Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
J Ethnopharmacol ; 326: 117984, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38428661

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The efficacy of the herbal formula Yiqi Yangyin Jiedu (YQYYJD) in the treatment of advanced lung cancer has been reported in clinical trials. However, the key anti-lung cancer herbs and molecular mechanisms underlying its inhibition of lung cancer are not well-understood. AIM OF THE STUDY: To identify the key anti-lung cancer herbs in the YQYYJD formula and investigate their therapeutic effect and potential mechanism of action in non-small cell lung cancer (NSCLC) using transcriptomics and bioinformatics techniques. MATERIALS AND METHODS: A mouse Lewis lung carcinoma (LLC) subcutaneous inhibitory tumor model was established with 6 mice in each group. Mice were treated with the YQYYJD split formula: Yiqi Formula (YQ), Yangyin Formula (YY), and Ruanjian Jiedu Formula (RJJD) for 14 days. The tumor volume and mouse weight were recorded, and the status of tumor occurrence was further observed by taking photos. The tumor was stained with hematoxylin-eosin to observe its histopathological changes. Immunohistochemistry was used to detect the expression of the proliferation marker Ki67 and the apoptotic marker Caspase-3 in tumor tissues. Flow cytometry was used to detect the number of CD4+ and CD8+ T cells and cytokines interleukin-2 (IL-2) and interferon-gamma (IFN-γ) in the spleen and tumor tissues. The differential genes of key drugs against tumors were obtained by transcriptome sequencing of tumors. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed on differential genes to obtain pathways and biological processes where targets were aggregated. TIMER2.0 and TISIDB databases were used to evaluate the impact of drugs on immune cell infiltration and immune-related genes. The binding activity of the key targets and compounds was verified by molecular docking. RESULTS: YQ, YY, and RJJD inhibited the growth of subcutaneous transplanted tumors in LLC mice to varying degrees and achieved antitumor effects by inhibiting the expression of tumor cell proliferation, apoptosis, and metastasis-related proteins. Among the three disassembled prescriptions, YQ better inhibited the growth of subcutaneous transplanted tumors in LLC mice, significantly promoted tumor necrosis, significantly increased the expression of Caspase-3 protein in tumor tissue, and significantly decreased the expression of Ki-67 (P < 0.05), thereby increasing the infiltration of CD8+ T cells. YQ significantly increased the expression of CD4+ and CD8+ T cells in tumor and splenic tissues of tumor-bearing mice and up-regulated the expression of IL-2 and IFN-γ. Transcriptome sequencing and bioinformatics results showed that after YQ intervention, differentially expressed genes were enriched in more than one tumor-related pathway and multiple immune regulation-related biological functions. There were 12 key immune-related target genes. CONCLUSION: YQ was the key disassembled prescription of YQYYJD, exerting significant antitumor effects and immune regulation effects on NSCLC. It may have relieved T cell exhaustion and regulated the immune microenvironment to exert antitumor effects by changing lung cancer-related targets, pathways, and biological processes.


Subject(s)
Carcinoma, Lewis Lung , Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Interleukin-2/metabolism , Interleukin-2/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , CD8-Positive T-Lymphocytes , Caspase 3/metabolism , Molecular Docking Simulation , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/genetics , Interferon-gamma/metabolism , Gene Expression Profiling , Tumor Microenvironment
2.
Integr Cancer Ther ; 22: 15347354231198195, 2023.
Article in English | MEDLINE | ID: mdl-37694878

ABSTRACT

PURPOSE: This study was developed to evaluate the effects of moxibustion on tumor microenvironmental hypoxia in a murine model of Lewis lung carcinoma (LLC). METHODS: Twenty-four tumor-bearing mice were randomized into tumor group (T), tumor + cisplatin group (TC), tumor + moxibustion group (TM), and tumor + cisplatin + moxibustion group (TMC) (n = 6/group). Six age-matched C57BL/6 mice were employed as control group (Ctrl). A tumor model was established by implanting LLC cells into the right flank of each mouse. Animals in the TM group received moxibustion treatment at the ST36 (bilateral) and GV4 acupoints on the day of visible tumor formation. Moxibustion treatment was performed every other day for a total of 7 sessions. Animals in the TC group were intraperitoneally injected with cisplatin (3 mg/kg) on day 3 after visible tumor formation, and this treatment was performed every 3 days for 4 times. Animals in the TMC group underwent combined moxibustion and chemotherapy treatment, following the same conditions as outlined above. Following treatment, the concentrations of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), CD31, and Ki67 were measured using ELISA, Western blot, and immunohistochemical staining. RESULTS: Compared to the tumor group, treatment in the TM, TC, and TCM groups resulted in varying reductions in tumor growth (P < .001 or P < .05), while tumor microenvironmental hypoxia was alleviated as evidenced by the downregulation of HIF-1α, VEGFA, and CD31(P < .001-P < .05). CONCLUSION: Our results suggest that a combined approach of moxibustion and cisplatin can alleviate intratumoral hypoxia, promote vascular normalization, and slow the growth of LLC tumors in mice.


Subject(s)
Carcinoma, Lewis Lung , Lung Neoplasms , Moxibustion , Mice , Animals , Cisplatin/pharmacology , Cisplatin/therapeutic use , Carcinoma, Lewis Lung/drug therapy , Mice, Inbred C57BL , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Vascular Endothelial Growth Factor A/metabolism , Tumor Microenvironment , Hypoxia
3.
Phytomedicine ; 112: 154682, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739636

ABSTRACT

BACKGROUND: The immunosuppressive microenvironment of lung cancer serves as an important endogenous contributor to treatment failure. The present study aimed to demonstrate the promotive effect of DHA on immunogenic cell death (ICD) in lung cancer as well as the mechanism. METHODS: The lewis lung cancer cells (LLC), A549 cells and LLC-bearing mice were applied as the lung cancer model. The apoptosis, ferroptosis assay, western blotting, immunofluorescent staining, qPCR, comet assay, flow cytometry, confocal microscopy, transmission electron microscopy and immunohistochemistry were conducted to analyze the functions and the underlying mechanism. RESULTS: An increased apoptosis rate and immunogenicity were detected in DHA-treated LLC and tumor grafts. Further findings showed DHA caused lipid peroxide (LPO) accumulation, thereby initiating ferroptosis. DHA stimulated cellular endoplasmic reticulum (ER) stress and DNA damage simultaneously. However, the ER stress and DNA damage induced by DHA could be abolished by ferroptosis inhibitors, whose immunogenicity enhancement was synchronously attenuated. In contrast, the addition of exogenous iron ions further improved the immunogenicity induced by DHA accompanied by enhanced ER stress and DNA damage. The enhanced immunogenicity could be abated by ER stress and DNA damage inhibitors as well. Finally, DHA activated immunocytes and exhibited excellent anti-cancer efficacy in LLC-bearing mice. CONCLUSIONS: In summary, the current study demonstrates that DHA triggers ferroptosis, facilitating the ICD of lung cancer thereupon. This work reveals for the first time the effect and underlying mechanism by which DHA induces ICD of cancer cells, providing novel insights into the regulation of the immune microenvironment for cancer immunotherapy by Chinese medicine phytopharmaceuticals.


Subject(s)
Carcinoma, Lewis Lung , Ferroptosis , Lung Neoplasms , Animals , Mice , Lung Neoplasms/drug therapy , Carcinoma, Lewis Lung/drug therapy , Endoplasmic Reticulum Stress , Immunotherapy , DNA Damage , Tumor Microenvironment
4.
Mar Drugs ; 20(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36547898

ABSTRACT

Selenium (Se) and fish oil (FO) exert anti-epidermal growth factor receptor (EGFR) action on tumors. This study aimed to compare the anti-cancer efficacy of EGFR inhibitors (gefitinib and erlotinib) alone and in combination with nutritional supplements of Se/FO in treating lung cancer. Lewis LLC1 tumor-bearing mice were treated with a vehicle or Se/FO, gefitinib or gefitinib plus Se/FO, and erlotinib or erlotinib plus Se/FO. The tumors were assessed for mRNA and protein expressions of relevant signaling molecules. Untreated tumor-bearing mice had the lowest body weight and highest tumor weight and volume of all the mice. Mice receiving the combination treatment with Se/FO and gefitinib or erlotinib had a lower tumor volume and weight and fewer metastases than did those treated with gefitinib or erlotinib alone. The combination treatment exhibited greater alterations in receptor signaling molecules (lower EGFR/TGF-ß/TßR/AXL/Wnt3a/Wnt5a/FZD7/ß-catenin; higher GSK-3ß) and immune checkpoint molecules (lower PD-1/PD-L1/CD80/CTLA-4/IL-6; higher NKp46/CD16/CD28/IL-2). These mouse tumors also had lower angiogenesis, cancer stemness, epithelial to mesenchymal transitions, metastases, and proliferation of Ki-67, as well as higher cell cycle arrest and apoptosis. These preliminary results showed the Se/FO treatment enhanced the therapeutic efficacies of gefitinib and erlotinib via modulating multiple signaling pathways in an LLC1-bearing mouse model.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Lewis Lung , Dietary Supplements , ErbB Receptors , Erlotinib Hydrochloride , Fish Oils , Gefitinib , Protein Kinase Inhibitors , Selenium , Animals , Mice , Carcinoma, Lewis Lung/drug therapy , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/therapeutic use , Fish Oils/therapeutic use , Gefitinib/pharmacology , Gefitinib/therapeutic use , Glycogen Synthase Kinase 3 beta/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Selenium/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
5.
Phytomedicine ; 106: 154409, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36070661

ABSTRACT

BACKGROUND: Modified Bu-Fei decoction (MBFD), a formula of traditional Chinese medicine, is used for treating lung cancer in clinic. The actions and mechanisms of MBFD on modulating lung microenvironment is not clear. PURPOSE: Lung microenvironment is rich in vascular endothelial cells (ECs). This study is aimed to examine the actions of MBFD on tumor biology, and to uncover the underlying mechanisms by focusing on pulmonary ECs. METHODS: The Lewis lung carcinoma (LLC) xenograft model and the metastatic cancer model were used to determine the efficacy of MBFD on inhibiting tumor growth and metastasis. Flow cytometry and trans-well analysis were used to determine the role of ECs in anti-metastatic actions of MBFD. The in silico analysis and function assays were used to identify the mechanisms of MBFD in retarding lung metastasis. Plasma from lung cancer patients were used to verify the effects of MBFD on angiogenin-like protein 4 (ANGPTL4) in clinical conditions. RESULTS: MBFD significantly suppressed spontaneous lung metastasis of LLC tumors, but not tumor growth, at clinically relevant concentrations. The anti-metastatic effects of MBFD were verified in metastatic cancer models created by intravenous injection of LLC or 4T1 cells. MBFD inhibited lung infiltration of circulating tumor cells, without reducing tumor cell proliferations in lung. In vitro, MBFD dose-dependently inhibited trans-endothelial migrations of tumor cells. RNA-seq assay and verification experiments confirmed that MBFD potently depressed endothelial ANGPTL4 which is able to broke endothelial barrier and protect tumor cells from anoikis. Database analysis revealed that high ANGPTL4 levels is negatively correlated with overall survival of cancer patients. Importantly, MBFD therapy reduced plasma levels of ANGPTL4 in lung cancer patients. Finally, MBFD was revealed to inhibit ANGPTL4 expressions in a hypoxia inducible factor-1α (HIF-1α)-dependent manner, based on results from specific signaling inhibitors and network pharmacology analysis. CONCLUSION: MBFD, at clinically relevant concentrations, inhibits cancer lung metastasis via suppressing endothelial ANGPTL4. These results revealed novel effects and mechanisms of MBFD in treating cancer, and have a significant clinical implication of MBFD therapy in combating metastasis.


Subject(s)
Carcinoma, Lewis Lung , Drugs, Chinese Herbal , Lung Neoplasms , Angiopoietins/metabolism , Angiopoietins/therapeutic use , Animals , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/pathology , Cell Line, Tumor , Drugs, Chinese Herbal/therapeutic use , Endothelial Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung Neoplasms/pathology , Tumor Microenvironment
6.
Biomed Pharmacother ; 151: 113081, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35605293

ABSTRACT

Lung cancer poses a serious threat to human health. Although targeted therapies have led to breakthroughs in the treatment of lung cancer, drug resistance and side effects limit their clinical applications. Xihuang pill (XHW), a classical anti-cancer traditional Chinese medicine formula, has been clinically proven to be an effective complementary therapy in the treatment of various of cancers. However, the underlying mechanism for its use in combination with anti-cancer drugs remains unclear. Here, we explored the anti-lung cancer effect of XHW combined with anlotinib in mice bearing Lewis lung cancer (LLC). We used gut microbiota and transcriptomics to elucidate the regulatory properties of XHW in improving anti-lung cancer effect of anlotinib. The results showed that combination treatment of XHW with Anlotinib significantly inhibited tumor growth in LLC-bearing mice. We found that XHW played a key role in the regulation of gut microbiota using 16 s rRNA sequencing analysis. Specifically, XHW increased the proportion of the beneficial bacteria Bacteroides and g_norank_f_Muribaculaceae. Based on transcriptomic analysis of tumor tissues, differentially expressed genes in the combination therapy group were related to biological processes concerning angiogenesis, such as regulation of blood vessel diameter, regulation of tube diameter, and regulation of tube size. Our data suggest that XWH enhances the anticancer effect of anlotinib by regulating gut microbiota composition and tumor angiogenesis pathway. Combination therapy with anlotinib and XHW may be a novel therapeutic strategy for lung cancer patients.


Subject(s)
Carcinoma, Lewis Lung , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Lung Neoplasms , Quinolines , Animals , Carcinoma, Lewis Lung/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Indoles , Lung Neoplasms/pathology , Mice , Quinolines/pharmacology , Quinolines/therapeutic use
7.
Biomed Pharmacother ; 143: 112105, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34560533

ABSTRACT

Although the main focus of immuno-oncology has been manipulating the adaptive immune system, tumor associated macrophages (TAMs) are the main infiltrating component in the tumor microenvironment (TME) and play a critical role in cancer progression. TAMs are mainly divided into two different subtypes: macrophages with antitumor or killing activity are called M1 while tumor-promoting or healing macrophages are named M2. Therefore, controlling the polarization of TAMs is an important strategy for cancer treatment, but there is no particularly effective means to regulate the polarization process. Here, combined systems pharmacology targets and pathways analysis strategy, we uncovered Scutellariae Radix (SR) has the potential to regulate TAMs polarization to inhibit the growth of non-small cell lung cancer (NSCLC). Firstly, systems pharmacology approach was used to reveal the active components of SR targeting macrophages in TME through compound target prediction and target-microenvironment phenotypic association analysis. Secondly, in vitro experiment verified that WBB (wogonin, baicalein and baicalin), major active ingredients of SR are significantly related to macrophages and survival, initiated macrophages programming to M1-like macrophages to promoted the apoptosis of tumor cells. Finally, we evidenced that WBB effectively inhibited tumor growth in LLC (Lewis lung carcinoma) tumor-bearing mice and increased the infiltration of M1-type macrophages in TME. Overall, the systems pharmacology strategy offers a paradigm to understand the mechanism of polypharmacology of natural products targeting TME.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Immunity, Innate/drug effects , Lung Neoplasms/drug therapy , Network Pharmacology , Tumor-Associated Macrophages/drug effects , Animals , Apoptosis/drug effects , Carcinoma, Lewis Lung/immunology , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Coculture Techniques , Databases, Genetic , Female , Humans , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Phenotype , RAW 264.7 Cells , Tumor Burden/drug effects , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism
8.
Eur J Pharmacol ; 909: 174411, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34390710

ABSTRACT

Advanced Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with a poor prognosis. The anti-malaria compounds dihydroartemisinin (DHA) have shown to regulate multiple targets and signaling pathways in cancers, but a global view of its mechanism of action remains elusive. In present study, we integrated network pharmacology and in vitro and in vivo experimental models to investigate the mechanisms of DHA in preventing NSCLC proliferation. We first proved that DHA inhibits the growth of lung cancer via inducing cell apoptosis and cell cycle arrest, then we integrated information from publicly available databases to predict interactions between DHA and its potential targets in NSCLC, as well as the signaling pathways involved. In this way we identified 118 common targets of DHA and NSCLC, and further analyzed with the correlation between these targets by KEGG and GO analysis. Our data indicate that mTOR/HIF-1α signaling is one of potential critical pathways involved in DHA-induced tumor inhibition in NSCLC. Finally, the data from human and mouse lung cancer cell lines and in mouse Lewis lung cancer models showed that DHA does decrease the expression level of mTOR and HIF-1α which supported the potential roles of mTOR/HIF-1α Signaling in NSCLC and deserves further investigation.


Subject(s)
Artemisinins/pharmacology , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Apoptosis/genetics , Artemisinins/therapeutic use , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Disease Progression , Drug Evaluation, Preclinical , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Network Pharmacology , Protein Interaction Maps/drug effects , Protein Interaction Maps/genetics , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
9.
Pharmacol Res ; 171: 105574, 2021 09.
Article in English | MEDLINE | ID: mdl-34419228

ABSTRACT

Currently, conventional methods of treating non-small cell lung cancer (NSCLC) have many disadvantages. An alternative effective therapy with minimal adverse reactions is urgently needed. Weijing decoction (WJD), which is a classic ancient Chinese herbal prescription, has been used successfully to treat pulmonary system diseases containing lung cancer in the clinic. However, the key active component and target of Weijing decoction are still unexplored. Therefore, for the first time, our study aims to investigate the pharmacological treatment mechanism of Weijing decoction in treating NSCLC via an integrated model of network pharmacology, metabolomics and biological methods. Network pharmacology results conjectured that Tricin is a main bioactive component in this formula which targets PRKCA to suppress cancer cell growth. Metabolomics analysis demonstrated that sphingosine-1-phosphate, which is regulated by sphingosine kinase 1 and sphingosine kinase 2, is a differential metabolite in plasma between the WJD-treated group and the control group, participating in the sphingolipid signaling. In vitro experiments demonstrated that Tricin had vital effects on the proliferation, pro-apoptosis, migration and colony formation of Lewis lung carcinoma cells. Through a series of validation assays, Tricin inhibited the tumor growth mainly by suppressing PRKCA/SPHK/S1P signaling and antiapoptotic signaling. On the other hand, Weijing formula could inhibit the tumor growth and prolong the survival time. A high dosage of Tricin was much more potent in animal experiments. In conclusion, we confirmed that Weijing formula and its primary active compound Tricin are promising alternative treatments for NSCLC patients.


Subject(s)
Antineoplastic Agents, Phytogenic , Carcinoma, Lewis Lung , Carcinoma, Non-Small-Cell Lung , Flavonoids , Lung Neoplasms , Animals , Female , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Flavonoids/pharmacology , Flavonoids/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Metabolomics , Mice, Inbred C57BL , Signal Transduction/drug effects , Sphingolipids/metabolism
10.
Mar Drugs ; 19(5)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064322

ABSTRACT

Despite the effectiveness of primary treatment modalities for cancer, the side effects of treatments, medication resistance, and the deterioration of cachexia after disease progression lead to poor prognosis. A supportive treatment modality to overcome these limitations would be considered a major breakthrough. Here, we used two different target drugs to demonstrate whether a nutraceutical formula (fish oil, Se yeast, and micronutrient-enriched nutrition; NuF) can interfere with cancer cachexia and improve drug efficacy. After Lewis lung cancer (LLC) tumor injection, the C57BL/6 mice were orally administered targeted therapy drugs Iressa and Sutent alone or combined with NuF for 27 days. Sutent administration effectively inhibited tumor size but increased the number of lung metastases in the long term. Sutent combined with NuF had no significant difference in tumor weight and metastasis compare with Sutent alone. However, NuF slightly attenuated metastases number in lung may via mesenchymal marker N-cadherin suppression. NuF otherwise increased epithelial-like marker E-cadherin expression and induce NO-mediated intrinsic apoptotic pathway in tumor cells, thereby strengthening the ability of the targeted therapy drug Iressa for inhibiting tumor progression. Our results demonstrate that NuF can promote the anticancer effect of lung cancer to targeted therapy, especially in Iressa, by inhibiting HIF-1α and epithelial-mesenchymal transition (EMT) and inducing the apoptosis of lung cancer cells. Furthermore, NuF attenuates cancer-related cachectic symptoms by inhibiting systemic oxidative stress.


Subject(s)
Carcinoma, Lewis Lung/diet therapy , Carcinoma, Lewis Lung/drug therapy , Chemotherapy, Adjuvant/methods , Fish Oils/pharmacology , Micronutrients/pharmacology , Selenium/pharmacology , Yeast, Dried/pharmacology , Administration, Oral , Animals , Apoptosis/drug effects , Cachexia/drug therapy , Cachexia/etiology , Carcinoma, Lewis Lung/complications , Cell Line, Tumor , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Fish Oils/administration & dosage , Gefitinib/administration & dosage , Gefitinib/pharmacology , Inflammation/drug therapy , Male , Mice, Inbred C57BL , Micronutrients/administration & dosage , Neoplasm Metastasis/prevention & control , Oxidation-Reduction/drug effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Selenium/administration & dosage , Sunitinib/administration & dosage , Sunitinib/pharmacology , Tumor Burden/drug effects , Yeast, Dried/administration & dosage
11.
In Vivo ; 35(4): 2005-2014, 2021.
Article in English | MEDLINE | ID: mdl-34182475

ABSTRACT

BACKGROUND/AIM: Xihuang Wan (XHW), a traditional Chinese medicine (TCM), has been used in China for a variety of cancers including lung cancer. The present study evaluated the efficacy of XHW on a Lewis lung mouse model and explored the potential mechanism via transcriptomics. MATERIALS AND METHODS: The mice were randomized into 6 groups: 1) untreated control (n=10); 2) low-dose XHW; 3) medium-dose XHW; 4) high-dose XHW; 5) cisplatin; and 6) untreated blank (n=4). Lewis lung carcinoma (LLC) cells were injected subcutaneously except for the 4 mice in the blank group. The body weight and tumor length and width were measured every 3 days. RNA-sequencing was performed on tumors in the high-dose XHW group and the control group. RESULTS: XHW inhibited the growth of LLC in a syngeneic mouse model, without toxicity, with equivalent efficacy to cisplatin. RNA-sequencing demonstrated that many signaling pathways were involved in XHW-mediated inhibition of LLC, including tumor necrosis factor, estrogen, cyclic guanosine 3', 5'-monophosphate-protein kinase G, apelin and the peroxisome proliferator-activated receptor signaling pathways. CONCLUSION: XHW inhibited LLC carcinoma through different pathways and shows clinical promise for patients who cannot tolerate platinum-based drugs.


Subject(s)
Carcinoma, Lewis Lung , Lung Neoplasms , Animals , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/genetics , China , Drugs, Chinese Herbal , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Medicine, Chinese Traditional , Mice , Mice, Inbred C57BL
12.
Oxid Med Cell Longev ; 2021: 6685282, 2021.
Article in English | MEDLINE | ID: mdl-33777320

ABSTRACT

Lung cancer has become the leading cause of cancer-related death worldwide. Oxidative stress plays important roles in the pathogenesis of lung cancer. Many natural products show antioxidative activities in cancer treatment. Zi Shen decoction (ZSD) is a classic prescription for the treatment of lung disease. However, its effect on lung cancer lacks evidence-based efficacy. In this study, we investigated the anticancer effects of ZSD on lung cancer in vivo and in vitro. Our results showed that oral administration of ZSD suppressed the Lewis lung cancer (LLC) growth in a subcutaneous allograft model and promoted necrosis and inflammatory cell infiltration in the tumor tissues. Furthermore, ZSD not only inhibited tumor cell proliferation and migration but also induced cell apoptosis in lung cancer cells. PI3K/AKT signaling is well characterized in response to oxidative stress. The bioinformatics analysis and western blot assays suggested that ZSD decreased the enzyme activity of PI3K and AKT in vivo and in vitro. We also found that the AKT/GSK-3ß/ß-catenin pathway medicated anticancer effect of ZSD in lung cancer cells. In conclusion, we demonstrate for the first time that ZSD possesses antitumor properties, highlighting its potential use as an alternative strategy or adjuvant treatment for lung cancer therapy.


Subject(s)
Carcinoma, Lewis Lung , Drugs, Chinese Herbal/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Lung Neoplasms , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , beta Catenin/metabolism , Animals , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Neoplasm Metastasis
13.
PLoS One ; 16(3): e0248700, 2021.
Article in English | MEDLINE | ID: mdl-33730076

ABSTRACT

As a traditional Chinese medicine (TCM) with a usage history of over 2,000 years in China, Spica Schizonepetae possesses definite clinical activity in the treatment of non-small cell lung cancer (NSCLC). However, its active ingredients and mechanism of action remain unclear at present. The further exploration of its active components and underlying mechanism will provide a basis for the development of candidate anti-tumor drugs. Our previous study explored the chemical constituents of Spica Schizonepetae extract (SSE). On this basis, molecular networking technology was applied in analyzing the QTOF-MS/MS data of rat plasma after intragastric administration of SSE using the GNPS database platform. A total of 26 components were found, including 9 proterotype components and 17 metabolites, which revealed the potential active ingredients of SSE. Later, the Lewis lung cancer mouse model was established, and the inhibition rate and histopathological sections were used as the indicators to investigate the anti-tumor effect of SSE, whereas the body weight, survival rate, thymus index and spleen index served as the indicators to explore the pharmacological effects of SSE on improving mouse immunity. The results showed that SSE had comparable anti-tumor efficacy to cisplatin, which enhanced the immunity, improved the quality of life, and extended the survival time of lung cancer mice. Furthermore, human A549 lung tumor cells were selected to explore the mechanism of SSE in treating NSCLC based on cell metabonomics. After data mining by the MPP software, 23 differential endogenous metabolites were identified between SSE and tumor groups. Moreover, results of pathway enrichment analysis using the MetaboAnalyst 4.0 software indicated that these metabolites were mainly enriched in four metabolic pathways (p < 0.1). By adopting the network pharmacology method, the metabolic pathways discovered by cell metabolomics were verified against the ChEMBL, STITCH, UniProt and TCGA databases, and differences in the underlying mechanism between cells and humans were found. It was proved that SSE affected the metabolism of purine, arachidonic acid and histidine to exert the anti-tumor efficacy. Furthermore, the multi-target, multi-pathway, and immunoenhancement mechanism of SSE in anti-tumor treatment was revealed, which provided a scientific basis for new drug development and the rational application of Spica Schizonepetae in clinic.


Subject(s)
Carcinoma, Lewis Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Drugs, Chinese Herbal/pharmacology , Lamiaceae/chemistry , Lung Neoplasms/drug therapy , A549 Cells , Animals , Carcinoma, Lewis Lung/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Disease Models, Animal , Drug Screening Assays, Antitumor , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Humans , Lung Neoplasms/pathology , Male , Metabolomics , Mice , Rats , Tandem Mass Spectrometry
14.
Int Immunopharmacol ; 93: 107395, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33529916

ABSTRACT

Programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule, that is overexpressed in non-small cell lung cancer (NSCLC) and has been associated with the response to anti-PD-1/PD-L1 immunotherapy. Z-guggulsterone (Z-GS), an active compound extracted from the gumresin of the Commiphora mukul tree, has been shown to have anti-tumor effects in NSCLC in our previous study. However, whether Z-GS could affect PD-L1 expression levels in tumor cells remains unknown. In this study, we verified the inhibitory effects of Z-GS on NSCLC cell viability and cell cycle progression in vitro, and mouse Lewis lung carcinoma (LLC) tumor growth in vivo. Notably, Z-GS treatment increased PD-L1 surface and mRNA expression levels, and gene transcription in NSCLC cells, in a dose- and time-dependent manner. Mechanistic experiments showed that the upregulation of PD-L1 was mediated, partly by farnesoid X receptor inhibition, and partly by the activation of the Akt and Erk1/2 signaling pathways in Z-GS-treated NSCLC cells. In vivo, Z-GS treatment dose-dependently increased PD-L1 expression levels in mouse LLC tumor models. Overall, our findings demonstrated a promoting role for Z-GS in PD-L1 expression in NSCLC and provided mechanistic insights, that may be used for further investigation into synergistic combined therapies.


Subject(s)
B7-H1 Antigen/metabolism , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Pregnenediones/therapeutic use , Receptors, Cytoplasmic and Nuclear/metabolism , Skin Neoplasms/drug therapy , Animals , B7-H1 Antigen/genetics , Cell Line, Tumor , Commiphora , Humans , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Neoplasms, Experimental , Oncogene Protein v-akt/metabolism , RNA, Small Interfering/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Up-Regulation
15.
J Ethnopharmacol ; 264: 113246, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32781257

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cyperus rotundus L. (Cyperaceae) is a widespread herbal in China and widely used in Traditional Chinese Medicine for multiple effects such as anti-arthritic, anti-genotoxic, anti-mutagenic, anti-bacterial effects, and analgesic. α-Cyperone is an active compound in Cyperus rotundus and has analgesic effects, but the exact molecular mechanisms require further investigations. MATERIALS AND METHODS: Tumor-derived DNA isolated from Lewis cell lines was transfected into microglia, and analyzed for stimulator of interferon genes (STING) effects. The downstream protein, such as interferon regulatory factor 3 (IRF3) and p65 nuclear factor-κB (NF-κB) were treated with STING siRNA and 5,6-dimethyllxanthenone-4-acetic acid (DMXAA) in microglia. The α-Cyperone effect on microglia was also investigated. RESULTS: Tumor-derived DNA activate microglia by upregulation of STING and downstream proteins. STING siRNA was reduced to its downstream expression and neuroinflammation inhibition was caused by tumor-derived DNA. However, DMXAA reversed the STING siRNA effect and increased neuroinflammation. α-Cyperone takes inhibitory effects on tumor-derived DNA that trigger microglia by STING pathway. CONCLUSIONS: α-Cyperone inhibition by tumor-derived DNA activated microglial to neuroinflammation in STING signaling pathway.


Subject(s)
DNA, Neoplasm/antagonists & inhibitors , DNA, Neoplasm/genetics , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Microglia/drug effects , Naphthalenes/pharmacology , Animals , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/genetics , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mice , Microglia/physiology , Naphthalenes/therapeutic use
16.
J Ethnopharmacol ; 264: 113245, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32805357

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fritillariae Thunbergii Flos (FTF) included in the Chinese Pharmacopoeia (1977 Edition) is a Chinese medicinal herb traditionally used to treat bronchitis. In recent years, it has been applied in the treatment of lung cancer. However, the molecular mechanism remains largely unknown. METHODS: The screening of bioactive compounds, acquisition of drug targets, network construction, and experimental validation in vivo were combined to explored the mechanism of FTF in the treatment of lung carcinoma with regards to systems pharmacology. RESULTS: The network Lung Cancer Pathway consisted of 114 nodes (44 compounds and 70 potential targets) and 361 edges, as well as modules that included inflammatory response, angiogenesis, negative regulation of the apoptotic process, and positive regulation of cell proliferation and migration. It was examined by conducting experiments that involved the administration of ethanol-based extracts of FTF in Lewis lung carcinoma mice. The extracts exerted excellent anti-lung cancer effects in vivo by significantly inhibiting tumor proliferation, thereby extending the survival period of tumor-bearing mice. Moreover, FTF induced the downregulation of PIK3CG, Bcl-2, eNOS, VEGF, p-STAT3, and STAT3 genes in tumor-bearing mice. CONCLUSIONS: The findings of the present study verify the therapeutic effects and mechanism of FTF on lung cancer and provide a theoretical basis to support the comprehensive utilization of FTF resources.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Fritillaria , Lung Neoplasms/drug therapy , Protein Interaction Maps/drug effects , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/pathology , Drug Screening Assays, Antitumor/methods , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Fritillaria/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Protein Interaction Maps/physiology , Random Allocation , Treatment Outcome , Tumor Burden/drug effects , Tumor Burden/physiology
17.
Bull Exp Biol Med ; 169(6): 778-782, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33123920

ABSTRACT

Preclinical study of therapeutic properties of an innovative drug Doxorubicin-NPh (doxorubicin in the form of ultrafine suspension of phospholipid liposomes) in comparison with free doxorubicin (Doxorubicin-Teva) and protected doxorubicin (Caelyx) was performed on transplanted murine tumor models. All these drugs were efficient in Ca755 breast carcinoma model (tumor growth inhibition ≈100%, increase in lifespan 90.6-114.3%). In P388 lymphocytic leukemia and LLC lung carcinoma, advantages of the protected doxorubicin by the benefit/risk ratio (width of therapeutic interval) were demonstrated: Caelyx>Doxorubicin-NPh>Doxorubicin-Teva. Doxorubicin-NPh and Caelyx exhibited similar therapeutic activity in the LLC model, especially when administered 3 times with 3-day intervals; for Doxorubicin-Teva, the optimal interval between the injections was 7 days.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Carcinoma, Lewis Lung/drug therapy , Doxorubicin/analogs & derivatives , Doxorubicin/pharmacology , Leukemia P388/drug therapy , Mammary Neoplasms, Experimental/drug therapy , Allografts , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Carcinoma, Lewis Lung/pathology , Doxorubicin/pharmacokinetics , Drug Evaluation, Preclinical , Female , Humans , Leukemia P388/pathology , Liposomes/chemistry , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Phospholipids/chemistry , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/pharmacology , Tumor Burden/drug effects
18.
Phytomedicine ; 79: 153326, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32992083

ABSTRACT

BACKGROUND: Lung cancer is the most common and mortal cancer worldwide. Rhodiola rosea L. (RR), a well-known traditional Chinese medicine (TCM), has been turned out to be effective in anti-lung cancer therapy, but its molecular mechanism of action has not been clearly understood. PURPOSE: In this study, we aimed to elucidate the possible molecular mechanism underlying the effect of RR against non-small cell lung cancer (NSCLC) by systems pharmacology. METHODS: The effects of RR on NSCLC were examined in Lewis lung carcinoma (LLC) tumor-bearing mice models. The possible molecular mechanism was unraveled by systems pharmacology, which includes pharmacokinetics evaluation, active compounds screening, target prediction and network analysis. Cell proliferation was examined by cell counting kit-8 (CCK-8) assay; cell apoptosis was detected by flow cytometry; protein and proinflammatory cytokines expression were evaluated by Western blot and qRT-PCR. RESULTS: In vivo, RR significantly inhibited the tumor growth and prolonged the survival of the tumor bearing mice. In silico, we identified 19 potential active molecules (e.g., salidroside and rhodiosin), 112 targets (e.g., COX-2 and AKT) and 27 pathways (e.g., PI3K/AKT signaling pathway and NF-κB signaling pathway) for RR. Additionally, targets analysis and networks construction further revealed that RR exerted anti-cancer effects by regulating apoptosis, angiogenesis and inflammation. In vitro, salidroside could significantly decrease expression of pro-angiogenic factors (e.g., VEGF and eNOS) and proinflammatory cytokines (e.g., COX-2, iNOS and TNF-α). Also, Bcl-2, an anti-apoptotic protein was decreased whereas Bax, a pro-apoptotic protein, was increased. Further flow cytometry analysis showed that salidroside could induce apoptosis in H1975 cells. CONCLUSIONS: Mechanistically, the antitumor effect of RR on NSCLC was responsible for the synergy among anti-inflammatory, anti-angiogenic and pro-apoptotic.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Screening Assays, Antitumor/methods , Lung Neoplasms/drug therapy , Rhodiola/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacokinetics , Apoptosis/drug effects , Biological Availability , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation/drug effects , Flavonoids/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Glucosides/pharmacology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Monosaccharides/pharmacology , Phenols/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Transcription Factor RelA
19.
Biomed Pharmacother ; 130: 110533, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32739739

ABSTRACT

Lung cancer has a rapidly increasing incidence and remains the highest ranked cancer in terms of mortality worldwide. Xihuang Pill(XHW), a famous four-herb traditional Chinese formulation, has been used to treat lung cancer in China for more than 100 years. It is usually prescribed as a complementary and alternative medicine for cancer therapy. However, the main active ingredients of XHW that treat lung cancer and their regulatory effects remain unclear. Here, we revealed modulatory effects effects of XHW on lung cancer in a mouse model of Lewis lung cancer (LLC) by a comprehensive strategy combining network pharmacology with metabolomics. The results demonstrated that XHW inhibited tumour growth in this model. Additionally, 11 differentially expressed metabolites were identified in the XHW group compared to those in the model group or normal group by untargeted metabolomics. They were enriched in amino acid-related metabolic pathways, and the top three pathways were phenylalanine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; and aminoacyl-tRNA biosynthesis. A total of 107 active components derived from Niuhuang, Shexiang, Ruxiang and Moyao, directly acted on 13 important targets (NR3C2, AKR1D1, MPO, PNP, NT5E, TAAR1, ADRB2, ADRB1, ADRA1A, ADRA2B, ADRA2A, MAOA and MAOB) to regulate 4 metabolites (L-phenylalanine, l-adrenaline, corticosterone and guanosine). Our results suggested that the key metabolites of XHW involved in the treatment of lung cancer were regulated by a multi-component and multi-target interaction network. This research elucidated the modulatory effect and therapeutic advantages of XHW treatment for lung tumours through an integrated approach.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Carcinoma, Lewis Lung/drug therapy , Drugs, Chinese Herbal/therapeutic use , Lung Neoplasms/drug therapy , Amino Acids/metabolism , Animals , Biomarkers, Tumor/analysis , Combined Modality Therapy , Male , Medicine, Chinese Traditional , Metabolic Networks and Pathways/drug effects , Metabolomics , Mice , Mice, Inbred C57BL
20.
Bull Exp Biol Med ; 169(3): 378-382, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32749562

ABSTRACT

One of prospective methods for immunotherapy of tumors is modulation via immunological checkpoints, specifically, via the PD-1(CD279)/PD-L1(CD274) system. Interactions between tumor cell receptor (CD279) and the ligand on lymphocytes (CD274) leads to lymphocyte inactivation, which allows tumor escape from the immune control. Experiments on C57BL/6 mice with Lewis lung carcinoma demonstrate the possibility of reducing the expression of CD279 and CD274 on the peripheral blood and tumor tissue lymphocytes under the effects of Tussilago farfara L. polysaccharides. This phenomenon can underlie the antitumor and antimetastatic effects of these substances.


Subject(s)
B7-H1 Antigen/metabolism , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Polysaccharides/therapeutic use , Programmed Cell Death 1 Receptor/metabolism , Tussilago/chemistry , Animals , Female , Flow Cytometry , Immunotherapy , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL