Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37762041

ABSTRACT

Pectin is a complex polysaccharide that forms a substantial proportion of the plant's middle lamella of forage ingested by grazing ruminants. Methanol in the rumen is derived mainly from methoxy groups released from pectin by the action of pectin methylesterase (PME) and is subsequently used by rumen methylotrophic methanogens that reduce methanol to produce methane (CH4). Members of the genus Butyrivibrio are key pectin-degrading rumen bacteria that contribute to methanol formation and have important roles in fibre breakdown, protein digestion, and the biohydrogenation of fatty acids. Therefore, methanol release from pectin degradation in the rumen is a potential target for CH4 mitigation technologies. Here, we present the crystal structures of PMEs belonging to the carbohydrate esterase family 8 (CE8) from Butyrivibrio proteoclasticus and Butyrivibrio fibrisolvens, determined to a resolution of 2.30 Å. These enzymes, like other PMEs, are right-handed ß-helical proteins with a well-defined catalytic site and reaction mechanisms previously defined in insect, plant, and other bacterial pectin methylesterases. Potential substrate binding domains are also defined for the enzymes.


Subject(s)
Methanol , Rumen , Animals , Butyrivibrio , Carboxylesterase , Bacteria , Pectins
2.
Sci Total Environ ; 879: 163040, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-36965720

ABSTRACT

The loggerhead sea turtle (Caretta caretta) has been selected as sentinel species by the Marine Strategy Framework Directive (MSFD) descriptor 10 in relation to marine litter. In this, and other protected species, there is a need to develop conservative pollution biomarkers equally informative of chemical exposures to those traditionally carried out in metabolic organs, such as the liver. With this aim, plasma from turtles undergoing rehabilitation at the Fundació Oceanogràfic rescue centre (Arca del Mar) were selected and tested for B-esterase measurements. Hydrolysis rates of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterases (CEs) using four commercial substrates were undertaken on 191 plasma samples. Results indicated that acetylthiocholine was the most adequate substrate of cholinesterases and butyrate esters for CE measures. The correlation of these parameters with well-established blood biochemistry measurements was analysed. B-esterase measures in wild specimens were discussed in relation to age group, pathology on admission to the rescue centre and season; moreover, contrasts with long-term resident turtles were also made. Although this study provides baseline data on B-esterase measures in a large sample size for this species, more complementary information is still needed in terms of population genetics, chemical exposures, and in relation to other biochemical parameters before they can be confidently applied in wild specimens within the regulatory MSFD.


Subject(s)
Turtles , Animals , Carboxylesterase/metabolism , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Health Status
3.
Molecules ; 27(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36296729

ABSTRACT

Antimicrobial Photodynamic Treatment (aPDT) is a non-thermal sterilization technology, which can inactivate common foodborne pathogens. In the present study, photodynamic inactivation on Staphylococcus aureus (S. aureus) with different concentrations of curcumin and light dose was evaluated and the mechanisms were also investigated. The results showed that curcumin-based aPDT could inactivate S. aureus cells by 6.9 log CFU/mL in phosphate buffered saline (PBS). Moreover, the modified Gompertz model presented a good fit at the inactivation data of S. aureus. Photodynamic treatment caused cell membrane damage as revealed by analyzing scanning electron microscopy (SEM) images. Leakage of intracellular constituents further indicated that cell membrane permeability was changed. Flow cytometry with double staining demonstrated that cell membrane integrity and the activity of nonspecific esterase were destroyed. Compared with the control group, intracellular reactive oxygen species (ROS) levels caused by photodynamic treatment significantly increased. Furthermore, curcumin-based aPDT reduced S. aureus by 5 log CFU/mL in juices. The color of the juices was also tested using a Chromatic meter, and it was found that b* values were the most markedly influenced by photodynamic treatment. Overall, curcumin-based aPDT had strong antibacterial activity against S. aureus. This approach has the potential to remove foodborne pathogens from liquid food.


Subject(s)
Anti-Infective Agents , Curcumin , Photochemotherapy , Staphylococcal Infections , Humans , Staphylococcus aureus/metabolism , Photosensitizing Agents/pharmacology , Curcumin/pharmacology , Reactive Oxygen Species/metabolism , Carboxylesterase , Anti-Bacterial Agents/pharmacology , Phosphates , Photochemotherapy/methods
4.
Toxicology ; 480: 153317, 2022 10.
Article in English | MEDLINE | ID: mdl-36096317

ABSTRACT

At high exposure levels, organophosphorus insecticides (OPs) exert their toxicity in mammals through the inhibition of brain acetylcholinesterase (AChE) leading to the accumulation of acetylcholine in cholinergic synapses and hyperactivity of the nervous system. Currently, there is a concern that low-level exposure to OPs induces negative impacts in developing children and the chemical most linked to these issues is chlorpyrifos (CPF). Our laboratory has observed that a difference in the susceptibility to repeated exposure to CPF exists between juvenile mice and rats with respect to the inhibition of brain AChE. The basis for this difference is unknown but differences in the levels of the detoxification mechanisms could play a role. To investigate this, 10-day old rat and mice pups were exposed daily for 7 days to either corn oil or a range of dosages of CPF via oral gavage. Four hours following the last administration of CPF on day 16, brain, blood, and liver were collected. The inhibition of brain AChE activity was higher in juvenile rats as compared to juvenile mice. The levels of activity of the detoxification enzymes and the impact of CPF exposure on their activity were determined in the two species at this age. In blood and liver, the enzyme paraoxonase-1 (PON1) hydrolyzes the active metabolite of CPF (CPF-oxon), and the enzymes carboxylesterase (CES) and cholinesterase (ChE) act as alternative binding sites for CPF-oxon removing it from circulation and providing protection. Both species had similar levels of PON1 activity in the liver and serum. Mice had higher ChE activity in liver and serum than rats but, following CPF exposure, the percentage inhibition was similar between species at an equivalent dosage. Even though rats had slightly higher liver CES activity than mice, the level of inhibition following exposure was higher in rats. In serum, juvenile mice had an 8-fold higher CES activity than rats, and exposure to a CPF dosage that almost eliminated CES activity in rats only resulted in 22% inhibition in mice suggesting that the high serum CES activity in mice as compared to rats is a key component in this species difference. In addition, there was a species difference in the sensitivity of CES to inhibition by CPF-oxon with rats having a lower IC50 in both liver and serum as compared to mice. This greater enzyme sensitivity suggests that saturation of CES would occur more rapidly in juvenile rats than in mice, resulting in more CPF reaching the brain to inhibit AChE in rats.


Subject(s)
Chlorpyrifos , Insecticides , Acetylcholine , Acetylcholinesterase/metabolism , Animals , Aryldialkylphosphatase , Carboxylesterase/metabolism , Chlorpyrifos/analogs & derivatives , Chlorpyrifos/toxicity , Cholinesterase Inhibitors/toxicity , Cholinesterases/metabolism , Corn Oil , Insecticides/metabolism , Insecticides/toxicity , Mammals/metabolism , Mice , Rats , Rats, Sprague-Dawley
5.
Chemosphere ; 309(Pt 1): 136594, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36167211

ABSTRACT

Four carbon materials, spent coffee-ground biochar, carbon black, short CNTs, and nitrogen-doped few-layer graphene (N-graphene) were tested for their functionalization with a commercial carboxylesterase. Their robustness to variations in time and key physicochemical parameters (temperature and pH) was analysed. In general, carbon nanomaterials showed better performance than biochar, both in terms of binding capacity and resilience in harsh conditions, at statistically significant levels. Among the tested materials, functionalized N-graphene also showed the highest level of inhibition of carboxylesterase by pesticide exposure. Therefore, N-graphene was selected for biotechnological application of pesticide scavenging toxicity in T. thermophila, a ciliate bioindicator of water quality. While immobilization of the enzyme was not effective in the case of carbaryl, a methyl carbamate, in the case of the organophosphorus dichlorvos, a 1- or 30-min contact time with a water solution containing 5 times the LC100 - 0.5 mM - allowed 50% and 100% rescue of ciliate survival, respectively. These results suggest that functionalization with carboxylesterase may be of additional benefit compared to bare carbon in water clean-up procedures, especially for highly hydrophilic pesticides such as dichlorvos.


Subject(s)
Graphite , Nanostructures , Pesticides , Pesticides/toxicity , Carboxylesterase/metabolism , Carbaryl , Dichlorvos , Carbon , Environmental Biomarkers , Soot , Coffee , Nitrogen
6.
Chem Biol Interact ; 351: 109744, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34774545

ABSTRACT

Remdesivir, an intravenous nucleotide prodrug, has been approved for treating COVID-19 in hospitalized adults and pediatric patients. Upon administration, remdesivir can be readily hydrolyzed to form its active form GS-441524, while the cleavage of the carboxylic ester into GS-704277 is the first step for remdesivir activation. This study aims to assign the key enzymes responsible for remdesivir hydrolysis in humans, as well as to investigate the kinetics of remdesivir hydrolysis in various enzyme sources. The results showed that remdesivir could be hydrolyzed to form GS-704277 in human plasma and the microsomes from human liver (HLMs), lung (HLuMs) and kidney (HKMs), while the hydrolytic rate of remdesivir in HLMs was the fastest. Chemical inhibition and reaction phenotyping assays suggested that human carboxylesterase 1 (hCES1A) played a predominant role in remdesivir hydrolysis, while cathepsin A (CTSA), acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) contributed to a lesser extent. Enzymatic kinetic analyses demonstrated that remdesivir hydrolysis in hCES1A (SHUTCM) and HLMs showed similar kinetic plots and much closed Km values to each other. Meanwhile, GS-704277 formation rates were strongly correlated with the CES1A activities in HLM samples from different individual donors. Further investigation revealed that simvastatin (a therapeutic agent for adjuvant treating COVID-19) strongly inhibited remdesivir hydrolysis in both recombinant hCES1A and HLMs. Collectively, our findings reveal that hCES1A plays a predominant role in remdesivir hydrolysis in humans, which are very helpful for predicting inter-individual variability in response to remdesivir and for guiding the rational use of this anti-COVID-19 agent in clinical settings.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Carboxylesterase/metabolism , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Alanine/chemistry , Alanine/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Carboxylesterase/chemistry , Cathepsin A/chemistry , Cathepsin A/metabolism , Humans , Hydrolysis/drug effects , Kinetics , Liver/metabolism , Microsomes, Liver/metabolism , Simvastatin/pharmacology
7.
Toxins (Basel) ; 13(12)2021 12 07.
Article in English | MEDLINE | ID: mdl-34941712

ABSTRACT

Fumonisin B1 (FB1) is the most common food-borne mycotoxin produced by the Fusarium species, posing a potential threat to human and animal health. Pigs are more sensitive to FB1 ingested from feed compared to other farmed livestock. Enzymatic degradation is an ideal detoxification method that has attracted much attention. This study aimed to explore the functional characteristics of the carboxylesterase FumDSB in growing pigs from the perspective of brain-gut regulation. A total of 24 growing pigs were divided into three groups. The control group was fed a basal diet, the FB1 group was supplemented with FB1 at 5 mg/kg feed, and the FumDSB group received added FumDSB based on the diet of the FB1 group. After 35 days of animal trials, samples from the hypothalamus and jejunum were analyzed through HE staining, qRT-PCR and immunohistochemistry. The results demonstrated that the ingestion of FB1 can reduce the feed intake and weight gain of growing pigs, indicating that several appetite-related brain-gut peptides (including NPY, PYY, ghrelin and obestatin, etc.) play important roles in the anorexia response induced by FB1. After adding FumDSB as detoxifying enzymes, however, the anorexia effects of FB1 were alleviated, and the expression and distribution of the corresponding brain-gut peptides exhibited a certain degree of regulation. In conclusion, the addition of FumDSB can reduce the anorexia effects of FB1 by regulating several brain-gut peptides in both the hypothalamus and the jejunum of growing pigs.


Subject(s)
Carboxylesterase/metabolism , Fumonisins/metabolism , Fumonisins/toxicity , Growth and Development/drug effects , Hypothalamus/drug effects , Jejunum/drug effects , Proteolysis/drug effects , Swine/growth & development , Animals , Hypothalamus/metabolism , Jejunum/metabolism , Poisons/metabolism , Poisons/toxicity
8.
Chem Biol Interact ; 345: 109566, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34174250

ABSTRACT

Mammalian carboxylesterases (CES), the key members of the serine hydrolase superfamily, hydrolyze a wide range of endogenous substances and xenobiotics bearing ester or amide bond(s). In humans, most of identified CES are segregated into the CES1A and CES2A subfamilies. Strong inhibition on human CES (including hCES1A and hCES2A) may modulate pharmacokinetic profiles of CES-substrate drugs, thereby changing the pharmacological and toxicological responses of these drugs. This review covered recent advances in discovery of hCES inhibitors from clinically available medications, as well as their impact on CES-associated drug metabolism. Three comprehensive lists of hCES inhibitors deriving from clinically available medications including therapeutic drugs, pharmaceutical excipients and herbal medicines, alongside with their inhibition potentials and inhibition parameters, are summarized. Furthermore, the potential risks of hCES inhibitors to trigger drug/herb-drug interactions (DDIs/HDIs) and future concerns in this field are highlighted. Potent hCES inhibitors may trigger clinically relevant DDIs/HDIs, especially when these inhibitors are co-administrated with CES substrate-drugs with very narrow therapeutic windows. All data and knowledge presented here provide key information for the clinicians to assess the risks of clinically available hCES inhibitors on drug metabolism. In future, more practical and highly specific substrates for hCES1A/hCES2A should be developed and used for studies on CES-mediated DDIs/HDIs both in vitro and in vivo.


Subject(s)
Carboxylesterase/antagonists & inhibitors , Carboxylesterase/metabolism , Enzyme Inhibitors/pharmacology , Pharmaceutical Preparations/metabolism , Animals , Drug Discovery , Humans , Inactivation, Metabolic/drug effects
9.
Zhongguo Zhong Yao Za Zhi ; 46(3): 638-644, 2021 Feb.
Article in Chinese | MEDLINE | ID: mdl-33645031

ABSTRACT

According to human carboxylesterase 2(hCE2) inhibitors reported in the literature, the pharmacophore model of hCE2 inhibitors was developed using HipHop module in Discovery Studio 2016. The optimized pharmacophore model, which was validated by test set, contained two hydrophobic, one hydrogen bond acceptor, and one aromatic ring features. Using the pharmacophore model established, 5 potential hCE2 inhibitors(CS-1,CS-2,CS-3,CS-6 and CS-8) were screened from 20 compounds isolated from the roots of Paeonia lactiflora, which were further confirmed in vitro, with the IC_(50) values of 5.04, 5.21, 5.95, 6.64 and 7.94 µmol·L~(-1), respectively. The results demonstrated that the pharmacophore model exerted excellent forecasting ability with high precision, which could be applied to screen novel hCE2 inhibitors from Chinese medicinal materials.


Subject(s)
Carboxylesterase , Carboxylesterase/antagonists & inhibitors , Carboxylesterase/metabolism , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions
10.
Angew Chem Int Ed Engl ; 60(6): 3071-3079, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33035395

ABSTRACT

Herein, we report arylazopyrazole ureas and sulfones as a novel class of photoswitchable serine hydrolase inhibitors and present a chemoproteomic platform for rapid discovery of optically controlled serine hydrolase targets in complex proteomes. Specifically, we identify highly potent and selective photoswitchable inhibitors of the drug-metabolizing enzymes carboxylesterases 1 and 2 and demonstrate their pharmacological application by optically controlling the metabolism of the immunosuppressant drug mycophenolate mofetil. Collectively, this proof-of-concept study provides a first example of photopharmacological tools to optically control drug metabolism by modulating the activity of a metabolizing enzyme. Our arylazopyrazole ureas and sulfones offer synthetically accessible scaffolds that can be expanded to identify specific photoswitchable inhibitors for other serine hydrolases, including lipases, peptidases, and proteases. Our chemoproteomic platform can be applied to other photoswitches and scaffolds to achieve optical control over diverse protein classes.


Subject(s)
Carboxylesterase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Pharmaceutical Preparations/metabolism , Ultraviolet Rays , Caco-2 Cells , Carboxylesterase/metabolism , Carboxylic Ester Hydrolases/antagonists & inhibitors , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Humans , Hydrolysis , Microscopy, Fluorescence , Pharmaceutical Preparations/chemistry , RNA Interference , RNA, Small Interfering/metabolism , Stereoisomerism , Sulfones/chemistry , Sulfones/metabolism , Urease/chemistry , Urease/metabolism
11.
Food Funct ; 12(1): 162-176, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33291124

ABSTRACT

Human carboxylesterase 2 (hCES2A) is a key target to ameliorate the intestinal toxicity triggered by irinotecan that causes severe diarrhea in 50%-80% of patients receiving this anticancer agent. Herbal medicines are frequently used for the prevention and treatment of the intestinal toxicity of irinotecan, but it is very hard to find strong hCES2A inhibitors from herbal medicines in an efficient way. Herein, an integrated strategy via combination of chemical profiling, docking-based virtual screening and fluorescence-based high-throughput inhibitor screening assays was utilized. Following the screening of a total of 73 herbal products, licorice (the dried root of Glycyrrhiza species) was found with the most potent hCES2A inhibition activity. Further investigation revealed that the chalcones and several flavonols in licorice displayed strong hCES2A inhibition activities, while isoliquiritigenin, echinatin, naringenin, gancaonin I and glycycoumarin exhibited moderate inhibition of hCES2A. Inhibition kinetic analysis demonstrated that licochalcone A, licochalcone C, licochalcone D and isolicoflavonol potently inhibited hCES2A-mediated fluorescein diacetate hydrolysis in a reversible and mixed inhibition manner, with Ki values less than 1.0 µM. Further investigations demonstrated that licochalcone C, the most potent hCES2A inhibitor identified from licorice, dose-dependently inhibited intracellular hCES2A in living HepG2 cells. In summary, this study proposed an integrated strategy to find hCES2A inhibitors from herbal medicines, and our findings suggested that the chalcones and isolicoflavonol in licorice were the key ingredients responsible for hCES2A inhibition, which would be very helpful to develop new herbal remedies or drugs for ameliorating hCES2A-associated drug toxicity.


Subject(s)
Carboxylesterase/antagonists & inhibitors , Carboxylesterase/metabolism , Chalcones/pharmacology , Flavonols/pharmacology , Glycyrrhiza/chemistry , Plant Extracts/chemistry , Chromatography, Liquid , Fluorescence , Humans , In Vitro Techniques , Tandem Mass Spectrometry
12.
Int J Biol Macromol ; 167: 1262-1272, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33189757

ABSTRACT

Carboxylesterase 2 (CES 2), plays a pivotal role in endobiotic homeostasis and xenobiotic metabolism. Protostanes, the major constituents of the genus Alisma, display a series of pharmacological activities. Despite the extensive studies of pharmacological activities, the investigation on inhibitory effects of protostanes against CES 2 is rarely reported. In this study, the inhibitory activities of a library of protostanes (1-25) against human CES 2 were investigated for the first time, using 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB) as the specific fluorescent probe for human CES 2. Compounds 1, 2, 7, 8, 12, 13, 18, 19, and 25 showed strong inhibitory effects towards CES 2. For the most potent compounds 1, 7, 13, and 25, the inhibition kinetics were further investigated, and these four protostanes were all uncompetitive inhibitors against human CES 2 with the inhibition constant (Ki) values ranging from 0.89 µM to 2.83 µM. In addition, molecular docking and molecular dynamics stimulation were employed to analyze the potential interactions between these protostanes and CES 2, and amino acid residue Gln422 was identified to play a crucial role in the strong inhibition of protostanes towards CES 2.


Subject(s)
Alisma/chemistry , Carboxylesterase/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology , Acridines/chemistry , Benzoates/chemistry , Fluorescent Dyes/chemistry , Inhibitory Concentration 50 , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Structure-Activity Relationship
13.
Fitoterapia ; 147: 104737, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33022332

ABSTRACT

Nine new limonoids, named thaixylomolins S-Z (1-8) and 2-O-acetylthaixylomolin Z (9), were isolated from seeds of the mangrove, Xylocarpus moluccensis, collected in the mangrove swamp of Trang Province, Thailand. Thaixylomolin S (1) is the fourth member of the khayalactone class of limonoids containing a hexahydro-2H-2,5- propanocyclopenta[b]furan motif. Thaixylomolins T-Y (2-7) are structurally diverse mexicanolides; whereas thaixylomolin Z (8) and 2-O-acetylthaixylomolin Z (9) are phragmalin 8,9,30-orthoesters. The structures of these compounds were established by HRESIMS and extensive 1D and 2D NMR investigations. The absolute configurations of thaixylomolins S (1), U (3), and Z (8) were unambiguously established by single-crystal X-ray diffraction analyses, conducted with Cu Kα radiation; whereas that of 2-O-acetylthaixylomolin Z (9) was determined to be the same as that of thaixylomolin Z (8) by the accurate fit of their experimental electronic circular dichroism spectra. Thaixylomolin S (1), featuring the presence of a 30-(2'-methyl)butyryloxy group, is the first limonoid of the khayalactone class, whose constitution and absolute configuration are unequivocally determined by X-ray crystallography. The inhibitory activities of all the compounds, except for the epimers 4, were assayed against human carboxylesterase 2. All the tested compounds exhibited inhibition rates in the range of 16-65% at the concentration of 100.0 µM.


Subject(s)
Carboxylesterase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Limonins/pharmacology , Meliaceae/chemistry , Circular Dichroism , Crystallography, X-Ray , Enzyme Inhibitors/isolation & purification , Humans , Limonins/isolation & purification , Magnetic Resonance Spectroscopy , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Seeds/chemistry , Thailand
14.
J Nat Prod ; 83(10): 2940-2949, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32951423

ABSTRACT

In a continuing search for potential inhibitors against human carboxylesterases 1A1 and 2A1 (hCES1A1 and hCES2A1), an EtOAc extract of the roots of Paeonia lactiflora showed strong hCES inhibition activity. Bioassay-guided fractionation led to the isolation of 26 terpenoids including 12 new ones (1-5, 7-12, and 26). Among these, sesquiterpenoids 1 and 6, monoterpenoids 10, 11, and 13-15, and triterpenoids 18-20, 22, and 24-26 contributed to the hCES2A1 inhibition, in the IC50 range of 1.9-14.5 µM, while the pentacyclic triterpenoids 18-26 were responsible for the potent inhibitory activity against hCES1A1, with IC50 values less than 5.0 µM. The structures of all the compounds were elucidated using MS and 1D and 2D NMR data, and the absolute configurations of the new compounds were resolved via specific rotation, experimental and calculated ECD spectra, and single-crystal X-ray diffraction analysis. The structure-activity relationship analysis highlighted that the free HO-3 group in the pentacyclic triterpenoids is crucial for their potent inhibitory activity against hCES1A1.


Subject(s)
Enzyme Inhibitors/pharmacology , Paeonia , Plant Extracts/pharmacology , Plant Roots , Carboxylesterase/antagonists & inhibitors , Cell Line, Tumor , Glucosides , Humans , Molecular Structure , Monoterpenes , Sesquiterpenes , Structure-Activity Relationship
15.
Food Funct ; 11(10): 8680-8693, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32940318

ABSTRACT

Human carboxylesterase 1A1 (hCES1A) is a promising target for the treatment of hyperlipidemia and obesity-associated metabolic diseases. To date, the highly specific and efficacious hCES1A inhibitors are rarely reported. This study aims to find potent and highly specific hCES1A inhibitors from herbs, and to investigate their inhibitory mechanisms. Following large-scale screening of herbal products, Styrax was found to have the most potent hCES1A inhibition activity. After that, a practical bioactivity-guided fractionation coupling with a chemical profiling strategy was used to identify the fractions from Styrax with strong hCES1A inhibition activity and the major constituents in these bioactive fractions were characterized by LC-TOF-MS/MS. The results demonstrated that seven pentacyclic triterpenoid acids (PTAs) in two bioactive fractions from Styrax potently inhibit hCES1A, with IC50 values ranging from 41 nM to 478 nM. Among all the identified PTAs, epibetulinic acid showed the most potent inhibition activity and excellent specificity towards hCES1A. Both inhibition kinetic analyses and in silico analysis suggested that epibetulinic acid potently inhibited hCES1A in a mixed inhibition manner. Collectively, our findings demonstrate that some PTAs in Styrax are potent and highly specific inhibitors of hCES1A and these constituents can be used as promising lead compounds for the development of more efficacious hCES1A inhibitors.


Subject(s)
Carboxylesterase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Styrax/chemistry , Triterpenes/pharmacology , Binding Sites , Carboxylesterase/chemistry , Carboxylesterase/metabolism , Catalytic Domain , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Kinetics , Molecular Dynamics Simulation , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Triterpenes/chemistry , Triterpenes/metabolism
16.
Aquat Toxicol ; 222: 105474, 2020 May.
Article in English | MEDLINE | ID: mdl-32259658

ABSTRACT

Larval toxicity of ethanolic extract of C. parvula (Ex-Cp) was prominent in the second and the third instars at the maximum lethal dosage of 100 ppm with 98 and 97 % mortality rate respectively. The LC50 and LC90 was displayed at 43 ppm and 88 ppm dosage respectively. Correspondingly, the sub-lethal dosage (65 ppm) of Ex-Cp significantly alters the carboxylesterase (α and ß), GST and CYP450 enzyme level in both III and IV instar larvae in dose-dependent manner. Similarly, the Ex-Cp displayed significant repellent activity (97 %) with a maximum level of protection time (210 min). Photomicrography assay of Ex-Cp (65 ppm) were toxic to dengue larvae as compared to control. The non-target toxicity of Ex-Cp against the beneficial mosquito predators displayed less toxicity at the maximum dosage of 600 ppm as compared to Temephos. Thus the present research delivers the target and non-target toxicity of red algae C. parvula against the dengue mosquito vector.


Subject(s)
Aedes/drug effects , Dengue , Insect Repellents/pharmacology , Mosquito Vectors/drug effects , Plant Extracts/pharmacology , Rhodophyta/chemistry , Aedes/virology , Animals , Aquatic Organisms/drug effects , Carboxylesterase/metabolism , Dengue/virology , Dose-Response Relationship, Drug , Insect Repellents/isolation & purification , Insect Repellents/toxicity , Larva/drug effects , Larva/enzymology , Lethal Dose 50 , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Water Pollutants, Chemical/toxicity
17.
Anal Bioanal Chem ; 412(11): 2645-2654, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32123952

ABSTRACT

Human carboxylesterase 2 (hCE2), one of the most principal drug-metabolizing enzymes, catalyzes the hydrolysis of a variety of endogenous esters, anticancer agents, and environmental toxicants. The significant roles of hCE2 in both endobiotic and xenobiotic metabolism sparked great interest in the discovery and development of efficacious and selective inhibitors. However, the safe and effective inhibitors of hCE2 are scarce, due to the lack of efficient screening and evaluation systems for complex biological systems. To offer a solution to this problem, a high-content analysis (HCA)-based cell imaging and multiparametric assay method was constructed for evaluating the inhibitory effect and safety of hCE2 inhibitors in living cell system. In this study, we first established a cell imaging-based method for identifying hCE2 inhibitors at the living cell level with hCE2 fluorescent probe NCEN. Meanwhile, two nuclear probes, Hoechst 33342 and PI, were integrated to evaluate the potential cytotoxicity of compounds simultaneously. Then, the accuracy of the HCA-based method was verified by the LC-FD-based method with a positive inhibitor BNPP, and the results showed that the HCA-based method exhibited excellent precision, robustness, and reliability. Finally, the newly established HCA-based multiparametric assay panel was successfully applied to re-evaluate a series of reported hCE2 inhibitors in living cells. In summary, the HCA-based multiparametric method could serve as an efficient tool for the accuracy measurement inhibitory effect and cytotoxicity of compounds against hCE2 in living cell system. Graphical abstract.


Subject(s)
Carboxylesterase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Carboxylesterase/metabolism , Drug Evaluation, Preclinical/methods , Enzyme Assays/methods , Hep G2 Cells , Humans , Optical Imaging/methods , Spectrometry, Fluorescence/methods
18.
Res Vet Sci ; 129: 90-95, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31954319

ABSTRACT

This study aims to evaluate the effect of the presence of food and the material used in a panel of biomarkers in saliva of horses. For the food effect study, clean saliva was incubated with a known amount of food consisting of oats, hay or grass. Significant changes were observed when saliva was incubated with oats for total protein (P = .050) and phosphorus (P = .008), with grass for total protein (P = .037), salivary alpha-amylase (sAA, P = .018), total esterase (TEA, P = .018), butyrilcholinesterase (BChE, P = .037), adenosine deaminase (ADA, P = .037), and total bilirubin (P = .018), and with hay for sAA (P = .018), phosphorus (P = .037), γ-glutamyl transferase (gGT, P = .004), and creatine kinase (CK, P = .016). For the material-based collection study, saliva using a sponge and a cotton role at the same time were collected and compared. Lower values were obtained in clean saliva collected with cotton role compared to sponge for sAA (P = .030), TEA (P = .034), BChE (P = .003), gGT (P = .002) and cortisol (P < .001) In conclusion, the presence of food and the material used for its collection, can influence the results obtained when analytes are measured in saliva of horses.


Subject(s)
Animal Feed/analysis , Food Contamination , Horses , Saliva/chemistry , Adenosine Deaminase/chemistry , Adenosine Deaminase/metabolism , Animals , Bilirubin/chemistry , Bilirubin/metabolism , Biomarkers/chemistry , Biomarkers/metabolism , Carboxylesterase/chemistry , Carboxylesterase/metabolism , Cholinesterases/chemistry , Cholinesterases/metabolism , Diet/veterinary , Dietary Proteins/chemistry , Dietary Proteins/metabolism , Female , Humans , Hydrocortisone , Male , Phosphorus/chemistry , Phosphorus/metabolism , alpha-Amylases/chemistry , alpha-Amylases/metabolism
19.
PLoS Negl Trop Dis ; 13(10): e0007740, 2019 10.
Article in English | MEDLINE | ID: mdl-31603908

ABSTRACT

Schistosomiasis is a serious worldwide parasitic disease. One of the best ways to control schistosomiasis is to control the population of Oncomelania hupensis snails. We sought to identify a high-efficiency biogenic molluscicide against Oncomelania with low toxicity, to avoid chemical molluscicide contamination and toxicity in aquatic organisms. We extracted quaternary benzo[c]phenanthridine alkaloids (QBAs) from Macleaya cordata fruits. Molluscicidal activity of the QBAs against Oncomelania was determined using bioassay. Our results showed that the extracted QBAs had a strong molluscicidal effect. In treatment of O. hupensis with QBAs for 48 h and 72 h, the lethal concentration (LC50) was 2.89 mg/L and 1.29 mg/L, respectively. The molluscicidal activity of QBAs was close to that of niclosamide (ethanolamine salt), indicating that QBAs have potential development value as novel biogenic molluscicides. We also analyzed physiological toxicity mechanisms by examining the activity of several important detoxification enzymes. We measured the effect of the extracted QBAs on the activities of glutathione S-transferase (GST), carboxylesterase (CarE), acid phosphatase (ACP), and alkaline phosphatase (AKP) in the liver of O. hupensis. We found that the effects of QBAs on detoxification metabolism in O. hupensis were time and concentration dependent. The activities of GST, CarE, AKP, and ACP in the liver of snails increased significantly in the early stage of treatment (24 h), but decreased sharply in later stages (120 h), compared with these activities in controls. GST, CarE, AKP, and ACP activity in the liver of snails treated with LC50 QBAs for 120 h decreased by 62.3%, 78.1%, 59.2%, and 68.6%, respectively. Our results indicate that these enzymes were seriously inhibited by the extracted QBAs and the detoxification and metabolic functions of the liver gradually weakened, leading to poisoning, which could be the main cause of death in O. hupensis snails.


Subject(s)
Alkaloids/toxicity , Fruit/chemistry , Gastropoda/drug effects , Molluscacides/toxicity , Papaveraceae/chemistry , Phenanthridines/toxicity , Plant Extracts/toxicity , Acid Phosphatase/drug effects , Acid Phosphatase/metabolism , Alkaline Phosphatase/drug effects , Alkaline Phosphatase/metabolism , Animals , Carboxylesterase/drug effects , Carboxylesterase/metabolism , China , Glutathione Transferase/drug effects , Glutathione Transferase/metabolism , Inactivation, Metabolic/drug effects , Liver/metabolism , Schistosomiasis/prevention & control , Schistosomiasis/transmission
20.
Sci Rep ; 9(1): 15564, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664043

ABSTRACT

Carboxylesterases, historically referred as non-specific esterases, are ubiquitous hydrolases with high catalytic efficiency. Without exceptions, all mammalian species studied contain multiple forms of carboxylesterases. While having been widely studied in humans and experimental animals, these enzymes remain to be characterized in farm animals. In this study, we showed that pig liver esterase 1 (PLE1) and pig liver esterase 6 (PLE6) were highly active toward amoxicillin (AMO) and ampicillin (AMP), two major antibiotics that are widely used in food-supplements. Mass-spectrometric analysis established that the hydrolysis occurred at the ß-lactam amide bond and the hydrolysis drastically decreased or completely eliminated the antibacterial activity. Furthermore, hydrolytic activity and proteomic analysis suggested that trace PLEs existed in pig plasma and contributed little to the hydrolysis of AMO and AMP. These results suggested that carboxylesterases-based hydrolysis determines the therapeutic intensity of these and related antibiotics and the magnitude of the determination occurs in a species-dependent manner.


Subject(s)
Carboxylesterase/genetics , Liver/enzymology , Proteomics , Amoxicillin/chemistry , Amoxicillin/pharmacology , Ampicillin/chemistry , Ampicillin/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Catalysis , Humans , Hydrolysis/drug effects , Liver/drug effects , Swine , beta-Lactams
SELECTION OF CITATIONS
SEARCH DETAIL