Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 421
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Zhonghua Nei Ke Za Zhi ; 62(4): 422-426, 2023 Apr 01.
Article in Chinese | MEDLINE | ID: mdl-37032138

ABSTRACT

Objective: To observe the clinical effect of Qiliqiangxin capsule combined with recombinant human brain natriuretic peptide in acute left heart failure patients 7 days after onset as well as the effects of plasma MDA and ET-1. Methods: In total, 240 hospitalized patients with acute left heart failure from October 2017 to May 2021 were selected from the Department of Emergency and Critical Care Center of Beijing Anzhen Hospital, Capital Medical University and the Department of Cardiology of the Jilin Provincial People's Hospital. They were randomly divided into routine treatment group and combined treatment group, with 120 cases in each group. The routine treatment group was treated with vasodilation, diuresis, cardiotonic and recombinant human brain natriuretic peptide. The combined treatment group was treated with Qiliqiangxin capsules based on the routine treatment group. One week later, the changes in clinical efficacy, ejection fraction, left ventricular commoid diameter, and plasma BNP, MDA, and ET-1 were compared between the two groups before and after treatment. SPSS 11.5 statistical software was used. The measurement data was expressed in x¯±s, the independent sample t-test was used for comparison between groups, and the paired t-test was used for comparison before and after treatment within groups. Counting data was expressed as case (%), and the rank sum test was used for inter-group comparison. Result: In terms of clinical efficacy, the total effective rate of the combined treatment group was significantly higher than that of the conventional treatment group, and the difference was statistically significant (P<0.05). Compared with the routine treatment group, the left ventricular ejection fraction in the combined treatment group was significantly increased (P<0.05). The levels of plasma BNP, MDA and ET-1 were significantly decreased (P<0.05). Conclusion: Qiliqiangxin capsule combined with rhBNP treatment can effectively improve the clinical symptoms of acute heart failure, as well as reduce the lipid peroxidation product MDA content and endothetin ET-1 level in blood. The clinical application value of the Qiliqiangxin capsule needs to be further confirmed by further trials.


Subject(s)
Cardiovascular Agents , Drugs, Chinese Herbal , Heart Failure , Natriuretic Peptide, Brain , Humans , Heart Failure/drug therapy , Heart Failure/physiopathology , Natriuretic Peptide, Brain/pharmacology , Natriuretic Peptide, Brain/therapeutic use , Stroke Volume/drug effects , Stroke Volume/physiology , Ventricular Function, Left/drug effects , Ventricular Function, Left/physiology , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Drug Therapy, Combination
2.
J Pharm Biomed Anal ; 230: 115399, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37084664

ABSTRACT

The present work focuses on the phytochemical characterization and evaluation of antianginal activity of the bark of Sterculia setigera. It was collected and authenticated in the African region of Mali, where the local population largely employs this plant for the treatment of several diseases. In the context of traditional or folk medicine and recent progresses in alternative medicine practices, it is essential to expand the knowledge about the chemical composition of such medicinal plants. In this research, a direct-Mass Spectrometry (MS) technique, known as Rapid Evaporative Ionization Mass Spectrometry (REIMS) was used for the identification of the main constituents of the Sterculia setigera bark. The REIMS source is here coupled with an electroknife as sampling device, so that the dried and pulverized bark was directly cut through the electroknife to generate a vapor, which was online transferred to the source via a Venture tube. In this way, an ambient MS approach was realized, which avoids any sample preparation procedure or pretreatment; the sample was analyzed in its native state according to a time-saving analytical process. A quadrupole-time of flight MS/MS analyzer was exploited for the identification process, based on mass accuracy data and MS/MS experiments for structure elucidation purposes. Lipids, including triterpenes, fatty acids, γ-sitosterol and α-tocopherol, and phenolic compounds were identified, some of them reported for the first time in a plant of the Sterculia genus and further confirmed through a gas chromatography-mass spectrometry analysis. The obtained metabolomic profile was successfully correlated to the antianginal activity of this plant.


Subject(s)
Angina Pectoris , Cardiovascular Agents , Plant Bark , Plant Extracts , Plant Bark/chemistry , Mali , Angina Pectoris/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use
3.
ACS Nano ; 16(9): 15484-15494, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36094397

ABSTRACT

The preclinical assessment of efficacy and safety is essential for cardiovascular drug development in order to guarantee effective prevention and treatment of cardiovascular disease and avoid human health endangerment and a huge waste of resources. Rhythmic mechanical beating as one of the crucial cardiomyocyte properties has been exploited to establish a drug assessment biosensing platform. However, the conventional label-free biosensing platforms are difficult to perform high-throughput and high-resolution mechanical beating detection for a single cardiomyocyte, while label-based strategies are limited by pharmacologically adverse effects and phototoxicity. Herein, we propose a biosensing platform involving the multichannel electrode array device and the universal mechanical beating detection system. The platform can determine the optimal characteristic working frequency of different devices and dynamically interrogate the viability of multisite single cardiomyocytes to establish the optimized cell-based model for sensitive drug assessment. The subtle changes of mechanical beating signals induced by cardiovascular drugs can be detected by the platform, thereby demonstrating its high performance in pharmacological assessment. The universal and sensitive drug assessment biosensing platform is believed to be widely applied in cardiology investigating and preclinical drug screening.


Subject(s)
Biosensing Techniques , Cardiovascular Agents , Biological Assay , Cardiovascular Agents/pharmacology , Cells, Cultured , Drug Evaluation, Preclinical , Humans , Myocytes, Cardiac
4.
Toxicol Appl Pharmacol ; 438: 115914, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35150662

ABSTRACT

The goal of the CiPA initiative (Comprehensive in vitro Proarrhythmia Assay) was to assess a more accurate prediction of new drug candidate proarrhythmic severe liabilities such as torsades de pointes, for example. This new CiPA paradigm was partly based on in silico reconstruction of human ventricular cardiomyocyte action potential useful to identify repolarization abnormalities such early afterdepolarization (EAD), for example. Using the ToR-ORd algorithm (Tomek-Rodriguez-O'Hara-Rudy dynamic model), the aim of the present work was (i) to identify intracellular parameters leading to EAD occurrence under healthy and hypertrophic cardiomyopathy (HCM) conditions and (ii) to evaluate the prediction accuracy of compound torsadogenic risk based on EAD occurrence using a large set of 109 torsadogenic and non-torsadogenic compounds under both experimental conditions. In silico results highlighted the crucial involvement of Ca++ handling in the ventricular cardiomyocyte intracellular subspace compartment for the initiation of EAD, demonstrated by a higher amplitude of Ca++ release from junctional sarcoplasmic reticulum to subspace compartments (Jrel) measured at EAD take-off voltage in the presence vs. the absence of EAD initiated either by high IKr inhibition or by high enough concentration of a torsadogenic compound under both experimental conditions. Under healthy or HCM conditions, the prediction accuracy of the torsadogenic risk of compound based on EAD occurrence was observed to be 61 or 92%, respectively. This high accuracy under HCM conditions was discussed regarding its usefulness for cardiac safety pharmacology at least at early drug screening/preclinical stage of the drug development process.


Subject(s)
Action Potentials/physiology , Cardiomyopathy, Hypertrophic/drug therapy , Cardiovascular Agents/pharmacology , Myocytes, Cardiac/drug effects , Torsades de Pointes/drug therapy , Algorithms , Calcium/metabolism , Cardiomyopathy, Hypertrophic/metabolism , Computer Simulation , Drug Evaluation, Preclinical/methods , Electrocardiography/drug effects , Humans , Myocytes, Cardiac/physiology , Risk Assessment , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Torsades de Pointes/physiopathology
5.
Acta Pharmacol Sin ; 43(9): 2173-2190, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35046517

ABSTRACT

Colchicine is an ancient herbal drug derived from Colchicum autumnale. It was first used to treat familial Mediterranean fever and gout. Based on its unique efficacy as an anti-inflammatory agent, colchicine has been used in the therapy of cardiovascular diseases including coronary artery disease, atherosclerosis, recurrent pericarditis, vascular restenosis, heart failure, and myocardial infarction. More recently, colchicine has also shown therapeutic efficacy in alleviating cardiovascular complications of COVID-19. COLCOT and LoDoCo2 are two milestone clinical trials that confirm the curative effect of long-term administration of colchicine in reducing the incidence of cardiovascular events in patients with coronary artery disease. There is growing interest in studying the anti-inflammatory mechanisms of colchicine. The anti-inflammatory action of colchicine is mediated mainly through inhibiting the assembly of microtubules. At the cellular level, colchicine inhibits the following: (1) endothelial cell dysfunction and inflammation; (2) smooth muscle cell proliferation and migration; (3) macrophage chemotaxis, migration, and adhesion; (4) platelet activation. At the molecular level, colchicine reduces proinflammatory cytokine release and inhibits NF-κB signaling and NLRP3 inflammasome activation. In this review, we summarize the current clinical trials with proven curative effect of colchicine in treating cardiovascular diseases. We also systematically discuss the mechanisms of colchicine action in cardiovascular therapeutics. Altogether, colchicine, a bioactive constituent from an ancient medicinal herb, exerts unique anti-inflammatory effects and prominent cardiovascular actions, and will charter a new page in cardiovascular medicine.


Subject(s)
COVID-19 Drug Treatment , Cardiovascular Agents , Coronary Artery Disease , Myocardial Infarction , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Colchicine/pharmacology , Colchicine/therapeutic use , Coronary Artery Disease/drug therapy , Humans , Myocardial Infarction/drug therapy
6.
Life Sci ; 293: 120333, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35051422

ABSTRACT

Ageing is the most significant risk factor for cardiovascular diseases. l-Carnitine has a potent cardioprotective effect and its synthesis decreases during ageing. At the same time, there are pharmaceuticals, such as mildronate which, on the contrary, are aimed at reducing the concentration of l-carnitine in the heart and lead to slows down the oxidation of fatty acids in mitochondria. Despite this, both l-carnitine and mildronate are positioned as cardio protectors. We showed that l-carnitine supplementation to the diet of 15-month-old mice increased expression of the PGC-1α gene, which is responsible for the regulation of fatty acid oxidation, and the Nrf2 gene, which is responsible for protecting mitochondria by regulating the expression of antioxidants and mitophagy, in the heart. Mildronate activated the expression of genes that regulate glucose metabolism. Probably, this metabolic shift may protect the mitochondria of the heart from the accumulation of acyl-carnitine, which occurs during the oxidation of fatty acids under oxygen deficiency. Both pharmaceuticals impacted the gut microbiome bacterial composition. l-Carnitine increased the level of Lachnoanaerobaculum and [Eubacterium] hallii group, mildronate increased the level of Bifidobacterium, Rikinella, Christensenellaceae. Considered, that these bacteria for protection the organism from various pathogens and chronic inflammation. Thus, we suggested that the positive effects of both drugs on the mitochondria metabolism and gut microbiome bacterial composition may contribute to the protection of the heart during ageing.


Subject(s)
Aging/metabolism , Cardiovascular Agents/pharmacology , Carnitine/pharmacology , Gastrointestinal Microbiome/physiology , Methylhydrazines/pharmacology , Mitochondria, Heart/metabolism , Aging/drug effects , Animals , Bifidobacterium/metabolism , DNA, Mitochondrial/metabolism , Female , Gastrointestinal Microbiome/drug effects , Male , Mice , Mice, Inbred C57BL , Mitochondria, Heart/drug effects
7.
J Ethnopharmacol ; 282: 114604, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34499964

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chinese medicine injections (CMIs) are widely used by clinicians in China as an adjuvant treatment in dilated cardiomyopathy with heart failure (DCM-HF). However, comprehensive and systematic evidence supporting the beneficial effects of CMIs combined with Western medicine (WM) against DCM-HF was lacking. OBJECTIVE: This network meta-analysis aimed to assess the effectiveness of five different CMIs in the treatment of DCM-HF. METHODS: The Cochrane Library, Embase, PubMed, China National Knowledge Infrastructure (CNKI), Allied and Alternative Medieine Database (AMED), Chinese Biological Medicine Database (CBM), Wanfang Database, and Chinese Scientific Journal Database (VIP) were comprehensively searched from their inception to March 10, 2020, for randomized controlled trials (RCTs) focusing on the use of CMIs combined with WM to treat DCM-HF. The quality of the included RCTs was assessed using the Cochrane Handbook 5.1.0. Bayesian network meta-analysis were designed to access the effectiveness of different CMIs. RESULTS: A total of 38 eligible RCTs involving 3247 patients were enrolled. The study showed that Huangqi injection, Shengmai injection, Shenfu injection, Shenmai injection, and Xinmailong injection combined with WM significantly improved performance compared with WM alone in treating DCM-HF. Xinmailong injection + WM had the highest likelihood of being the best treatment in terms of the improvement in the clinical effectiveness rate, left ventricular end-diastolic dimension, and 6-min walking distance. Huangqi injection + WM had the highest probability of being the best treatment on account of the enhancement of left ventricular ejection fraction. Shenmai injection + WM had the highest likelihood of being the best treatment considering the improvement in cardiac output and the reduction in brain natriuretic peptide. CONCLUSIONS: The combination between CMIs and WM exerted a more positive effect in DCM-HF treatment. Xinmailong injection + WM had the best performance in treating DCM-HF, followed by Shenmai injection and Huangqi injection. However, due to the low qualities of the original studies, more high-quality studies are needed to support the findings.


Subject(s)
Cardiomyopathy, Dilated , Cardiovascular Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Heart Failure , Astragalus propinquus , Bayes Theorem , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/diagnostic imaging , Drug Combinations , Drug Therapy, Combination/methods , Heart Failure/diagnosis , Heart Failure/drug therapy , Heart Failure/etiology , Humans , Injections
8.
J Diabetes Res ; 2021: 9944589, 2021.
Article in English | MEDLINE | ID: mdl-34926700

ABSTRACT

The incidence of heart failure was significantly increased in patients with diabetic cardiomyopathy (DCM). The therapeutic effect of triptolide on DCM has been reported, but the underlying mechanisms remain to be elucidated. This study is aimed at investigating the potential targets of triptolide as a therapeutic strategy for DCM using a network pharmacology approach. Triptolide and its targets were identified by the Traditional Chinese Medicine Systems Pharmacology database. DCM-associated protein targets were identified using the comparative toxicogenomics database and the GeneCards database. The networks of triptolide-target genes and DCM-associated target genes were created by Cytoscape. The common targets and enriched pathways were identified by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The gene-gene interaction network was analyzed by the GeneMANIA database. The drug-target-pathway network was constructed by Cytoscape. Six candidate protein targets were identified in both triptolide target network and DCM-associated network: STAT3, VEGFA, FOS, TNF, TP53, and TGFB1. The gene-gene interaction based on the targets of triptolide in DCM revealed the interaction of these targets. Additionally, five key targets that were linked to more than three genes were determined as crucial genes. The GO analysis identified 10 biological processes, 2 cellular components, and 10 molecular functions. The KEGG analysis identified 10 signaling pathways. The docking analysis showed that triptolide fits in the binding pockets of all six candidate targets. In conclusion, the present study explored the potential targets and signaling pathways of triptolide as a treatment for DCM. These results illustrate the mechanism of action of triptolide as an anti-DCM agent and contribute to a better understanding of triptolide as a transcriptional regulator of cytokine mRNA expression.


Subject(s)
Cardiovascular Agents/pharmacology , Diabetic Cardiomyopathies/drug therapy , Diterpenes/pharmacology , Molecular Docking Simulation , Myocytes, Cardiac/drug effects , Network Pharmacology , Phenanthrenes/pharmacology , Caco-2 Cells , Databases, Genetic , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Epoxy Compounds/pharmacology , Gene Regulatory Networks , Humans , Molecular Structure , Molecular Targeted Therapy , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Protein Interaction Maps , Signal Transduction , Structure-Activity Relationship
9.
Biomed Pharmacother ; 143: 112178, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649308

ABSTRACT

Modified citrus pectin (MCP) is a specific inhibitor of galectin-3 (Gal-3) that is regarded as a new biomarker of cardiac hypertrophy, but its effect is unclear. The aim of this study is to investigate the role and mechanism of MCP in isoproterenol (ISO)-induced cardiac hypertrophy. Rats were injected with ISO to induce cardiac hypertrophy and treated with MCP. Cardiac function was detected by ECG and echocardiography. Pathomorphological changes were evaluated by the haematoxylin eosin (H&E) and wheat germ agglutinin (WGA) staining. The hypertrophy-related genes for atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and ß-myosin heavy chain (ß-MHC), and the associated signal molecules were analysed by qRT-PCR and western blotting. The results show that MCP prevented cardiac hypertrophy and ameliorated cardiac dysfunction and structural disorder. MCP also decreased the levels of ANP, BNP, and ß-MHC and inhibited the expression of Gal-3 and Toll-like receptor 4 (TLR4). Additionally, MCP blocked the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), but it promoted the phosphorylation of p38. Thus, MCP prevented ISO-induced cardiac hypertrophy by activating p38 signalling and inhibiting the Gal-3/TLR4/JAK2/STAT3 pathway.


Subject(s)
Cardiomegaly/drug therapy , Cardiovascular Agents/pharmacology , Janus Kinase 2/metabolism , Myocytes, Cardiac/drug effects , Pectins/pharmacology , STAT3 Transcription Factor/metabolism , Toll-Like Receptor 4/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/enzymology , Cardiomegaly/physiopathology , Disease Models, Animal , Galectin 3/metabolism , Isoproterenol , Male , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, Brain/metabolism , Phosphorylation , Rats, Wistar , Signal Transduction , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
10.
Biomed Pharmacother ; 144: 112303, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34673424

ABSTRACT

BACKGROUND: Depressive disorders induced by acute myocardial infarction (AMI) play a pivotal role in the deterioration of cardiac function, and Shuangxinfang (Psycho-cardiology Formula, PCF) was reported to alleviate heart function damage and improve depression-like behavior, but the complex mechanism in such process has not been clarified. METHODS: AMI models were established and PCF was administered in rats. Subjects were then assessed in open field test (OFT) and forced swimming test (FST) recapitulating symptoms of depressive disorder. Afterward, pharmacoproteomic profiling of the hippocampus and peri-infarct border zone (BZ) was performed using a label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique, to identify contributing proteins and pathways responsible for myocardial ischemia and behavioral allostasis. Bioinformatics analysis was processed for further investigation, while western blotting was employed for testing dominating proteins to validate proteomic results. RESULTS: Rats in the AMI group showed depression-like behavior in OFT and FST, which was improved by PCF. There were 131 differentially expressed proteins (DEPs) in BZ and 64 proteins in the hippocampus being detected and quantified shared by the sham group, the AMI group, and the PCF group. Subsequently, pertinent pathways and molecular functions were further identified. Altered molecules were discovered to be enriched in the apoptotic process, innate immune response, and NF-κB transcription factor activity in BZ, as well as chemical synaptic transmission, axon, collagen binding, cell adhesion, response to carbohydrate, laminin binding, and cellular response to nitric oxide in the hippocampus. Groups of signal transducers were also able to select multiple pathways, including innate immunity and arginine biosynthesis in the heart, also integrin signaling in the brain. DEPs were intersected from the myocardium and hippocampus to screen out the protein S100A9, which was up-regulated in the AMI group compared with the sham, and showed a down-regulation trend after treatment with PCF. CONCLUSION: Taken together, we present a comprehensive proteomics analysis of rat models with depression post-AMI. Reviewing the literatures concerned, it's hypothesized that macrophage/microglia inflammation mediated by S100A9 might be the pivotal pathogenic process of psycho-cardiology disease, as well as potential mechanisms for the treatment of PCF.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Calgranulin B/metabolism , Cardiovascular Agents/pharmacology , Depression/drug therapy , Drugs, Chinese Herbal/pharmacology , Hippocampus/drug effects , Myocardial Infarction/drug therapy , Myocardium/metabolism , Proteomics , Animals , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Depression/metabolism , Depression/psychology , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Hippocampus/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Microglia/drug effects , Microglia/metabolism , Motor Activity/drug effects , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Open Field Test/drug effects , Protein Interaction Maps , Proteome , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Ventricular Function, Left/drug effects
11.
J Cardiovasc Pharmacol ; 78(5): e681-e689, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354001

ABSTRACT

ABSTRACT: Panax notoginseng saponins (PNS) are commonly used in the treatment of cardiovascular diseases. Whether PNS can protect myocardial ischemia-reperfusion injury by regulating the forkhead box O3a hypoxia-inducible factor-1 alpha (FOXO3a/HIF-1α) cell signaling pathway remains unclear. The purpose of this study was to investigate the protective effect of PNS on H9c2 cardiomyocytes through the FOXO3a/HIF-1α cell signaling pathway. Hypoxia and reoxygenation of H9C2 cells were used to mimic MIRI in vitro, and the cells were treated with PNS, 2-methoxyestradiol (2ME2), and LY294002." Cell proliferation, lactate dehydrogenase, and malonaldehyde were used to evaluate the degree of cell injury. The level of reactive oxygen species was detected with a fluorescence microscope. The apoptosis rate was detected by flow cytometry. The expression of autophagy-related proteins and apoptosis-related proteins was detected by western blot assay. PNS could reduce H9c2 hypoxia-reoxygenation injury by promoting autophagy and inhibiting apoptosis through the HIF-1α/FOXO3a cell signaling pathway. Furthermore, the protective effects of PNS were abolished by HIF-1α inhibitor 2ME2 and PI3K/Akt inhibitor LY294002. PNS could reduce H9c2 hypoxia-reoxygenation injury by promoting autophagy and inhibiting apoptosis through the HIF-1α/FOXO3a cell signaling pathway.


Subject(s)
Cardiovascular Agents/pharmacology , Forkhead Box Protein O3/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Panax notoginseng , Plant Extracts/pharmacology , Saponins/pharmacology , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cardiovascular Agents/isolation & purification , Cell Line , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Panax notoginseng/chemistry , Phosphatidylinositol 3-Kinase/metabolism , Plant Extracts/isolation & purification , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reactive Oxygen Species/metabolism , Saponins/isolation & purification , Signal Transduction
12.
Pak J Pharm Sci ; 34(2(Supplementary)): 671-677, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34275801

ABSTRACT

Rumex dentatus has been used traditionally for ailment of cardiovascular diseases. The aim of the present study was to assess cardiovascular effects in isolated perfused rabbit heart. Aqueous and n-butanolic fractions were assessed for their effect on perfusion pressure (PP), force of contraction (FC) and heart rate (HR) of rabbit heart using Langendorff's method. The possible mechanisms of action of extracts/fraction were assessed with and without application of different agonist/antagonist. Phytochemical, toxicity and anti-oxidant activities were also determined. Both extracts at 1mg/mL dose produced a highly significant decrease in FC and HR but PP remained unchanged. Moreover, aqueous fraction of Rumex dentatus at 0.001mg/mL dose produced a highly significant decrease in FC and HR but no significant change in PP was observed. Atropine 10-5 M did not inhibit the cardiac depressant response of both fractions. Furthermore, both fractions blocked the positive ionotropic and chronotropic effects of adrenaline and calcium chloride. Phytochemical studies have shown the presence of some phytochemicals. Acute and sub-chronic toxicity studies demonstrated that test extracts are safe and produced no significant changes in haematological and biochemical parameters. Crude extract showed significant antioxidant activity like ascorbic acid. This study revealed that this plant have good cardiac depressant effect.


Subject(s)
Antioxidants/pharmacology , Cardiovascular Agents/pharmacology , Heart/drug effects , Isolated Heart Preparation , Plant Extracts/pharmacology , Rumex/chemistry , Animals , Atropine/pharmacology , Calcium Chloride/pharmacology , Cardiovascular Agents/adverse effects , Epinephrine/pharmacology , Female , Heart Rate/drug effects , Isolated Heart Preparation/methods , Male , Mice , Myocardial Contraction/drug effects , Plant Extracts/adverse effects , Rabbits , Rats , Rats, Sprague-Dawley , Rumex/adverse effects
13.
Eur J Appl Physiol ; 121(9): 2499-2507, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34031723

ABSTRACT

PURPOSE: Exercise oscillatory ventilation (EOV) is a form of periodic breathing that is associated with a poor prognosis in heart failure patients, but little is known about EOV in other populations. We sought to provide insights into the phenomenon of EOV after it was observed in young healthy subjects, including athletes, after the administration of dual autonomic blockade (DAB). METHODS: From 29 participants who completed cardiopulmonary exercise testing (CPET) with and without DAB (0.04 mg/kg atropine and 0.2 mg/kg metoprolol), 5 subjects developed EOV (age = 29 ± 5 years; 3/5 were athletes) according to American Heart Association criteria. For each case, we identified 2 non-EOV healthy controls (age = 34.2 ± 8.3; 7/10 were athletes) that were subsequently age- and sex-matched. RESULTS: No participants had EOV during exercise without DAB. The 5 participants (4 male, 1 female) who demonstrated EOV with DAB had lower mean tidal volume (1.7 ± 0.5 L/min vs. 1.8 ± 0.5 L/min; p = 0.04) compared to participants in the non-EOV group and a decrease in peak tidal volume (2.9 ± 0.6 L/min to 2.2 ± 0.7 L/min; p = 0.004) with DAB. There were few other differences in CPET measures between EOV and non-EOV participants, although the PETCO2 tended to be higher in the EOV group (p = 0.07). CONCLUSION: EOV can be elucidated in young healthy subjects, including athletes, during cardiopulmonary exercise testing, suggesting that it may not be an ominous sign in all populations.


Subject(s)
Breathing Exercises , Exercise Test , Exercise , Pulmonary Ventilation , Adult , Athletes , Cardiovascular Agents/pharmacology , Case-Control Studies , Female , Heart Failure , Humans , Ivabradine/pharmacology , Male , Oxygen Consumption , Young Adult
14.
Nutrients ; 13(3)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807747

ABSTRACT

Creatine is an organic compound, consumed exogenously in the diet and synthesized endogenously via an intricate inter-organ process. Functioning in conjunction with creatine kinase, creatine has long been known for its pivotal role in cellular energy provision and energy shuttling. In addition to the abundance of evidence supporting the ergogenic benefits of creatine supplementation, recent evidence suggests a far broader application for creatine within various myopathies, neurodegenerative diseases, and other pathologies. Furthermore, creatine has been found to exhibit non-energy related properties, contributing as a possible direct and in-direct antioxidant and eliciting anti-inflammatory effects. In spite of the new clinical success of supplemental creatine, there is little scientific insight into the potential effects of creatine on cardiovascular disease (CVD), the leading cause of mortality. Taking into consideration the non-energy related actions of creatine, highlighted in this review, it can be speculated that creatine supplementation may serve as an adjuvant therapy for the management of vascular health in at-risk populations. This review, therefore, not only aims to summarize the current literature surrounding creatine and vascular health, but to also shed light onto the potential mechanisms in which creatine may be able to serve as a beneficial supplement capable of imparting vascular-protective properties and promoting vascular health.


Subject(s)
Cardiovascular Agents/pharmacology , Cardiovascular Diseases/drug therapy , Cardiovascular Physiological Phenomena/drug effects , Creatine/pharmacology , Dietary Supplements , Heart Disease Risk Factors , Humans
15.
Int J Mol Sci ; 22(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805714

ABSTRACT

Trifluoperazine (TFP), an antipsychotic drug approved by the Food and Drug Administration, has been show to exhibit anti-cancer effects. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by a progressive obliteration of small pulmonary arteries (PAs) due to exaggerated proliferation and resistance to apoptosis of PA smooth muscle cells (PASMCs). However, the therapeutic potential of TFP for correcting the cancer-like phenotype of PAH-PASMCs and improving PAH in animal models remains unknown. PASMCs isolated from PAH patients were exposed to different concentrations of TFP before assessments of cell proliferation and apoptosis. The in vivo therapeutic potential of TFP was tested in two preclinical models with established PAH, namely the monocrotaline and sugen/hypoxia-induced rat models. Assessments of hemodynamics by right heart catheterization and histopathology were conducted. TFP showed strong anti-survival and anti-proliferative effects on cultured PAH-PASMCs. Exposure to TFP was associated with downregulation of AKT activity and nuclear translocation of forkhead box protein O3 (FOXO3). In both preclinical models, TFP significantly lowered the right ventricular systolic pressure and total pulmonary resistance and improved cardiac function. Consistently, TFP reduced the medial wall thickness of distal PAs. Overall, our data indicate that TFP could have beneficial effects in PAH and support the view that seeking new uses for old drugs may represent a fruitful approach.


Subject(s)
Cardiovascular Agents/pharmacology , Gene Expression Regulation/drug effects , Hypertension, Pulmonary/drug therapy , Hypoxia/prevention & control , Myocytes, Smooth Muscle/drug effects , Trifluoperazine/pharmacology , Animals , Antipsychotic Agents/pharmacology , Cell Proliferation/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Repositioning , Female , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Hemodynamics/drug effects , Humans , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Hypoxia/chemically induced , Hypoxia/genetics , Hypoxia/physiopathology , Indoles/administration & dosage , Monocrotaline/administration & dosage , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Primary Cell Culture , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery/cytology , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pyrroles/administration & dosage , Rats , Rats, Sprague-Dawley , Survivin/genetics , Survivin/metabolism
16.
Phytomedicine ; 88: 153451, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33483251

ABSTRACT

BACKGROUND: Monoterpenes are one of the most studied plant's secondary metabolites, they are found abundantly in essential oils of aromatic plants. They also have a great range of pharmacological properties, such as antihypertensive, bradycardic, antiarrhythmic and hypotensive. In the face of the burden caused by cardiovascular disease (CVDs) worldwide, studies using monoterpenes to assess their cardiovascular effects have increased over the years. PURPOSE: This systematic review aimed to summarize the use of monoterpenes in animal models of any CVDs. METHODS: PubMed, SCOPUS, LILACS and Web of Science databases were used to search for articles that used monoterpenes, in any type of administration, to treat or prevent CVDs in animal models. The PRISMA guidelines were followed. Two independent researchers extracted main characteristics of studies, methods and outcomes. Data obtained were analyzed qualitatively and quantitatively. RESULTS: At the ending of the search process, 33 articles were selected for the systematic review. Of these, 17 articles were included in the meta-analysis. A total of 16 different monoterpenes were found for the treatment of hypertension, myocardial infarction, pulmonary hypertension, cardiac hypertrophy and arrhythmia. The main actions include hypotension, bradycardia, vasodilatation, antiarrhythmic, and antioxidant and antiapoptotic properties. From our data, it can be suggested that monoterpenes may be a significant source for new drug development. However, there is still a need to apply these knowledge into clinical research and a long path to pursue before putting them in the market. CONCLUSION: The variability of cardiovascular effects demonstrated by the monoterpenes highlighted them as a promising candidates for treatment or prevention of CVDs. Nevertheless, studies that investigate their biological sites of action needs to be further encouraged.


Subject(s)
Cardiovascular Agents/pharmacology , Cardiovascular Diseases/drug therapy , Monoterpenes/pharmacology , Animals , Disease Models, Animal , Humans , Hypertension/drug therapy , Myocardial Infarction/drug therapy , Oils, Volatile/chemistry , Plants/chemistry
17.
Biomed Pharmacother ; 135: 111184, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33418305

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Many studies have shown the beneficial effects of aconite water-soluble alkaloid extract (AWA) in experimental models of heart disease, which have been ascribed to the presence of aconine, hypaconine, talatisamine, fuziline, neoline, and songorine. This study evaluated the effects of a chemically characterized AWA by chemical content, evaluated its effects in suprarenal abdominal aortic coarctation surgery (AAC)-induced chronic heart failure (CHF) in rats, and revealed the underlying mechanisms of action by proteomics. METHODS: Rats were distributed into different groups: sham, model, and AWA-treated groups (10, 20, and 40 mg/kg/day). Sham rats received surgery without AAC, whereas model rats an AWA-treated groups underwent AAC surgery. after 8 weeks, the treatment group was fed AWA for 4 weeks, and body weight was assessed weekly. At the end of the treatment, heart function was tested by echocardiography. AAC-induced chronic heart failure, including myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, was evaluated in heart tissue and plasma by RT-qPCR, ELISA, hematoxylin and eosin (H&E) staining, Masson's trichrome staining, TUNEL staining, and immunofluorescence staining of α-SMA, Col Ⅰ, and Col Ⅲ. Then, a proteomics approach was used to explore the underlying mechanisms of action of AWA in chronic heart failure. RESULTS: AWA administration reduced body weight gain, myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, and rats showed improvement in cardiac function compared to model group. The extract significantly ameliorated the AAC-induced altered expression of heart failure markers such as ANP, NT-proBNP, and ß-MHC, as well as fibrosis, hypertrophy markers MMP-2 and MMP-9, and other heart failure-related factors including plasma levels of TNF-α and IL-6. Furthermore, the extract reduced the protein expression of α-SMA, Col Ⅰ, and Col Ⅲ in the left ventricular (LV), thus inhibiting the LV remodeling associated with CHF. In addition, proteomics characterization of differentially expressed proteins showed that AWA administration inhibited left ventricular remodeling in CHF rats via a calcium signaling pathway, and reversed the expression of RyR2 and SERCA2a. CONCLUSIONS: AWA extract exerts beneficial effects in an AAC-induced CHF model in rats, which was associated with an improvement in LV function, hypertrophy, fibrosis, and apoptotic status. These effects may be related to the regulation of calcium signaling by the altered expression of RyR2 and SERCA2a.


Subject(s)
Aconitum , Calcium Signaling/drug effects , Cardiovascular Agents/pharmacology , Heart Failure/drug therapy , Myocytes, Cardiac/drug effects , Plant Extracts/pharmacology , Aconitum/chemistry , Animals , Apoptosis/drug effects , Cardiovascular Agents/isolation & purification , Chronic Disease , Disease Models, Animal , Fibrosis , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/physiopathology , Hypertrophy, Left Ventricular/drug therapy , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Plant Extracts/isolation & purification , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Solubility , Solvents/chemistry , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Water/chemistry
18.
J Ethnopharmacol ; 269: 113688, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33338592

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Scrophularia ningpoensis Hemsl. (known as Xuanshen) has been used in China for centuries as a traditional medicinal plant to treat numerous diseases including inflammation, hypertension, cancer, and diabetes. AIM OF REVIEW: In this review, we provide an update on the botany, pharmacology, phytochemistry, pharmacokinetics, traditional uses, and safety of S. ningpoensis to highlight future research needs and potential uses of this plant. MATERIALS AND METHODS: All information on S. ningpoensis was obtained from scientific databases including ScienceDirect, Springer, PubMed, Sci Finder, China Knowledge Resource Integrated Database from the China National Knowledge Infrastructure (CNKI), Google Scholar, and Baidu Scholar. Additional information was collected from Chinese herbal medicine books, Ph.D. dissertations, and M.Sc. Theses. Plant taxonomy was verified by "The Plant List" database (http://www.theplantlist.org). RESULTS: S. ningpoensis displays fever reducing, detoxifying, and nourishing 'Yin' effects in traditional Chinese medicine (TCM). More than 162 compounds have been identified and isolated from S. ningpoensis, including iridoids and iridoid glycosides, phenylpropanoid glycosides, organic acids, volatile oils, terpenoids, saccharides, flavonoids, sterols, and saponins. These compounds possess a diverse variety of pharmacological properties that affect the cardiovascular, hepatic, and nervous systems, and protect the body against inflammation, oxidation, and carcinogenesis. CONCLUSIONS: Modern pharmacological studies have confirmed that S. ningpoensis is a valuable Chinese medicinal herb with many pharmacological uses in the treatment of cardiovascular, diabetic, and liver diseases. Most of the S. ningpoensis activity may be attributed to iridoid glycosides and phenylpropanoid glycosides; however, detailed information on the molecular mechanisms, metabolic activity, toxicology, and structure-function relationships of active components is limited. Further comprehensive research to evaluate the medicinal properties of S. ningpoensis is needed.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Ethnopharmacology/methods , Medicine, Chinese Traditional/methods , Phytochemicals/therapeutic use , Scrophularia , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cardiovascular Agents/isolation & purification , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Humans , Phytochemicals/isolation & purification , Phytochemicals/pharmacology
19.
Curr Pharm Des ; 27(26): 2925-2933, 2021.
Article in English | MEDLINE | ID: mdl-33183189

ABSTRACT

Cardiovascular disease is a major disease affecting human health, and its pathogenesis is caused by many factors. Through the use of "omics" technology, precision medicine is playing an increasingly important role in the prevention and treatment of cardiovascular diseases. Dialectical treatment with traditional Chinese medicine (TCM will result in personalized treatment, which is consistent with precision medicine to a certain extent. However, due to the multitarget, multipath, and multistep characteristics of TCM, its mechanism of action is not easy to elucidate. Network pharmacology can be used to predict the mechanism, toxicity and metabolic characteristics of TCM. This review summarizes commonly used bioinformatics resources for cardiovascular diseases and TCM, as well as the opportunities and challenges of TCM in cardiovascular precision medicine, with special emphasis on network pharmacology methods.


Subject(s)
Cardiovascular Agents , Cardiovascular Diseases , Drugs, Chinese Herbal , Cardiovascular Agents/pharmacology , Cardiovascular Diseases/drug therapy , Computational Biology , Drugs, Chinese Herbal/pharmacology , Humans , Medicine, Chinese Traditional , Precision Medicine
20.
J Ethnopharmacol ; 269: 113690, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33309917

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Coreopsis tinctoria Nutt. (family Asteraceae) is an important traditional medicine in North America, Europe, and Asia for quite a long historical period, which has received great attention due to its health-benefiting activities, including disinfection, treatment sexual infection, diarrhoea, acute and chronic dysentery, red-eye swelling as well as pain, heat, thirst, hypertension, palpitation, gastrointestinal discomfort, and loss of appetite. AIM OF THE REVIEW: The purpose of this review is to give an overview of the current phytochemistry and pharmacological activities of C. tinctoria, and reveals the correlation among its traditional uses, phytochemistry, pharmacological profile, and potential toxicity. MATERIALS AND METHODS: This review is based on published studies and books from electronic sources and library, including the online ethnobotanical database, ethnobotanical monographs, Scopus, SciFinder, Baidu Scholar, CNKI, and PubMed. These reports are related to the traditional uses, phytochemistry, pharmacology, and toxicology of C. tinctoria. RESULTS: Coreopsis tinctoria is traditionally used in diarrhoea, infection, and chronic metabolic diseases. From 1954 to now, more than 120 chemical constituents have been identified from C. tinctoria, such as flavonoids, polyacetylenes, polysaccharides, phenylpropanoids, and volatile oils. Flavonoids are the major bioactive components in C. tinctoria. Current research has shown that its extracts and compounds possess diverse biological and pharmacological activities such as antidiabetes, anti-cardiovascular diseases, antioxidant, anti-inflammatory, protective effects on organs, neuroprotective effects, antimicrobial, and antineoplastic. Studies in animal models, including acute toxicity, long-term toxicity, and genotoxicity have demonstrated that Snow Chrysanthemum is a non-toxic herb, especially for its water-soluble parts. CONCLUSIONS: Recent findings regarding the main phytochemical and pharmacological properties of C. tinctorial have confirmed its traditional uses in anti-infection and treatment of chronic metabolic disease and, more importantly, have revealed the plant as a valuable medicinal plant resource for the treatment of a wide range of diseases. The available reports indicated that most of the bioactivities in C. tinctorial could be attributed to flavonoids. However, higher quality studies on animals and humans studies are required to explore the efficacy and mechanism of action of C. tinctoria in future.


Subject(s)
Coreopsis , Ethnopharmacology/methods , Medicine, Traditional/methods , Phytochemicals/therapeutic use , Plant Extracts/therapeutic use , Animals , Cardiovascular Agents/isolation & purification , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Humans , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL