Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 376
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Phytomedicine ; 128: 155279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581801

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is characterized by degeneration of articular cartilage, leading to joint pain and dysfunction. Gubi Zhitong formula (GBZTF), a traditional Chinese medicine formula, has been used in the clinical treatment of OA for decades, demonstrating definite efficacy. However, its mechanism of action remains unclear, hindering its further application. METHODS: The ingredients of GBZTF were analyzed and performed with liquid chromatography-mass spectrometry (LC-MS). 6 weeks old SD rats were underwent running exercise (25 m/min, 80 min, 0°) to construct OA model with cartilage wear and tear. It was estimated by Micro-CT, Gait Analysis, Histological Stain. RNA-seq technology was performed with OA Rats' cartilage, and primary chondrocytes induced by IL-1ß (mimics OA chondrocytes) were utilized to evaluated and investigated the mechanism of how GBZTF protected OA cartilage from being damaged with some functional experiments. RESULTS: A total of 1006 compounds were identified under positive and negative ion modes by LC-MS. Then, we assessed the function of GBZTF through in vitro and vivo. It was found GBZTF could significantly up-regulate OA rats' limb coordination and weight-bearing capacity, and reduce the surface and sub-chondral bone erosions of OA joints, and protect cartilage from being destroyed by inflammatory factors (iNOS, IL-6, IL-1ß, TNF- α, MMP13, ADAMTS5), and promote OA chondrocytes proliferation and increase the S phage of cell cycle. In terms of mechanism, RNA-seq analysis of cartilage tissues revealed 1,778 and 3,824 differentially expressed genes (DEGs) in model vs control group and GBZTF vs model group, respectively. The mitophagy pathway was most significantly enriched in these DEGs. Further results of subunits of OA chondrocytes confirmed that GBZTF could alleviate OA-associated inflammation and cartilage damage through modulation BCL2 interacting protein 3-like (BNIP3L)-mediated mitophagy. CONCLUSION: The therapeutic effectiveness of GBZTF on OA were first time verified in vivo and vitro through functional experiments and RNA-seq, which provides convincing evidence to support the molecular mechanisms of GBZTF as a promising therapeutic decoction for OA.


Subject(s)
Chondrocytes , Drugs, Chinese Herbal , Mitophagy , Osteoarthritis , Rats, Sprague-Dawley , Animals , Osteoarthritis/drug therapy , Chondrocytes/drug effects , Drugs, Chinese Herbal/pharmacology , Rats , Mitophagy/drug effects , Male , Disease Models, Animal , Membrane Proteins/metabolism , Cartilage, Articular/drug effects , Mitochondrial Proteins/metabolism
2.
Exp Gerontol ; 190: 112413, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38570055

ABSTRACT

BACKGROUND: Osteoporotic osteoarthritis (OP-OA) is a severe pathological form of OA, urgently requiring precise management strategies and more efficient interventions. Emodin (Emo), an effective ingredient found in the traditional Chinese medicine rhubarb, has been dEmonstrated to promote osteogenesis and inhibit extracellular matrix degradation. In this study, we aimed to investigate the interventional effects of Emo on the subchondral bone and cartilage of the knee joints in OP-OA model rats. METHODS: Thirty-two SD rats were randomly and equally divided into sham, OP-OA, Emo low-dose, and Emo high-dose groups. Micro-CT scanning was conducted to examine the bone microstructure of the rat knee joints. H&E and Safranin O and Fast Green staining (SO&FG) were performed for the pathomorphological evaluation of the rat cartilage tissues. ELISA was used to estimate the rat serum expression levels of inflammatory factors, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Additionally, the CCK-8 assay was utilized for determining the viability of Emo-treated BMSCs. Western blot and real-time PCR analyses were also employed to measure the bone formation indexes and cartilage synthesis and decomposition indexes. Lastly, the osteogenic and chondrogenic differentiation efficiency of the BMSCs was investigated via Alizarin Red and Alcian Blue staining. RESULTS: Emo intervention alleviated the bone microstructural disruption of the subchondral bone and articular cartilage in the OP-OA rats and up-regulated the expression of bone and cartilage anabolic metabolism indicators, decreased the expression of cartilage catabolism indicators, and diminished the expression of inflammatory factors in the rat serum (P<0.05). Furthermore, Emo reversed the decline in the osteogenic and chondrogenic differentiation ability of the BMSCs (P<0.05). CONCLUSION: Emo intervention mitigates bone loss and cartilage damage in OP-OA rats and promotes the osteogenic and chondrogenic differentiation of BMSCs.


Subject(s)
Cartilage, Articular , Emodin , Osteoporosis , Rats, Sprague-Dawley , X-Ray Microtomography , Animals , Emodin/pharmacology , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Rats , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Female , Disease Models, Animal , Osteogenesis/drug effects , Mesenchymal Stem Cells/drug effects , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/pathology
3.
J Med Food ; 27(4): 301-311, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377551

ABSTRACT

Baicalin has been acknowledged for its anti-inflammatory properties. However, its potential impact on osteoarthritis (OA) has not yet been explored. Therefore, our study aimed to examine the effects of Baicalin on OA, both in laboratory and animal models. To evaluate its efficacy, human chondrocytes affected by OA were treated with interleukin-1ß and/or Baicalin. The effects were then assessed through viability tests using the cell counting kit-8 (CCK-8) method and flow cytometry. In addition, we analyzed the expressions of various factors such as FOXO1, autophagy, apoptosis, and cartilage synthesis and breakdown to corroborate the effects of Baicalin. We also assessed the severity of OA through analysis of tissue samples. Our findings demonstrate that Baicalin effectively suppresses inflammatory cytokines and MMP-13 levels caused by collagenase-induced osteoarthritis, while simultaneously preserving the levels of Aggrecan and Col2. Furthermore, Baicalin has been shown to enhance autophagy. Through the use of FOXO1 inhibitors, lentivirus-mediated knockdown, and chromatin immunoprecipitation, we verified that Baicalin exerts its protective effects by activating FOXO1, which binds to the Beclin-1 promoter, thereby promoting autophagy. In conclusion, our results show that Baicalin has potential as a therapeutic agent for treating OA (Clinical Trial Registration number: 2023-61).


Subject(s)
Cartilage, Articular , Flavonoids , Forkhead Box Protein O1 , Osteoarthritis , Animals , Humans , Apoptosis , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Chondrocytes , Flavonoids/pharmacology , Flavonoids/therapeutic use , Forkhead Box Protein O1/drug effects , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Homeostasis , Interleukin-1beta/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism
4.
J Coll Physicians Surg Pak ; 33(8): 836-841, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37553918

ABSTRACT

OBJECTIVE: To determine the ameliorative effects of prolotherapy on monosodium iodoacetate (MIA) induced and histomorphological changes in the articular cartilage of tibial condyles at rat knee joint. STUDY DESIGN: An experimental study. Place and Duration of the Study: Department of Anatomy, Army Medical College Rawalpindi, NUMS, Rawalpindi, from August to November 2021. METHODOLOGY: Thirty adult male Sprague Dawley rats were divided into three groups, each having 10 rats. Group A was control. Group B was injected with single dose of 1mg MIA intraarticularly in the right knee to induce osteoarthritic changes. Group C was injected with single dose of 1mg MIA intraarticularly, in right knee was followed by 0.1ml Prolotherapy (3ml of 25% dextrose, 2ml of 2% xylocaine, 1ml of injection neurobion, and 1ml of injection methecobal) as intra articular injection at week 2, 6 and 10 in right knee. Rats were sacrificed after one month of the last dose of Prolotherapy. Articular cartilage was collected for gross and histological examination and compared among the groups. RESULTS: Articular cartilage belonging to control group A was normal. While group B showed statistically significant deterioration in gross appearance (p = 0.001**), reduction in number of chondrocytes (p = 0.005*) and thickness of articular cartilage (p = 0.001**) in comparison to group A. In group C due to prolotherapy statistically significant improvement in gross appearance (p = 0.034*), increase in number of chondrocytes (p = 0.003*), and thickness of articular cartilage (p = 0.001**) was observed as compared to group B. CONCLUSION: Prolotherapy significantly ameliorates histomorphology of tibial articular cartilage against MIA induced osteoarthritic changes in rat knee joint. KEY WORDS: Articular cartilage, Knee joint, Monosodium iodoacetate, Osteoarthritis, Prolotherapy.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Prolotherapy , Cartilage, Articular/drug effects , Injections, Intra-Articular , Iodoacetic Acid , Disease Models, Animal , Rats , Osteoarthritis, Knee/chemically induced , Animals
5.
J Transl Med ; 20(1): 561, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463203

ABSTRACT

BACKGROUND: Destruction of articular cartilage and bone is the main cause of joint dysfunction in rheumatoid arthritis (RA). Acid-sensing ion channel 1a (ASIC1a) is a key molecule that mediates the destruction of RA articular cartilage. Estrogen has been proven to have a protective effect against articular cartilage damage, however, the underlying mechanisms remain unclear. METHODS: We treated rat articular chondrocytes with an acidic environment, analyzed the expression levels of mitochondrial stress protein HSP10, ClpP, LONP1 by q-PCR and immunofluorescence staining. Transmission electron microscopy was used to analyze the mitochondrial morphological changes. Laser confocal microscopy was used to analyze the Ca2+, mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) level. Moreover, ASIC1a specific inhibitor Psalmotoxin 1 (Pctx-1) and Ethylene Glycol Tetraacetic Acid (EGTA) were used to observe whether acid stimulation damage mitochondrial function through Ca2+ influx mediated by ASIC1a and whether pretreatment with estrogen could counteract these phenomena. Furthermore, the ovariectomized (OVX) adjuvant arthritis (AA) rat model was treated with estrogen to explore the effect of estrogen on disease progression. RESULTS: Our results indicated that HSP10, ClpP, LONP1 protein and mRNA expression and mitochondrial ROS level were elevated in acid-stimulated chondrocytes. Moreover, acid stimulation decreased mitochondrial membrane potential and damaged mitochondrial structure of chondrocytes. Furthermore, ASIC1a specific inhibitor PcTx-1 and EGTA inhibited acid-induced mitochondrial abnormalities. In addition, estrogen could protect acid-stimulated induced mitochondrial stress by regulating the activity of ASIC1a in rat chondrocytes and protects cartilage damage in OVX AA rat. CONCLUSIONS: Extracellular acidification induces mitochondrial stress by activating ASIC1a, leading to the damage of rat articular chondrocytes. Estrogen antagonizes acidosis-induced joint damage by inhibiting ASIC1a activity. Our study provides new insights into the protective effect and mechanism of action of estrogen in RA.


Subject(s)
Acid Sensing Ion Channels , Arthritis, Rheumatoid , Chondrocytes , Estrogens , Mitochondria , Animals , Rats , Acid Sensing Ion Channels/genetics , Acid Sensing Ion Channels/metabolism , Arthritis, Experimental , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Chondrocytes/drug effects , Chondrocytes/metabolism , Egtazic Acid/metabolism , Egtazic Acid/toxicity , Estrogens/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Reactive Oxygen Species , Cartilage, Articular/drug effects , Cartilage, Articular/pathology
6.
J Ethnopharmacol ; 282: 114315, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34116187

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dalbergia sissoo DC. (Indian rosewood or Sheesham) is a traditional medicinal plant, reported since time immemorial for its analgesic, anti-nociceptive, anti-inflammatory, and immuno-modulatory properties. D. sissoo DC (DS). is being used traditionally to cure joint inflammation and joint pain. AIM: To study the potential of DS leaves and its derived novel compound CAFG to treat the clinical symptoms of osteoarthritis (OA) and its underlying mechanism. METHODS: The chemical profile of DS extract (DSE) with isoflavonoids and isoflvaonoid glycosides from the DS was established by UHPLC-PDA and UHPLC-MS/MS. Monosodium iodoacetate (MIA) was injected into the knee joint to develop the OA model in rats. DSE was given orally for 28 days daily at 250 and 500 mg.kg-1day-1. For in-vitro experiments, chondrocytes isolated from joint articular cartilage were negatively induced with interleukin-1ß (IL-1ß) and CAFG was given to the cells as a co-treatment. RESULTS: Chondrocytes undergo apoptosis following inflammation and proteoglycan synthesis affected in MIA injected knees. DSE administration prevented these effects as assessed by H&E and Toluidine blue staining. Micro-CT analysis showed that subchondral bone loss was restored. DSE decreased elevated serum levels of cartilage-bone degradation (CTX-I, CTX-II, and COMP), inflammation markers IL-1ß, and matrix-degrading MMP-3 and 13. The effects of IL-1ß on gene expression of chondrocytes were reversed by CAFG treatment at 1 µM. CONCLUSION: Data showed that DSE protected joint cartilage and deterioration in subchondral bone in vivo while in in-vitro, its active ingredient CAFG prevented interleukin-1ß induced effects and inhibited OA. This finding suggest that DSE and CAFG could be used as a possible therapeutic to treat osteoarthritis.


Subject(s)
Arthralgia/drug therapy , Dalbergia , Glycosides/pharmacology , Isoflavones/pharmacology , Osteoarthritis/drug therapy , Administration, Oral , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Cartilage, Articular/drug effects , Cells, Cultured , Chondrocytes/drug effects , Disease Models, Animal , Flavonoids/pharmacology , Phytotherapy/methods , Plant Extracts/pharmacology , Rats , Treatment Outcome
7.
Mar Drugs ; 19(10)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34677442

ABSTRACT

Osteoarthritis belongs to the most common joint diseases in humans and animals and shows increased incidence in older patients. The bioactivities of collagen hydrolysates, sulfated glucosamine and a special fatty acid enriched dog-food were tested in a dog patient study of 52 dogs as potential therapeutic treatment options in early osteoarthritis. Biophysical, biochemical, cell biological and molecular modeling methods support that these well-defined substances may act as effective nutraceuticals. Importantly, the applied collagen hydrolysates as well as sulfated glucosamine residues from marine organisms were strongly supported by both an animal model and molecular modeling of intermolecular interactions. Molecular modeling of predicted interaction dynamics was evaluated for the receptor proteins MMP-3 and ADAMTS-5. These proteins play a prominent role in the maintenance of cartilage health as well as innate and adapted immunity. Nutraceutical data were generated in a veterinary clinical study focusing on mobility and agility. Specifically, key clinical parameter (MMP-3 and TIMP-1) were obtained from blood probes of German shepherd dogs with early osteoarthritis symptoms fed with collagen hydrolysates. Collagen hydrolysate, a chondroprotective food supplement was examined by high resolution NMR experiments. Molecular modeling simulations were used to further characterize the interaction potency of collagen fragments and glucosamines with protein receptor structures. Potential beneficial effects of collagen hydrolysates, sulfated glycans (i.e., sulfated glucosamine from crabs and mussels) and lipids, especially, eicosapentaenoic acid (extracted from fish oil) on biochemical and physiological processes are discussed here in the context of human and veterinary medicine.


Subject(s)
Cartilage, Articular/drug effects , Collagen/pharmacology , Diet/veterinary , Dietary Supplements , Dog Diseases/diet therapy , Osteoarthritis/veterinary , Protective Agents/pharmacology , Animals , Aquatic Organisms , Collagen/chemistry , Collagen/therapeutic use , Dogs , Osteoarthritis/diet therapy , Protective Agents/chemistry , Protective Agents/therapeutic use
8.
Exp Cell Res ; 408(2): 112841, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34563516

ABSTRACT

Osteoarthritis (OA) patients undergo cartilage degradation and experience painful joint swelling. OA symptoms are caused by inflammatory molecules and the upregulation of catabolic genes leading to the breakdown of cartilage extracellular matrix (ECM). Here, we investigate the effects of gallic acid (GA) and mechanical stretching on the expression of anabolic and catabolic genes and restoring ECM production by osteoarthritic human articular chondrocytes (hAChs) cultured in monolayers. hAChs were seeded onto conventional plates or silicone chambers with or without 100 µM GA. A 5% cyclic tensile strain (CTS) was applied to the silicone chambers and the deposition of collagen and glycosaminoglycan, and gene expressions of collagen types II (COL2A1), XI (COL11A2), I (COL1A1), and X (COL10A1), and matrix metalloproteinases (MMP-1 and MMP-13) as inflammation markers, were quantified. CTS and GA acted synergistically to promote the deposition of collagen and glycosaminoglycan in the ECM by 14- and 7-fold, respectively. Furthermore, the synergistic stimuli selectively upregulated the expression of cartilage-specific proteins, COL11A2 by 7-fold, and COL2A1 by 47-fold, and, in contrast, downregulated the expression of MMP-1 by 2.5-fold and MMP-13 by 125-fold. GA supplementation with CTS is a promising approach for restoring osteoarthritic hAChs ECM production ability making them suitable for complex tissue engineering applications.


Subject(s)
Cartilage, Articular/drug effects , Extracellular Matrix/genetics , Inflammation/therapy , Muscle Stretching Exercises , Osteoarthritis/therapy , Cells, Cultured , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Collagen Type I, alpha 1 Chain/genetics , Collagen Type II/genetics , Collagen Type X/genetics , Collagen Type XI/genetics , Extracellular Matrix/drug effects , Gallic Acid/pharmacology , Gene Expression Regulation/drug effects , Humans , Inflammation/genetics , Inflammation/pathology , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 13/genetics , Osteoarthritis/genetics , Osteoarthritis/pathology
9.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502096

ABSTRACT

The potential of Fourier Transform infrared microspectroscopy (FTIR microspectroscopy) and multivariate analyses were applied for the classification of the frequency ranges responsible for the distribution changes of the main components of articular cartilage (AC) that occur during dietary ß-hydroxy-ß-methyl butyrate (HMB) supplementation. The FTIR imaging analysis of histological AC sections originating from 35-day old male piglets showed the change in the collagen and proteoglycan contents of the HMB-supplemented group compared to the control. The relative amount of collagen content in the superficial zone increased by more than 23% and in the middle zone by about 17%, while no changes in the deep zone were observed compared to the control group. Considering proteoglycans content, a significant increase was registered in the middle and deep zones, respectively; 62% and 52% compared to the control. AFM nanoindentation measurements collected from animals administered with HMB displayed an increase in AC tissue stiffness by detecting a higher value of Young's modulus in all investigated AC zones. We demonstrated that principal component analysis and artificial neural networks could be trained with spectral information to distinguish AC histological sections and the group under study accurately. This work may support the use and effectiveness of FTIR imaging combined with multivariate analyses as a quantitative alternative to traditional collagenous tissue-related histology.


Subject(s)
Cartilage, Articular/drug effects , Valerates/pharmacology , Animals , Cartilage, Articular/chemistry , Cartilage, Articular/metabolism , Collagen/metabolism , Dietary Supplements , Elastic Modulus , Male , Neural Networks, Computer , Principal Component Analysis , Proteoglycans/metabolism , Spectroscopy, Fourier Transform Infrared , Swine , Valerates/administration & dosage
10.
Artif Organs ; 45(11): 1405-1421, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34152615

ABSTRACT

Osteoarthritis (OA) is an inflammatory joint condition, still lacking effective treatments. Some factors consider as the main causes of OA, including biochemical, mechanical, and genetic factors. The growth of studies confirmed that modern medicine in combination with folk medicine regarding the arrival of reliable, efficient, and safe therapeutic products against OA. In the present study, the effects of various single and combinatorial treatments of knee articular cartilage, including stem cells, collagen, and P. atlantica hydroalcoholic leaves extract were investigated in a rat-induced OA model. On week 12 after OA confirmation, histopathology and radiography assessments were evaluated and the serum and synovial fluid levels of TAC, TNF-α, PEG2, MPO, MMP3, MMP13, and MDA were also measured. Combination therapy of OA-induced rats with hydroalcoholic extract of P. atlantic leaves, stem cells, and collagen considerably increased the efficacy of treatment as evidenced by increasing the TAC and lowering TNF-α, MPO, MMP3, and MMP13 compared to control group and even groups received single therapy. This is in agreement with a high amount of total phenolic compounds and antioxidant capacities of the hydroalcoholic extract of P. atlantic leaves. It is concluded that multifunctional agents targeting the pathophysiology of OA has exhibited significant therapeutic effects against OA.


Subject(s)
Collagen/pharmacology , Mesenchymal Stem Cell Transplantation , Osteoarthritis/drug therapy , Pistacia/chemistry , Plant Extracts/pharmacology , Animals , Cartilage, Articular/drug effects , Collagenases/pharmacology , Disease Models, Animal , Hindlimb , Male , Osteoarthritis/chemically induced , Rats, Sprague-Dawley
11.
Food Funct ; 12(15): 6766-6779, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34160515

ABSTRACT

Osteoarthritis (OA), the most common form of arthritis, is characterized by cartilage destruction, and its incidence is much higher in the osteoporotic population. There is increasing evidence that the occurrence and development of OA are modulated by the dietary intake of polyunsaturated fatty acids (PUFA). This study investigated the effects of dietary PUFA, including n-3/n-6 PUFA proportion and the molecular form of n-3 PUFA, on OA using osteoporotic osteoarthritis dual model mice, where phospholipid type n-3 PUFA were specifically examined. The results revealed that a low proportion of n-6/n-3 PUFA in diets from 1 : 1 to 6 : 1 significantly improved the cartilage structure and inhibited articular cartilage polysaccharide loss. Furthermore, the low proportion n-6/n-3 PUFA diets inhibited the NF-κB signaling pathway by activating G-protein coupled receptor 120 (GPR120) to reduce inflammation and inhibit catabolism. Antarctic krill (Euphausia superba) oil (AKO), rich in phospholipid-type n-3 PUFA, had a better effect on OA than linseed oil (plant-derived n-3 PUFA), which may be due to peroxisome proliferator-activated receptor-gamma (PPAR γ). These findings suggested that the low proportion n-6/n-3 PUFA diets, particularly with AKO, alleviated inflammation and inhibited articular cartilage degeneration. Therefore, dietary intervention can be a potential treatment for OA.


Subject(s)
Cartilage, Articular/drug effects , Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , Inflammation/metabolism , Osteoarthritis/metabolism , Animals , Dietary Supplements , Disease Models, Animal , Euphausiacea , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/administration & dosage , Fatty Acids, Omega-6/pharmacology , Female , Mice , Mice, Inbred C57BL , Oils/administration & dosage , Oils/pharmacology , Ovariectomy
12.
Int Immunopharmacol ; 97: 107628, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34015701

ABSTRACT

Osteoarthritis (OA) is characterized by pain and declining gait function associated with degeneration of cartilage. A severe hypoxic environment occurs due to tissue injury in the joint cavity and may aggravate the development of OA. In this study, the effects of severe hypoxia and treatment with mechano growth factor (MGF) E peptide on metabolism of the extracellular matrix (ECM) during the progression of OA were determined. The results showed that cell viability, cell proliferation, and type II collagen expression in chondrocytes were significantly inhibited by cobalt chloride (CoCl2)-simulated severe hypoxia, whereas cell apoptosis and expression levels of hypoxia inducible factor 1 alpha, type I collagen, and matrix metalloproteinases 1/13 were clearly induced. Pretreatment with MGF E peptide reduced the abovementioned adverse effects induced by CoCl2-simulated severe hypoxia in chondrocytes. Pretreatment also upregulated the proliferation of chondrocytes under severe hypoxia through the PI3K-Akt and MEK-ERK1/2 signaling pathways. In a rat model of monosodium iodoacetate (MIA)-induced OA. MIA treatment induced tissue necrosis and cartilage degeneration, and histological score was significantly decreased. The levels of type II collagen and aggrecan were reduced after MIA treatment for 4 or 6 weeks, and abnormal distribution of ECM occurred in the inner epicondyle after 6 weeks. MGF E peptide also reduced the progression of MIA-induced OA by retarding cartilage degeneration, upregulating type II collagen synthesis, and improving ECM distribution after 4 or 6 weeks. Our findings suggest that MGF attenuates the progression of OA, and thus may be applied for the treatment of OA in the clinic.


Subject(s)
Arthritis, Experimental/drug therapy , Cartilage, Articular/drug effects , Insulin-Like Growth Factor I/pharmacology , Osteoarthritis/drug therapy , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Cartilage, Articular/cytology , Cartilage, Articular/immunology , Cartilage, Articular/pathology , Cell Hypoxia , Cell Proliferation/drug effects , Chondrocytes/drug effects , Chondrocytes/pathology , Collagen Type II/metabolism , Disease Progression , Drug Evaluation, Preclinical , Extracellular Matrix/metabolism , Humans , Insulin-Like Growth Factor I/therapeutic use , Iodoacetic Acid/administration & dosage , Iodoacetic Acid/immunology , Male , Osteoarthritis/chemically induced , Osteoarthritis/immunology , Osteoarthritis/pathology , Rats
13.
Appl Physiol Nutr Metab ; 46(11): 1331-1336, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33989507

ABSTRACT

The study aimed to investigate the preservative effects of genistein on articular cartilage in an experimental model of knee osteoarthritis in rats. Thirty male Wistar rats were assigned to 3 equal groups: sham group, osteoarthritis control group (OAG), and genistein-treated osteoarthritis group (GTG). Intra-articular injections of monosodium iodoacetate were used for osteoarthritis induction. After 2 weeks of rest for the induction of the inflammatory process, genistein (30 mg/kg/day) vs. saline gavage was administered for 8 weeks. The expression of matrix metalloproteinase (MMP)-8 and MMP-13, Sox5/Sox6, Indian hedgehog (IHH), and Col2 were evaluated in medial femoral condyle sections by immunohistochemical staining. The number of chondrocytes and cartilage thicknesses were also measured and compared among the groups. No significant change in cartilage thickness was observed in GTG compared with OAG (p = 0.188). Chondrocyte count was significantly higher in the articular cartilage of GTG compared with OAG (p = 0.006). Induction of osteoarthritis significantly increased the expression of MMP-8, MMP-13, and IHH, but decreased Col2, Sox5, and Sox6 expression (p < 0.001); these were partially prevented in the GTG. Our findings support the effectiveness of genistein treatment in the prevention of articular cartilage damage in the experimental model of knee osteoarthritis. The proposed mechanism of action is through the suppression of the MMP, IHH, and Col2 pathways, besides the induction of Sox5 and Sox6 expression. Novelty: Genistein prevents articular cartilage damage in the experimental model of knee osteoarthritis. The osteoprotective effect is manifested by the modulation of expression of MMP, Sox, IHH, and Col2 proteins.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cartilage, Articular/drug effects , Genistein/pharmacology , Knee Joint , Osteoarthritis, Knee/prevention & control , Phytoestrogens/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Cartilage, Articular/cytology , Cell Count , Collagen Type II/genetics , Collagen Type II/metabolism , Disease Models, Animal , Gene Expression , Genistein/therapeutic use , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Immunohistochemistry , Male , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 8/genetics , Matrix Metalloproteinase 8/metabolism , Osteoarthritis, Knee/metabolism , Phytoestrogens/therapeutic use , Rats, Wistar , SOXD Transcription Factors/genetics , SOXD Transcription Factors/metabolism
14.
Int J Mol Sci ; 22(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802646

ABSTRACT

The aim of this study was to determine the effects of ß-hydroxy-ß-methylbutyrate (HMB) supplementation during pregnancy on postpartum bone tissue quality by assessing changes in trabecular and compact bone as well as in hyaline and epiphyseal cartilage. The experiment was carried out on adult 6-month-old female spiny mice (Acomys cahirinus) divided into three groups: pregnant control (PregCont), pregnant HMB-treated (supplemented with 0.02 g/kg b.w of HMB during the second trimester of pregnancy, PregHMB), and non-pregnant females (NonPreg). Cross-sectional area and cortical index of the femoral mid-shaft, stiffness, and Young modulus were significantly greater in the PregHMB group. Whole-bone mineral density was similar in all groups, and HMB supplementation increased trabecular number. Growth plate cartilage was the thinnest, while the articular cartilage was the thickest in the PregHMB group. HMB supplementation increased the content of proteoglycans in the articular cartilage and the percentage of immature collagen content in metaphyseal trabeculae and compact bone. In summary, dietary HMB supplementation during the second trimester of pregnancy intensifies bone metabolic processes and prevents bone loss during pregnancy.


Subject(s)
Bone Resorption/drug therapy , Bone Resorption/prevention & control , Valerates/therapeutic use , Animals , Body Weight/drug effects , Bone Resorption/diagnostic imaging , Cancellous Bone/diagnostic imaging , Cancellous Bone/drug effects , Cancellous Bone/pathology , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Collagen/metabolism , Epiphyses/drug effects , Epiphyses/pathology , Female , Femur/diagnostic imaging , Femur/drug effects , Femur/pathology , Murinae , Pregnancy , Proteoglycans/metabolism , Valerates/pharmacology , X-Ray Microtomography
15.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804203

ABSTRACT

Osteoarthritis (OA) is a common degenerative disease that results in joint inflammation as well as pain and stiffness. A previous study has reported that Cornus officinalis (CO) extract inhibits oxidant activities and oxidative stress in RAW 264.7 cells. In the present study, we isolated bioactive compound(s) by fractionating the CO extract to elucidate its antiosteoarthritic effects. A single bioactive component, morroniside, was identified as a potential candidate. The CO extract and morroniside exhibited antiosteoarthritic effects by downregulating factors associated with cartilage degradation, including cyclooxygenase-2 (Cox-2), matrix metalloproteinase 3 (Mmp-3), and matrix metalloproteinase 13 (Mmp-13), in interleukin-1 beta (IL-1ß)-induced chondrocytes. Furthermore, morroniside prevented prostaglandin E2 (PGE2) and collagenase secretion in IL-1ß-induced chondrocytes. In the destabilization of the medial meniscus (DMM)-induced mouse osteoarthritic model, morroniside administration attenuated cartilage destruction by decreasing expression of inflammatory mediators, such as Cox-2, Mmp3, and Mmp13, in the articular cartilage. Transverse microcomputed tomography analysis revealed that morroniside reduced DMM-induced sclerosis in the subchondral bone plate. These findings suggest that morroniside may be a potential protective bioactive compound against OA pathogenesis.


Subject(s)
Cornus/chemistry , Glycosides/pharmacology , Inflammation/drug therapy , Menisci, Tibial/drug effects , Osteoarthritis/drug therapy , Animals , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Cyclooxygenase 2/genetics , Dinoprostone/genetics , Disease Models, Animal , Gene Expression Regulation/drug effects , Glycosides/chemistry , Humans , Interleukin-1beta/genetics , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 3/genetics , Menisci, Tibial/pathology , Menisci, Tibial/surgery , Mice , Osteoarthritis/genetics , Osteoarthritis/pathology , Osteoarthritis/surgery , Plant Extracts/chemistry , Plant Extracts/pharmacology , Primary Cell Culture , RAW 264.7 Cells , Signal Transduction/drug effects
16.
PLoS One ; 16(4): e0250352, 2021.
Article in English | MEDLINE | ID: mdl-33878143

ABSTRACT

1,25-dihydroxyvitamin-D3 and its derivatives have shown anti-arthritic and chondroprotective effects in experimental animal models with prophylactic dosing. The purpose of this preliminary study was to test the efficacy and safety of calcipotriol, vitamin D analog, as a treatment for a fully-developed knee arthritis in Zymosan-induced arthritis (ZIA) model. Forty 5-month-old male Sprague-Dawley rats were randomized into three arthritis groups and a non-arthritic control group with no injections (10 rats/group). A day after Zymosan (0.1 mg) had been administrated into the right knee joints, the same knees were injected with calcipotriol (0.1 mg/kg), dexamethasone (0.1 mg/kg) or vehicle in a 100 µl volume. The left control knees were injected with saline (PBS) on two consecutive days. All injections, blood sampling and measurements were performed under general anesthesia on days 0, 1, 3 and 8. Internal organs and knees were harvested on day 8 and the histology of the whole knees was assessed blinded. Joints treated with calcipotriol showed a milder histological synovitis than those treated with vehicle (p = 0.041), but there was no statistically significant difference between the dexamethasone and vehicle groups. The clinical severity of arthritis did not differ between the arthritis groups measured by body temperature, swelling of the knee, thermal imaging, clinical scoring or cytokine levels on days 1, 3 and 8. Weight loss was bigger in rats treated with dexamethasone, propably due to loss of appetite,compared to other arthritis groups on days 2-3 (p<0.05). Study drugs did not influence serum calcium ion and glucose levels. Taken together, this preliminary study shows that a single intra-articular injection of calcipotriol reduces histological grade of synovitis a week after the local injection, but dexamethasone did not differ from the vehicle. Calcipotriol may have an early disease-modifying effect in the rat ZIA model without obvious side effects.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Calcitriol/analogs & derivatives , Synovitis/drug therapy , Animals , Arthritis, Experimental/blood , Arthritis, Experimental/chemically induced , Arthritis, Experimental/pathology , Blood Glucose/metabolism , Calcitriol/pharmacology , Calcium/blood , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Dexamethasone/pharmacology , Drug Administration Schedule , Hindlimb , Injections, Intra-Articular , Male , Rats , Rats, Sprague-Dawley , Synovitis/blood , Synovitis/chemically induced , Synovitis/pathology , Treatment Outcome , Zymosan/administration & dosage
17.
Int Immunopharmacol ; 97: 107657, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33878544

ABSTRACT

Osteoarthritis (OA) is a common joint disease that takes joint degeneration or aging as its pathological basis, and joint swelling, pain or dysfunction as its main clinical manifestations. Decursin (DE), the major active component isolated from Angelica gigas Nakai, has been demonstrated to possess anti-inflammatory effect in many diseases. But, the specific physiological mechanism of DE on OA is not clear yet. Therefore, the object of this study was to assess the therapeutic effect of DE on OA, and to explore its potential anti-inflammatory mechanisms. In vitro cell experiments, the inflammatory response in chondrocytes is mediated via interleukin-1ß (IL-1ß), which led to abnormal secretion of pro-inflammatory factors, such as prostaglandin E2 (PGE2), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), nitric oxide (NO) and inducible nitric oxide synthase (iNOS). These cytokines were all decreased by the preconditioning of DE in a dose-dependent form of 1, 5, and 10 µM. Moreover, DE could restrain IL-1ß-mediated inflammatory reaction and the collapse of extracellular matrix (ECM) via reducing the secretion of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) and MMPs (matrix metalloproteinases). In short, DE restrained IL-1ß-mediated abnormal excitation of PI3K/AKT/NF-κB axis. Furthermore, molecular docking analysis showed that DE has a strong binding affinity with the inhibitory targets of PI3K. In vivo animal studies, DE treatment could helped to improve destruction of articular cartilage and decreased the serum inflammatory factor levels in an operationally induced mouse OA model. To sum up, these data obtained from the experiment indicate that DE has good prospects for the treatment of osteoarthritis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Benzopyrans/pharmacology , Butyrates/pharmacology , Osteoarthritis/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Benzopyrans/therapeutic use , Butyrates/therapeutic use , Cartilage, Articular/drug effects , Cartilage, Articular/immunology , Cartilage, Articular/pathology , Disease Progression , Drug Evaluation, Preclinical , Humans , Interleukin-1beta/metabolism , Male , Mice , Molecular Docking Simulation , NF-kappa B/metabolism , Osteoarthritis/immunology , Osteoarthritis/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology
18.
J Ethnopharmacol ; 274: 114028, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-33775807

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Osteoarthritis (OA), a degenerative joint disease, is characterized by cartilage erosion and matrix degradation. Solanum xanthocarpum Schrad. & Wendl. fruits (SXF) and leaves have long been used as folk remedy in the treatment of pain in rheumatism. AIM OF THE STUDY: This study was aimed to investigate the phytochemical components and protective benefits of SXF on in vitro chondrocytes proliferation, and in vivo suppression of collagenase-induced OA. MATERIALS AND METHODS: Phytochemical components in ethanolic SXF extract were evaluated using gas chromatography-mass spectrometry (GC-MS). Effect of SXF on in vitro cell proliferation of primary chondrocytes was determined by cell proliferation assay and cell cycle analysis by flow cytometry. OA was induced in the right knees of rats through intra-articular injection of collagenase type-II. To evaluate in vivo preventive function of SXF, body weight, blood ALP, histopathological changes in the knee joint, proteoglycan, and collagen content were determined. The mRNA expression of COL-2, MMP-3 and COX-2 genes through qRT-PCR was studied. Antioxidant activities, total phenolics and flavonoid contents of SXF were also examined. RESULTS: GC-MS analysis revealed that SXF constitutes 28 phytochemicals including flavonoids (3-methoxy apigenin, quercetin, luteolin), tannin (quinic acid), terpenes (oleanolic acid, lupeol, psi.psi carotene), phytosterols (campesterol, stigmasterol, ß-sitosterol), and ascorbic acid. In vitro studies demonstrated that SXF enhanced the cell proliferation in a dose-dependent manner and has no cytotoxic effect on primary chondrocytes. In vivo study suggests that SXF protects the cartilage destruction induced by collagenase. The histological study revealed that SXF restored the synthesis of collagen and proteoglycan, vital factors for cartilage restoration, and reduced the arthritic score. An up-regulation in COL-2 expression and suppression of MMP-3 and COX-2 were detected by qRT-PCR analysis. Thus, in vivo study suggests the protective effects of SXF on cartilage destruction induced by collagenase. CONCLUSIONS: Our results imply that SXF benefits and ameliorates OA by enhancing the chondrocytes proliferation and preventing the articular cartilage damage through the restoration of their structural molecules, arthritic score reduction, suppression of MMP-3 and COX-2 expression level and up regulation of COL-2 genes expression. These results suggest that SXF could be a promising alternative treatment candidate for osteoarthritis.


Subject(s)
Cartilage, Articular/drug effects , Chondrocytes/drug effects , Osteoarthritis/drug therapy , Plant Extracts/pharmacology , Protective Agents/pharmacology , Solanum/chemistry , Administration, Oral , Alkaline Phosphatase/blood , Animals , Antioxidants/administration & dosage , Antioxidants/pharmacology , Body Weight/drug effects , Cartilage, Articular/injuries , Cell Proliferation/drug effects , Collagen Type II/metabolism , Collagenases/toxicity , Cyclooxygenase 2/metabolism , Disease Models, Animal , Flavonoids/analysis , Free Radical Scavengers/administration & dosage , Free Radical Scavengers/pharmacology , Fruit/chemistry , Indomethacin/pharmacology , Matrix Metalloproteinase 3/metabolism , Osteoarthritis/chemically induced , Phenols/analysis , Plant Extracts/administration & dosage , Primary Cell Culture , Protective Agents/administration & dosage , Proteoglycans/metabolism , Rats, Sprague-Dawley
19.
Mol Pharm ; 18(3): 1444-1454, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33538605

ABSTRACT

One of the characterizations of degenerative cartilage disease is the progressive loss of glycosaminoglycans (GAGs). The real-time imaging method to quantify GAGs is of great significance for the biochemical analysis of cartilage and diagnosis and therapeutic monitoring of cartilage degeneration in vivo. To this end, a cationic photoacoustic (PA) contrast agent, poly-l-lysine melanin nanoparticles (PLL-MNPs), specifically targeting anionic GAGs was developed in this study to investigate whether it can image cartilage degeneration. PLL-MNP assessed GAG depletion by Chondroitinase ABC in vitro rat cartilage and intact ex vivo mouse knee joint. A papain-induced cartilage degenerative mice model was used for in vivo photoacoustic imaging (PAI). Oral cartilage supplement glucosamine sulfate was intragastrically administered for mice cartilage repair and the therapeutic efficacy was monitored by PLL-MNP-enhanced PAI. Histologic findings were used to further confirm PAI results. In vitro results revealed that the PLL-MNPs not only had a high binding ability with GAGs but also sensitively monitored GAG content changes by PAI. The PA signal was gradually weakened along with the depletion of GAGs in cartilage. Particularly, PLL-MNPs depicted the cartilage structure and the distribution of GAGs was demonstrated in PA images in ex vivo joints. Compared with the normal joint, a lower signal intensity was detected from degenerative joint at 3 weeks after papain injection, suggesting an early diagnosis of cartilage lesion by PLL-MNPs. Importantly, this PA-enhanced nanoprobe was suitable for monitoring in vivo efficacy of glucosamine sulfate, which effectively blocked cartilage degradation in a high dose manner. In vivo imaging findings correlated well with histological examinations. PLL-MNPs provided sensitive visualization of cartilage degeneration and promising monitoring of therapeutic response in living subjects.


Subject(s)
Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cations/chemistry , Glycosaminoglycans/metabolism , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Animals , Contrast Media/chemistry , Glucosamine/metabolism , Male , Melanins/metabolism , Mice , Rats
20.
J Orthop Surg Res ; 16(1): 147, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33610183

ABSTRACT

BACKGROUND: Silymarin (SMN), a polyphenolic flavonoid, is involved in multiple bioactive functions including anti-inflammation. Pretreatment with SMN demonstrated chondroprotection against tumour necrosis factor-alpha (TNF-α) stimulation in a chondrocyte cell line. However, pre- and posttreatment with phytochemicals have varying effects on osteoarthritis (OA) chondrocytes, and the therapeutic potential of SMN after catabolic cytokine stimulation is not fully elucidated. METHODS: The cytotoxicity of SMN (12.5, 25, 50 and 100 µM) was evaluated in human primary chondrocytes. The chondrocytes were supplemented with SMN (25 and 50 µM) after interleukin-1beta (IL-1ß) stimulation. The mRNA expression and protein production of catabolic/anabolic cytokines as well as extracellular matrix (ECM) components were evaluated. RESULTS: High-dose SMN (100 µM) impaired the mitochondrial activity in chondrocytes, and 50 µM SMN further caused cell death in IL-1ß-stimulated cells. The addition of 25 µM SMN ameliorated cell senescence; downregulated the catabolic genes of inducible nitric oxide synthase, IL-1ß, TNF-α, matrix metalloproteinase-3 (MMP-3), MMP-9 and MMP-13; upregulated the anabolic genes of tissue inhibitor of metalloproteinase-1 (TIMP-1) and collagen type II alpha 1; and restored the expression of chondrogenic phenotype genes SOX9 and sirtuin-1 (Sirt1). In addition, the production of IL-1ß, MMP-3 and MMP-9 decreased with an increase in TIMP-1 secretion. However, the mRNA levels of IL-6, IL-8 and IL-10 and protein production remained high. The addition of nicotinamide, a Sirt1 inhibitor, downregulated SOX9 and attenuated the therapeutic effects of SMN on IL-1ß-stimulated chondrocytes. CONCLUSION: SMN regulates the chondrocyte phenotype through Sirt1 and SOX9 to improve ECM homeostasis and may serve as a complementary therapy for early-stage knee OA.


Subject(s)
Cartilage, Articular/drug effects , Chondrocytes/drug effects , Cytokines/metabolism , SOX9 Transcription Factor/metabolism , Silymarin/pharmacology , Sirtuin 1/metabolism , Aged , Aged, 80 and over , Down-Regulation , Female , Humans , Male , Middle Aged , Osteoarthritis, Knee/drug therapy , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL