Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Theranostics ; 10(23): 10498-10512, 2020.
Article in English | MEDLINE | ID: mdl-32929362

ABSTRACT

Rationale: Current traditional treatment options are frequently ineffective to fight against ovarian cancer due to late diagnosis and high recurrence. Therefore, there is a vital need for the development of novel therapeutic agents. B7H3, an immune checkpoint protein, is highly expressed in various cancers, representing it a promising target for cancer immunotherapy. Although targeting B7H3 by bispecific T cell-engaging antibodies (BiTE) has achieved successes in hematological malignancies during recent years, attempts to use them for the treatment of solid cancers are less favorable, in part due to the heterogeneity of tumors. Sorafenib is an unselective inhibitor of multiple kinases currently being tested in clinical trials for several tumors, including ovarian cancer which showed limited activity and inevitable side effect for ovarian cancer treatment. However, it is able to enhance antitumor immune response, which indicates sorafenib may improve the efficiency of immunotherapy. Methods: We evaluated the expression of B7H3 in ovarian cancer using online database and validated its expression of tumor tissues by immunohistochemistry staining. Then, B7H3 expression and the effects of sorafenib on ovarian cancer cell lines were determined by flow cytometry. In addition, 2D and 3D ovarian cancer models were established to test the combined therapeutic effect in vitro. Finally, the efficiency of B7H3×CD3 BiTE alone and its combination with sorafenib were evaluated both in vitro and in vivo. Results: Our data showed that B7H3 was highly expressed in ovarian cancer compared with normal samples. Treatment with sorafenib inhibited ovarian cancer cell proliferation and induced a noticeable upregulation of B7H3 expression level. Further study suggested that B7H3×CD3 BiTE was effective in mediating T cell killing to cancer cells. Combined treatment of sorafenib and B7H3×CD3 BiTE had synergistic anti-tumor effects in ovarian cancer models. Conclusions: Overall, our study indicates that combination therapy with sorafenib and B7H3×CD3 BiTE may be a new therapeutic option for the further study of preclinical treatment of OC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , B7 Antigens/antagonists & inhibitors , Carcinoma, Ovarian Epithelial/therapy , Ovarian Neoplasms/therapy , Sorafenib/pharmacology , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B7 Antigens/analysis , B7 Antigens/metabolism , CD3 Complex/antagonists & inhibitors , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/mortality , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Datasets as Topic , Drug Synergism , Female , HEK293 Cells , Humans , Kaplan-Meier Estimate , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Neoplasm Recurrence, Local , Ovarian Neoplasms/immunology , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Ovary/pathology , Sorafenib/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
2.
Scand J Immunol ; 92(4): e12917, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32557659

ABSTRACT

Ovarian Cancer (OC) is currently difficult to cure, mainly due to its late detection and the advanced state of the disease at the time of diagnosis. Therefore, conventional treatments such as debulking surgery and combination chemotherapy are rarely able to control progression of the tumour, and relapses are frequent. Alternative therapies are currently being evaluated, including immunotherapy and advanced T cell-based therapy. In the present review, we will focus on a description of those Chimeric Antigen Receptors (CARs) that have been validated in the laboratory or are being tested in the clinic. Numerous target antigens have been defined due to the identification of OC biomarkers, and many are being used as CAR targets. We provide an exhaustive list of these constructs and their current status. Despite being innovative and efficient, the OC-specific CARs face a barrier to their clinical efficacy: the tumour microenvironment (TME). Indeed, effector cells expressing CARs have been shown to be severely inhibited, rendering the CAR T cells useless once at the tumour site. Herein, we give a thorough description of the highly immunosuppressive OC TME and present recent studies and innovations that have enabled CAR T cells to counteract this negative environment and to destroy tumours.


Subject(s)
Carcinoma, Ovarian Epithelial/immunology , Ovarian Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , Tumor Microenvironment/immunology , Animals , Antigens, Neoplasm/immunology , Carcinoma, Ovarian Epithelial/therapy , Female , Humans , Immunotherapy, Adoptive/methods , Ovarian Neoplasms/therapy , Receptors, Chimeric Antigen/therapeutic use , Tumor Escape/immunology
SELECTION OF CITATIONS
SEARCH DETAIL