Superoxide Dismutase/drug effects
19.
Int Immunopharmacol ; 29(2): 739-747, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26371859

ABSTRACT

Geniposide (GP), an iridoid glucoside extracted from Gardenia jasminoides Ellis fruits, has been used as a herbal medicine to treat liver and gall bladder disorders for many years. However the mechanism of anti-inflammatory is largely unknown. In this study, GP significantly attenuated inflammation in acute liver injury (ALI) mice model and in lipopolysaccharide (LPS)-induced THP-1 cells. It was demonstrated that GP obviously decreased the expression of Methyl-CpG binding protein 2 (MeCP2) in vivo and in vitro. Knockdown of MeCP2 with siRNA suppressed the expressions of IL-6 and TNF-α, while over-expression of MeCP2 had a proinflammatory effect on the expression of IL-6 and TNF-α in LPS-induced THP-1 cells. Mechanistically, it was indicated that GP had anti-inflammatory effects at least in part, through suppressing MeCP2. Interestingly, GP could attenuate expressions of Sonic hedgehog (Shh) and GLIS family zinc finger 1 (GLIS1) but increase Ptched1 (PTCH1) expression. Similar findings were also demonstrated at the protein level by siRNA MeCP2. Furthermore, over-expression of MeCP2 obviously increased Shh and GLIS1 expressions but reduced PTCH1 expression. Taken together, GP may serve as an effective modulator of MeCP2-hedgehog pathway (Hh)-axis during the pathogenesis of inflammation. Our findings shed light on the potential therapeutic feature of GP in recovering inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Carbon Tetrachloride Poisoning/drug therapy , Chemical and Drug Induced Liver Injury/drug therapy , Inflammation/drug therapy , Iridoids/pharmacology , Methyl-CpG-Binding Protein 2/genetics , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Carbon Tetrachloride Poisoning/pathology , Cell Line , Chemical and Drug Induced Liver Injury/pathology , Gene Expression/drug effects , Gene Knockdown Techniques , Hedgehog Proteins/biosynthesis , Hedgehog Proteins/genetics , Interleukin-6/biosynthesis , Interleukin-6/genetics , Iridoids/therapeutic use , Liver/pathology , Methyl-CpG-Binding Protein 2/biosynthesis , Mice , Mice, Inbred C57BL , RNA, Small Interfering , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics
20.
Chin J Nat Med ; 13(7): 521-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26233842

ABSTRACT

The aim of the present study was to determine the preventive effects of the polysaccharide of Larimichthys crocea swim bladder (PLCSB) on CCl4-induced hepatic damage in ICR mice. The in vitro preventive effects of PLCSB on CCl4-induced liver cytotoxic effect were evaluated in BRL 3A rat liver cells using the MTT assay. The serum levels of AST, ALT, and LDH in mice were determined using commercially available kits. The levels of IL-6, IL-12, TNF-α, and IFN-γ were determined using ELISA kits. The pathological analysis of hepatic tissues was performed with H and E staining, and the gene and protein expressions were determined by RT-PCR and Western blotting, respectively. PLCSB (20 µg·mL(-1)) could increase the growth of BRL 3A rat liver cells treated with CCl4. The serum levels of AST, ALT, and LDH were significantly decreased when the mice were treated with two doses of PLCSB, compared with the control mice (P < 0.05). PLCSB-treated groups also showed reduced levels of the serum pro-inflammatory cytokines IL-6, IL-12, TNF-α, and IFN-γ. PLCSB could decrease the liver weight, compared to the CCl4-treated control mice. The histopathology sections of liver tissues in the 100 mg·kg(-1) PLCSB group indicated that the animals were recovered well from CCl4 damage, but the 50 mg·kg(-1) PLCSB group showed necrosis to a more serious extent. The 100 mg·kg(-1) PLCSB group showed significantly decreased mRNA and protein expression levels of NF-κB, iNOS, and COX-2, and increased expression of IκB-α compared with the CCl4-treated control group. In conclusion, PLCSB prevented from CCl4-induced hepatic damage in vivo.


Subject(s)
Animal Structures/chemistry , Biological Products/therapeutic use , Chemical and Drug Induced Liver Injury/prevention & control , Cytokines/blood , Liver/drug effects , Perciformes , Polysaccharides/therapeutic use , Animals , Biological Products/pharmacology , Carbon Tetrachloride , Carbon Tetrachloride Poisoning/drug therapy , Carbon Tetrachloride Poisoning/metabolism , Carbon Tetrachloride Poisoning/pathology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Cyclooxygenase 2/metabolism , I-kappa B Proteins/metabolism , Inflammation Mediators/blood , Liver/metabolism , Liver/pathology , Male , Mice, Inbred ICR , NF-KappaB Inhibitor alpha , NF-kappa B/metabolism , Necrosis , Nitric Oxide Synthase Type II/metabolism , Polysaccharides/pharmacology , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL