Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 429
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Adv Sci (Weinh) ; 10(25): e2207549, 2023 09.
Article in English | MEDLINE | ID: mdl-37401236

ABSTRACT

LncRNAs play a critical role in oral squamous cell carcinoma (OSCC) progression. However, the function and detailed molecular mechanism of most lncRNAs in OSCC are not fully understood. Here, a novel nuclear-localized lncRNA, DUXAP9 (DUXAP9), that is highly expressed in OSCC is identified. A high level of DUXAP9 is positively associated with lymph node metastasis, poor pathological differentiation, advanced clinical stage, worse overall survival, and worse disease-specific survival in OSCC patients. Overexpression of DUXAP9 significantly promotes OSCC cell proliferation, migration, invasion, and xenograft tumor growth and metastasis, and upregulates N-cadherin, Vimentin, Ki67, PCNA, and EZH2 expression and downregulates E-cadherin in vitro and in vivo, whereas knockdown of DUXAP9 remarkably suppresses OSCC cell proliferation, migration, invasion, and xenograft tumor growth in vitro and in vivo in an EZH2-dependent manner. Yin Yang 1 (YY1) is found to activate the transcriptional expression of DUXAP9 in OSCC. Furthermore, DUXAP9 physically interacts with EZH2 and inhibits EZH2 degradation via the suppression of EZH2 phosphorylation, thereby blocking EZH2 translocation from the nucleus to the cytoplasm. Thus, DUXAP9 can serve as a promising target for OSCC therapy.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Squamous Cell/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Yin-Yang , Cell Line, Tumor , Cell Proliferation/genetics , Mouth Neoplasms/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , CDC2 Protein Kinase
2.
J Oral Pathol Med ; 52(8): 718-726, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37317871

ABSTRACT

BACKGROUND: Tumor necrosis factor-related apoptosis-inducing ligand activates apoptotic pathways and could potentially be used in anticancer treatments. However, oral squamous cell carcinoma cells are known to be resistant to tumor necrosis factor-related apoptosis-inducing ligand-induced cell death. It has been previously reported that hyperthermia upregulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in other cancers. As such, we evaluated whether hyperthermia upregulates tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in a tumor necrosis factor-related apoptosis-inducing ligand-resistant oral squamous cell carcinoma cell line. METHODS: The oral squamous cell carcinoma cell line HSC3 was cultured and divided into hyperthermia and control groups. We investigated the antitumor effects of recombinant human tumor necrosis factor-related apoptosis-inducing ligand using cell proliferation and apoptosis assays. Additionally, we measured death receptor 4 and 5 levels, and determined death receptor ubiquitination status, as well as E3 ubiquitin ligase targeting of death receptor in both hyperthermia and control groups before recombinant human tumor necrosis factor-related apoptosis-inducing ligand administration. RESULTS: Treatment with recombinant human tumor necrosis factor-related apoptosis-inducing ligand produced greater inhibitory effects in the hyperthermia group than in the control group. Moreover, death receptor protein expression in the hyperthermia group was upregulated on the cell surface (and overall), although death receptor mRNA was downregulated. The half-life of death receptor was several hours longer in the hyperthermia group; concomitantly, E3 ubiquitin ligase expression and death receptor ubiquitination were downregulated in this group. CONCLUSION: Our findings suggested that hyperthermia enhances apoptotic signaling by tumor necrosis factor-related apoptosis-inducing ligand via the suppression of death receptor ubiquitination, which upregulates death receptor expression. These data suggest that the combination of hyperthermia and tumor necrosis factor-related apoptosis-inducing ligand has implications in developing a novel treatment strategy for oral squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Hyperthermia, Induced , Mouth Neoplasms , Humans , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/pharmacology , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Ligands , Mouth Neoplasms/therapy , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Squamous Cell Carcinoma of Head and Neck , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin-Protein Ligases
3.
J Immunol Res ; 2023: 5293677, 2023.
Article in English | MEDLINE | ID: mdl-36969496

ABSTRACT

The morbidity of oral cancer is high in the world. Oridonin is a traditional Chinese medicine that can effectively inhibit oral squamous cell carcinoma (OSCC) growth, but its mechanism remains unclear. Our previous data showed that oridonin inhibited CAL-27 cell proliferation and promoted apoptosis. Herein, we explored the mechanism and target of oridonin in human OSCC through RNA sequencing and integration of multiple bioinformatics analysis strategies. Differences in gene expression can be analyzed with RNA sequencing. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), gene set enrichment analysis (GSEA), Disease Ontology (DO), and other enrichment analyses were used to evaluate differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks were built via the STRING database. It was found that tumor necrosis factor (TNF) signaling pathway, cytokine-cytokine receptor interaction, and nuclear factor-kappa B (NF-kappaB) signaling pathway were associated with the therapeutic effects of oridonin in OSCC. Three key genes (BIRC3, TNFSF10, and BCL6) were found to associate with cell apoptosis in OSCC cells treated with oridonin. Quantitative PCR assays verified the expression of apoptosis-related DEGs: TNFSF10, BIRC3, AIFM2, BCL6, BCL2L2, and Bax. Western blots were employed for verifying proteins expression associated with DEGs: cleaved caspase 3, Bax, Bcl-w, anti-cIAP2, and anti-TRAIL. In conclusion, our findings reveal the molecular pathways and targets by which oridonin can treat and induce cytotoxic effects in OSCC: by affecting the signaling including TNF, NF-κB, and cytokine-cytokine receptor interaction and by regulating the key gene BIRC3, TNFSF10, and BCL6. It should be noted that further clinical trial validation is very necessary. Combined with current research trends, our existing research may provide innovative research drugs for the treatment of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Transcriptome , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , RNA , NF-kappa B/metabolism , bcl-2-Associated X Protein , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Apoptosis , Cytokines/genetics , Computational Biology/methods
4.
PLoS One ; 18(2): e0281378, 2023.
Article in English | MEDLINE | ID: mdl-36802384

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide. Late-stage patients have a significant chance of local recurrence and distant metastasis, as well as poor prognosis. Therapeutic goals for patients must be improved and personalized to reduce adverse effects. This study explored the anti-proliferative activity and immunomodulation potential of the constituents of crude kaffir lime leaf extract (lupeol, citronellal and citronellol) under co-culture. Results showed high cytotoxicity to human SCC15 cell line but not to human monocyte-derived macrophages. Treatment with crude extract and the contained compounds also suppressed cell migration and colony formation of SCC15 compared to the untreated control group, while high levels of intracellular ROS production were detected in the treatment group of SCC15. The MuseTM cell analyzer revealed cell cycle arrest at G2/M phase and apoptosis induction. Inhibition of Bcl-2 and activation of Bax, leading to induction of the downstream caspase-dependent death pathway were confirmed by Western blot analysis. Co-culture with activated macrophages, kaffir lime extract and its constituents enhanced the development of pro-inflammatory (M1) macrophages and boosted TNF-α production, resulting in SCC15 apoptosis. Findings revealed novel potential activities of kaffir lime leaf extracts and their constituents in inducing M1 polarization against SCC15, as well as direct anti-proliferative activity.


Subject(s)
Carcinoma, Squamous Cell , Citrus , Head and Neck Neoplasms , Humans , Coculture Techniques , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Squamous Cell Carcinoma of Head and Neck , Apoptosis , Cell Line, Tumor , Plant Extracts/pharmacology , Cell Proliferation
5.
Integr Cancer Ther ; 21: 15347354221134921, 2022.
Article in English | MEDLINE | ID: mdl-36404765

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is an aggressive cancer whose 5-year survival rate remains poor. San-Zhong-Kui-Jian-Tang (SZKJT), a Chinese herbal formula, has long been used in clinical practice as adjuvant therapy in cancers. However, its therapeutic effects and molecular mechanisms in OSCC remain unclear. METHODS: We investigated the potential therapeutic effects and molecular mechanism of SZKJT in OSCC in tumor cell lines and in tumor xenograft mice and evaluated combined SZKJT and cisplatin treatment efficacy. In vitro-cultured OSCC cells were administered SZKJT at different doses or SZKJT plus cisplatin, and cell proliferation, colony formation assays, and cell cycle analysis were used to assess the effects on cancer cell proliferation and apoptosis. We also analyzed the effects of SZKJT on oral cancer cell line migration, the regulation of mitogen-activated protein kinase (MAPK) signaling, and epithelial-mesenchymal transition (EMT)-associated genes. The antitumor effects of SZKJT plus cisplatin were also tested in vivo using a tumor-bearing NOD/SCID mice model. RESULTS: The results showed that SZKJT effectively inhibited OSCC cell proliferation, induced cell cycle S phase arrest, and induced cell apoptosis. SZKJT also inhibited cell migration by modulating the MAPK signaling and epithelial-mesenchymal transition (EMT) pathway. Further exploration suggested that SZKJT affects OSCC by modulating ERK pathway; downregulating vimentin, fibronectin, and Oct-4; and upregulating E-cadherin. In vivo, SZKJT significantly inhibited tumor growth, and SZKJT and cisplatin exerted synergistic antitumor effects in model animals. CONCLUSIONS: SZKJT exerts antitumor effects in OSCC cells. Additionally, SZKJT and cisplatin exhibit synergy in OSCC treatment. These findings support the clinical usage of Chinese herbal formulas as adjuvant therapy with chemotherapy in cancer treatment.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Mice , Animals , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Epithelial-Mesenchymal Transition , Squamous Cell Carcinoma of Head and Neck/drug therapy , Cisplatin/pharmacology , Mice, SCID , Mice, Inbred NOD , Cell Proliferation
6.
World J Gastroenterol ; 28(29): 3869-3885, 2022 Aug 07.
Article in English | MEDLINE | ID: mdl-36157541

ABSTRACT

BACKGROUND: Mass spectrometry-based proteomics and glycomics reveal post-translational modifications providing significant biological insights beyond the scope of genomic sequencing. AIM: To characterize the N-linked glycoproteomic profile in esophageal squamous cell carcinoma (ESCC) via two complementary approaches. METHODS: Using tandem multilectin affinity chromatography for enrichment of N-linked glycoproteins, we performed N-linked glycoproteomic profiling in ESCC tissues by two-dimensional gel electrophoresis (2-DE)-based and isobaric tags for relative and absolute quantification (iTRAQ) labeling-based mass spectrometry quantitation in parallel, followed by validation of candidate glycoprotein biomarkers by Western blot. RESULTS: 2-DE-based and iTRAQ labeling-based quantitation identified 24 and 402 differentially expressed N-linked glycoproteins, respectively, with 15 in common, demonstrating the outperformance of iTRAQ labeling-based quantitation over 2-DE and complementarity of these two approaches. Proteomaps showed the distinct compositions of functional categories between proteins and glycoproteins with differential expression associated with ESCC. Western blot analysis validated the up-regulation of total procathepsin D and high-mannose procathepsin D, and the down-regulation of total haptoglobin, high-mannose clusterin, and GlcNAc/sialic acid-containing fraction of 14-3-3ζ in ESCC tissues. The serum levels of glycosylated fractions of clusterin, proline-arginine-rich end leucine-rich repeat protein, and haptoglobin in patients with ESCC were remarkably higher than those in healthy controls. CONCLUSION: Our study provides insights into the aberrant N-linked glycoproteome associated with ESCC, which will be a valuable resource for future investigations.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , 14-3-3 Proteins/metabolism , Arginine , Biomarkers, Tumor , Carcinoma, Squamous Cell/metabolism , Clusterin/metabolism , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Glycoproteins/genetics , Glycoproteins/metabolism , Haptoglobins/metabolism , Humans , Mannose , N-Acetylneuraminic Acid , Proline
7.
Asian Pac J Cancer Prev ; 23(9): 3071-3081, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36172670

ABSTRACT

BACKGROUND: FOXD1 expression in oral squamous cell carcinoma remains uncovered. The aim was to detect the anticancer effect of Rosemary Extract RE through the evaluation of FOXD1 gene expression in (OSCC) by quantitative PCR. METHODS: OSCC cell line was served as a control group. Moreover, the OSCC cell line (SCC-15) was treated with RE (OSCC/ RE group) at 24, 48, and 72 hs time intervals. We assessed the antioxidant activity of RE by evaluation of lipid peroxidation (MDA) and superoxide dismutase (SOD) levels. The cytotoxic effects of RE were examined by MTT assay. mTOR and LC3 I/II autophagy protein markers were assessed by western blot. Apoptosis activity was assessed. RESULTS: The study results were statistically assessed. Intergroup comparisons were analyzed, whereas intragroup comparisons were conducted utilizing one-way repeated measures ANOVA, followed by multiple pairwise paired t-tests with Bonferroni correction revealed a significant increase of FOXD1 gene expression in the control OSCC group in comparison to the OSCC/RE group (p-value <0.001). A significant decrease of mTOR/LC3I/II proteins expression in the OSCC/RE group compared to the control OSCC group (p-value <0.001). CONCLUSION: FOXD1 can be considred a diagnostic biomarker for OSCC. RE inhibits autophagy of oral human cancer cells via mTOR/LC3I/II-dependent pathways and decrease caspase -3 apoptotic level.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Rosmarinus , Antioxidants/pharmacology , Apoptosis , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Proliferation , Forkhead Transcription Factors , Humans , Mouth Neoplasms/metabolism , Plant Extracts/pharmacology , Rosmarinus/metabolism , Signal Transduction , Squamous Cell Carcinoma of Head and Neck , Superoxide Dismutase/metabolism , TOR Serine-Threonine Kinases/metabolism
8.
J Tradit Chin Med ; 42(5): 693-700, 2022 10.
Article in English | MEDLINE | ID: mdl-36083475

ABSTRACT

OBJECTIVE: The aim of this study was to examine the antitumor effects of Qilan preparation on oral squamous cell carcinoma (OSCC) and to investigate its underlying mechanisms of action. METHODS: Cell proliferation, cell cycle distribution and apoptosis were examined using cell counting kit-8 (CCK8) and flow cytometry (FCM). The expression of PTEN and PDCD4 were determined by western blot. Changes in miR-21 levels were quantified using TaqMan stem-loop real-time PCR. After miR-21 was transiently transfected into Tca8113 cells using Lipofectamine®3000, cell proliferation, apoptosis and miR-21 and PDCD4 expression levels were measured. RESULTS: Qilan preparation inhibited Tca8113 cell growth in a dose- and time-dependent manner by inducing apoptosis and cell cycle arrest in S-phase, decreasing miR-21 levels and increasing PTEN and PDCD4 expression. MiR-21 overexpression reversed the Qilan preparation-induced suppression of cell proliferation and induction of apoptosis while also blocking the increase in PDCD4. CONCLUSIONS: Our study revealed, for the first time, the ability of Qilan preparation to suppress TSCC cell growth and elucidated that Qilan preparation elicits its anti-cancer actions either the miR-21/PDCD4 or PTEN pathway.


Subject(s)
Carcinoma, Squamous Cell , MicroRNAs , Mouth Neoplasms , Tongue Neoplasms , Apoptosis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/pharmacology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/pharmacology , Tongue/metabolism , Tongue/pathology , Tongue Neoplasms/drug therapy , Tongue Neoplasms/genetics , Tongue Neoplasms/metabolism
9.
J Microbiol Biotechnol ; 32(9): 1103-1109, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36039387

ABSTRACT

Deoxypodophyllotoxin (DPT), a naturally occurring flavonolignan, possesses several pharmacological properties, including anticancer property. However, the mechanisms underlying DPT mode of action in oral squamous cell carcinoma (OSCC) remain unknown. This study aimed to investigate the anticancer effects of DPT on OSCC and the underlying mechanisms. Results of the MTT assay revealed that DPT significantly reduced the cell viability in a time- and dose-dependent manner. Flow cytometry analysis revealed that DPT induces apoptosis in OSCC cells in a dose-dependent manner. Moreover, DPT enhanced the production of mitochondrial reactive oxygen species (ROS) in OSCC cells. Mechanistically, DPT induced apoptosis in OSCC cells by suppressing the PI3K/AKT signaling pathway while activating the p38 MAPK signaling to regulate the expression of apoptotic proteins. Treatment with SC79, an AKT activator, reversed the effects of DPT on AKT signaling in OSCC cells. Taken together, these results provide the basis for the use of DPT in combination with conventional chemotherapy for the treatment of oral cancer.


Subject(s)
Carcinoma, Squamous Cell , Flavonolignans , Head and Neck Neoplasms , Mouth Neoplasms , Apoptosis , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation , Drugs, Chinese Herbal , Flavonolignans/pharmacology , Flavonolignans/therapeutic use , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Podophyllotoxin/analogs & derivatives , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Squamous Cell Carcinoma of Head and Neck , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Int J Mol Sci ; 23(11)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35682955

ABSTRACT

Skin cancer (melanoma and non-melanoma) is the most frequent type of malignancy in the Caucasian population. Photodynamic therapy (PDT) as an interesting and unique strategy may potentially boost standard therapeutic approaches. In the present study, the potential of emodin and aloe-emodin as photosensitizers in photodynamic therapy has been investigated. The conducted research presents for the first-time comparison of the phototoxic and anti-cancerous effects of emodin and aloe-emodin on skin cancer cell lines, including SCC-25 representing cutaneous squamous cell carcinoma, MUG-Mel2 representing a melanoma cell line, and normal human keratinocytes HaCaT representing control normal skin cells. To assess the effectiveness of emodin and aloe-emodin as a photosensitizer in PDT on different skin cell lines, we performed MTT assay measuring cytotoxicity of natural compounds, cellular uptake, apoptosis with flow cytometry, and a wound-healing assay. Although emodin and aloe-emodin are isomers and differ only in the position of one hydroxyl group, our phototoxicity and apoptosis detection results show that both substances affect skin cancer cells (SSC-25 squamous cell carcinoma and MUG-Mel2 melanoma) and normal keratinocytes (HaCaT cell line) in other ways. In conclusion, our study provides evidence suggesting that emodin and aloe-emodin mediated PDT exhibits the potential for clinical development as a new effective and safe photosensitizer to treat skin cancer.


Subject(s)
Aloe , Carcinoma, Squamous Cell , Emodin , Melanoma , Photochemotherapy , Skin Neoplasms , Anthraquinones/pharmacology , Apoptosis , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Emodin/pharmacology , Humans , Photosensitizing Agents/pharmacology , Skin Neoplasms/drug therapy
11.
Int J Mol Sci ; 23(10)2022 May 14.
Article in English | MEDLINE | ID: mdl-35628320

ABSTRACT

Esophageal squamous cell carcinoma is the most common type of esophageal cancer and accounts for 5% of malignant tumor deaths. Recent research suggests that chronic inflammation and DNA damage may drive the onset of esophageal squamous cell carcinoma, implying that lowering chronic inflammation and DNA damage compounds may provide chemo-prevention. According to epidemiological and experimental evidence, selenium is linked to a lower risk of several malignancies, including esophageal squamous cell carcinoma. However, its exact mechanism is still unclear. In the present study, we used cell lines and a 4-NQO mice model to explore the anti-cancer mechanism of four types of selenium. Our findings indicated that selenium inhibited the proliferation, colony formation, and ROS level of ESCC cell lines in a time-dependent manner. Intriguingly, selenium treatment impeded 4-NQO-induced high-grade intraepithelial neoplasia and reduced the number of positive inflammatory cells by preserving DNA from oxidative damage. In addition, selenium significantly decreased the expression of Ki-67 and induced apoptosis. This study demonstrates that selenium has a significant chemo-preventive effect on ESCC by reducing high-grade dysplasia to low-grade dysplasia. For the first time, selenium was shown to slow down the progression of esophageal cancer by lowering inflammation and oxidative DNA damage.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Selenium , Animals , Carcinoma, Squamous Cell/metabolism , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Inflammation , Mice , Selenium/pharmacology , Selenium/therapeutic use
12.
Med Oncol ; 38(9): 110, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34357463

ABSTRACT

EGFR-targeted therapies are reported to yield modest effect in OSCC. Activation of NFκB signaling is considered as molecular driver of EGFR inhibitor resistance in various cancers. In this scenario, present study focused on the molecular crosstalk between EGFR and NFκB signaling pathways and its therapeutic importance in OSCC. The EGFR- NFκB p65 co-expressed human OSCC cell lines UPCI:SCC066, UPCI:SCC040 and UM-SCC083B were used for in vitro studies. Recombinant human EGF, siRNAs, Western blot and qRT-PCR were used to dissect the molecular crosstalk between EGFR-NFκB signaling pathways in OSCCs. The effect of NFκB p65 knockdown on cancer hallmarks was studied by respective functional assays and RNA-Seq analysis was performed to identify the differentially expressed genes upon NFκB p65 knockdown. Gefitinib and Bay 11-7085 combination treatment was done to study the chemotherapeutic potential of EGFR- NFκB axis. Significant positive correlation between EGFR and NFκB p65 expression was observed in Head and Neck TCGA data set. EGFR induction or knockdown respectively stimulate or impair the NFκB signaling in EGFR- NFκB p65 co-expressed OSCC cell lines. NFκB p65 knockdown causes apoptosis and suppresses the viability, colony formation, migration, invasion, and spheroid formation. Using RNA-seq analysis, we identified PIK3CD as the NFκB target gene, which is commonly involved in these functions. Gefitinib and Bay 11-7085 combination treatment was found to be useful in chemosensitizing the Gefitinib-resistant OSCC cells by capitulating the EGFR- NFκB signaling axis. Combination treatment using Gefitinib and Bay 11-7085 enhanced the apoptosis and reduced cell viability and colony formation in a synergistic way. Our data demonstrated that EGFR-NFκB signaling axis plays a key role in the pathogenesis of OSCCs. Therefore, simultaneous therapeutic intervention of these pathways may be a good alternative approach for the management of OSCCs.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Gefitinib/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Mouth Neoplasms/drug therapy , NF-kappa B/metabolism , Protein Kinase Inhibitors/pharmacology , Apoptosis , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Movement , Cell Proliferation , Drug Therapy, Combination , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , NF-kappa B/genetics , RNA-Seq , Tumor Cells, Cultured
13.
Neoplasia ; 23(8): 811-822, 2021 08.
Article in English | MEDLINE | ID: mdl-34246985

ABSTRACT

Developing effective therapies for the treatment of advanced head-and-neck squamous cell carcinoma (HNSCC) remains a major challenge, and there is a limited landscape of effective targeted therapies on the horizon. NAD(P)H:quinone oxidoreductase 1 (NQO1) is a 2-electron reductase that is overexpressed in HNSCC and presents as a promising target for the treatment of HNSCC. Current NQO1-targeted drugs are hindered by their poor oxidative tolerability in human patients, underscoring a need for better preclinical screening for oxidative toxicities for NQO1-bioactivated small molecules. Herein, we describe our work to include felines and feline oral squamous cell carcinoma (FOSCC) patients in the preclinical assessment process to prioritize lead compounds with increased tolerability and efficacy prior to full human translation. Specifically, our data demonstrate that IB-DNQ, an NQO1-targeted small molecule, is well-tolerated in FOSCC patients and shows promising initial efficacy against FOSCC tumors in proof-of-concept single agent and radiotherapy combination cohorts. Furthermore, FOSCC tumors are amenable to evaluating a variety of target-inducible couplet hypotheses, evidenced herein with modulation of NQO1 levels with palliative radiotherapy. The use of felines and their naturally-occurring tumors provide an intriguing, often underutilized tool for preclinical drug development for NQO1-targeted approaches and has broader applications for the evaluation of other anticancer strategies.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/metabolism , Molecular Targeted Therapy , Mouth Neoplasms/metabolism , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , Animals , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/etiology , Cats , Combined Modality Therapy , Disease Management , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Immunohistochemistry , Mice , Mouth Neoplasms/diagnosis , Mouth Neoplasms/drug therapy , Mouth Neoplasms/etiology , Mutation , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Polymorphism, Single Nucleotide , Tomography, X-Ray Computed , Treatment Outcome
14.
J Pharm Pharmacol ; 73(1): 98-109, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33791802

ABSTRACT

OBJECTIVES: To evaluate the inhibitory effect and mechanism of plumbagin (PLB) against drug-resistant tongue squamous cell carcinoma (TSCC), and whether its antitumour effect is not affected by tumour drug resistance. METHODS: TSCC sensitive CAL27 cells and drug-resistant CAL27/RE cells were used to study the cytotoxicity and mechanism of PLB in vitro, including CCK-8 analysis, colony formation, DAPI staining, flow cytometry assay, transmission electron microscopy, western blotting assay, autophagy, apoptosis and ROS fluorescent probes. BALB/c nude mice xenograft models were used to study the growth inhibitory effect of PLB in vivo. KEY FINDINGS: The results showed that the cell viability and proliferation inhibition and apoptosis induction abilities of PLB on drug-resistant cells were more obvious than that on sensitive cells. And PLB induced protective autophagy in TSCC cells. Mechanistically, PLB induced apoptosis and autophagy by generating reactive oxygen species to mediate JNK and AKT/mTOR pathways. Finally, the growth inhibitory effect of PLB against drug-resistant TSCC was also confirmed in vivo. CONCLUSIONS: PLB will be a promising anticancer agent to overcome drug-resistant TSCC without being affected by its drug resistance properties.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Squamous Cell , Drug Resistance, Neoplasm/drug effects , Naphthoquinones/pharmacology , Plant Extracts/therapeutic use , Tongue Neoplasms , Tongue/drug effects , Animals , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis , Autophagy , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Male , Mice, Inbred BALB C , Mice, Nude , Naphthoquinones/therapeutic use , Phytotherapy , Plant Extracts/pharmacology , TOR Serine-Threonine Kinases/metabolism , Tongue/metabolism , Tongue/pathology , Tongue Neoplasms/drug therapy , Tongue Neoplasms/metabolism , Tongue Neoplasms/pathology
15.
Mol Med Rep ; 23(6)2021 06.
Article in English | MEDLINE | ID: mdl-33786612

ABSTRACT

Dioscin, an extract from traditional Chinese herbal plants, displays various biological and pharmacological effects on tumors, including inhibition of cell proliferation and induction of DNA damage. However, the effects of dioscin on oral squamous cell carcinoma (OSCC) cells are not completely understood. The present study aimed to evaluate the impact of dioscin on OSCC cell proliferation. Cell Counting Kit­8 and 5­ethynyl­2'­deoxyuridine incorporation assays were performed to assess cell proliferation. Flow cytometry was conducted to detect alterations in the cell cycle and cell apoptosis. Western blotting and coimmunoprecipitation were performed to determine protein expression levels. In SCC15 cells, dioscin treatment significantly induced cell cycle arrest, increased apoptosis and inhibited proliferation compared with the control group. Mechanistically, the tumor suppressor protein Ras association domain­containing protein 1A (RASSF1A) was activated and oncoprotein yes­associated protein (YAP) was phosphorylated by dioscin. Furthermore, YAP overexpression and knockdown reduced and enhanced the inhibitory effects of dioscin on SCC15 cells, respectively. In summary, the results demonstrated that, compared with the control group, dioscin upregulated RASSF1A expression in OSCC cells, which resulted in YAP phosphorylation, thus weakening its transcriptional coactivation function, enhancing cell cycle arrest and apoptosis, and inhibiting cell proliferation. The present study indicated that dioscin may serve as a therapeutic agent for OSCC.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/metabolism , Cell Proliferation/drug effects , Diosgenin/analogs & derivatives , Mouth Neoplasms/metabolism , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis , Cell Cycle Checkpoints , Cell Line, Tumor , Diosgenin/pharmacology , Humans , Protein Serine-Threonine Kinases/metabolism , Serine-Threonine Kinase 3 , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , YAP-Signaling Proteins
16.
Int J Mol Med ; 47(4)2021 04.
Article in English | MEDLINE | ID: mdl-33576463

ABSTRACT

New approaches are being studied for the treatment of skin cancer. It has been reported that light combined with cisplatinum may be effective against skin cancer. In the present study, the effects of specific light radiations and cisplatinum on A431 cutaneous squamous cell carcinoma (cSCC) and HaCaT non­tumorigenic cell lines were investigated. Both cell lines were exposed to blue and red light sources for 3 days prior to cisplatinum treatment. Viability, apoptosis, cell cycle progression and apoptotic­related protein expression levels were investigated. The present results highlighted that combined treatment with blue light and cisplatinum was more effective in reducing cell viability compared with single treatments. Specifically, an increase in the apoptotic rate was observed when the cells were treated with blue light and cisplatinum, as compared to treatment with blue light or cisplatinum alone. Combined treatment with blue light and cisplatinum also caused cell cycle arrest at the S phase. Treatment with cisplatinum following light exposure induced the expression of apoptotic proteins in the A431 and HaCaT cell lines, which tended to follow different apoptotic mechanisms. On the whole, these data indicate that blue light combined with cisplatinum may be a promising treatment for cSCC.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Cisplatin/pharmacology , Light , Skin Neoplasms/metabolism , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Cycle Checkpoints/drug effects , Cell Survival/drug effects , HaCaT Cells , Humans , S Phase/drug effects
17.
Protein Pept Lett ; 28(7): 735-749, 2021.
Article in English | MEDLINE | ID: mdl-33302827

ABSTRACT

BACKGROUND: Oral cancer is a significant health problem worldwide. Oral squamous cell carcinoma (OSCC) is a malignant neoplasm of epithelial cells that mostly affects different anatomical sites in the head and neck and derives from the squamous epithelium or displays similar morphological characteristics. Generally, OSCC is often the end stage of several changes in the stratified squamous epithelium, which begin as epithelial dysplasia and progress by breaking the basement membrane and invading adjacent tissues. Several plant-based drugs with potent anti-cancer effects are considered inexpensive treatments with limited side effects for cancer and other diseases. OBJECTIVE: The aim of this review is to explore whether some Brazilian plant extracts or constituents exhibit anti-tumorigenic activity or have a cytotoxic effect on human oral carcinoma cells. METHODS: Briefly, OSCC and several metabolites derived from Brazilian plants (i.e., flavonoids, vinblastine, irinotecan, etoposide and paclitaxel) were used as keywords to search the literature on PubMed, GenBank and GeneCards. RESULTS: The results showed that these five chemical compounds found in Cerrado Biome plants exhibit anti-neoplastic effects. Evaluating the compounds revealed that they play a main role in the regulation of cell proliferation. CONCLUSION: Preserving and utilising the biodiversity of our planet, especially in unique ecosystems, such as the Cerrado Biome, may prove essential to preserving and promoting human health in modern contexts.


Subject(s)
Anticarcinogenic Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Carcinogenesis/drug effects , Carcinoma, Squamous Cell/drug therapy , Mouth Neoplasms/drug therapy , Neoplasm Proteins/genetics , Anticarcinogenic Agents/chemistry , Anticarcinogenic Agents/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Brazil , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Proliferation/drug effects , Computational Biology/methods , Etoposide/chemistry , Etoposide/isolation & purification , Etoposide/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Irinotecan/chemistry , Irinotecan/isolation & purification , Irinotecan/pharmacology , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Paclitaxel/chemistry , Paclitaxel/isolation & purification , Paclitaxel/pharmacology , Plant Extracts/chemistry , Plants, Medicinal , Vinblastine/chemistry , Vinblastine/isolation & purification , Vinblastine/pharmacology
18.
Phytomedicine ; 80: 153386, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33113500

ABSTRACT

BACKGROUND: Overexpression of polycomb protein contributes to epigenetic repression in oral squamous cell carcinoma (OSCC) ensuing in poor prognosis and aggressive phenotype. Several plant-based compounds could help prevent epigenome alteration and cancer progression, but their low bioavailability limits their therapeutic activity. HYPOTHESIS: In this study, we have synthesized genistein nanoformulation (GLNPs) and evaluated its epigenetic regulation mechanism for selective apoptosis induction in OSCC. METHODS: Lactalbumin was used to prepare nanoformulation of Genistein. The mechanism of epigenetic regulation and selective apoptosis by Genistein loaded nanoparticles was studied in OSCC cell line JHU011 and fibroblast cell line L929 using immunofluorescence, Western blotting and ChIP-qPCR assay. RESULTS: We have found that GLNPs treatment selectively induced apoptosis in OSCC compared to the normal fibroblast cells. This selective effect in OSCC is achieved through enhanced reactive oxygen species (ROS) generation followed by Bax mitochondrial translocation and caspase 3 activation. Further, GLNPs induced withdrawal of epigenetic transcription repression through concurrent downregulation of the polycomb group proteins (PcG) Bmi 1 and EZH2 along with their successive targets, UbH2AK119 and H3K27me3, which have immense therapeutic implications in the treatment of OSCC. Last, we have established that GLNPs regulate EZH2expression through proteasomal mediated degradation and 3PK inhibition; 3PK protein was found physically linked with EZH2 protein and its promoter region (-1107 to -1002). This event indicates that 3PK might play some crucial role in EZH2 expression and epigenetic control of OSCC. Moreover, the formulation showed improved biodistribution, aqueous dispersibility and enhanced biocompatibility In-vivo. CONCLUSIONS: These results provide evidence that GLNPs may withdraw epigenetic transcriptional repression and selectively induce apoptosis in human oral squamous cell carcinoma.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Squamous Cell/drug therapy , Enhancer of Zeste Homolog 2 Protein/metabolism , Genistein/pharmacology , Mouth Neoplasms/drug therapy , Animals , Antineoplastic Agents, Phytogenic/pharmacokinetics , Apoptosis/drug effects , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation/drug effects , Drug Delivery Systems , Epigenesis, Genetic/drug effects , Genistein/administration & dosage , Genistein/pharmacokinetics , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice, Inbred BALB C , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Tissue Distribution , Xenograft Model Antitumor Assays
19.
Cell Mol Biol (Noisy-le-grand) ; 66(6): 52-58, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33040785

ABSTRACT

Oral squamous cell carcinoma is one of the most common high malignant tumors. This experiment aimed to investigate whether ethyl acetate extract of peony (Paeonia suffruticosa) seed coat could affect the proliferation and apoptosis of oral squamous carcinoma cells by regulating the miR-424-3p/STAT3/Survivin pathway. For this purpose, oral squamous cell carcinoma cell CAL27 was cultured in vitro, and cells were treated with ethyl acetate extract of peony seed coat at different concentrations. MTT was used to detect cell proliferation. Flow cytometry was used to detect apoptosis. qRT-PCR was used to detect the expression level of miR-424-3p. The miR-424-3p mimics and anti-miR-424-3p were transfected into CAL27 cells respectively, and the cell proliferation and apoptosis were detected by the above method. Western blot method was used to detect the expression of PCNA, Bcl-2, Bax, p-STAT3 and Survivin protein. Results showed that ethyl acetate extract of peony seed coat could reduce cell proliferation rate and the protein levels of PCNA, Bcl-2, p-STAT3, Survivin and the expression level of miR-424-3p (P<0.05), increase apoptosis rate and the protein level of Bax (P<0.05). After transfection with anti-miR-424-3p, the cell proliferation rate, the protein levels of PCNA and Bcl-2 were significantly reduced (P<0.05), the apoptosis rate and the protein level of Bax were significantly increased (P<0.05), while the effect of miR-424-3p mimics was the opposite. Transfection of miR-424-3p mimics could significantly reduce the regulatory effect of ethyl acetate extract of peony seed coat on CAL27 cell proliferation, apoptosis and STAT3/Survivin pathway. It concluded that ethyl acetate extract of peony seed coat could inhibit the activation of the STAT3/Survivin signaling pathway by down-regulating the expression of miR-424-3p, thereby inhibiting the proliferation of oral squamous carcinoma cells and inducing apoptosis.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Head and Neck Neoplasms/drug therapy , Paeonia/chemistry , Plant Extracts/pharmacology , Seeds/chemistry , Signal Transduction/drug effects , Squamous Cell Carcinoma of Head and Neck/drug therapy , Acetates/chemistry , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Head and Neck Neoplasms/metabolism , Humans , MicroRNAs/metabolism , STAT3 Transcription Factor/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Survivin/metabolism
20.
Int J Mol Sci ; 21(18)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899792

ABSTRACT

Anoctamin1 (ANO1), a calcium-activated chloride channel, is frequently overexpressed in several cancers, including human prostate cancer and oral squamous cell carcinomas. ANO1 plays a critical role in tumor growth and maintenance of these cancers. In this study, we have isolated two new compounds (1 and 2) and four known compounds (3-6) from Mallotus apelta. These compounds were evaluated for their inhibitory effects on ANO1 channel activity and their cytotoxic effects on PC-3 prostate cancer cells. Interestingly, compounds 1 and 2 significantly reduced both ANO1 channel activity and cell viability. Electrophysiological study revealed that compound 2 (Ani-D2) is a potent and selective ANO1 inhibitor, with an IC50 value of 2.64 µM. Ani-D2 had minimal effect on cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel activity and intracellular calcium signaling. Notably, Ani-D2 significantly reduced ANO1 protein expression levels and cell viability in an ANO1-dependent manner in PC-3 and oral squamous cell carcinoma CAL-27 cells. In addition, Ani-D2 strongly reduced cell migration and induced activation of caspase-3 and cleavage of PARP in PC-3 and CAL-27 cells. This study revealed that a novel ANO1 inhibitor, Ani-D2, has therapeutic potential for the treatment of several cancers that overexpress ANO1, such as prostate cancer and oral squamous cell carcinoma.


Subject(s)
Anoctamin-1/antagonists & inhibitors , Mallotus Plant/metabolism , Plant Extracts/pharmacology , Animals , Anoctamin-1/metabolism , Anoctamin-1/physiology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Calcium/metabolism , Calcium Signaling/drug effects , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chloride Channels/metabolism , Humans , Mouth Neoplasms/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasm Proteins/physiology , PC-3 Cells , Rats
SELECTION OF CITATIONS
SEARCH DETAIL