Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
J Dairy Sci ; 107(7): 5204-5221, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38490548

ABSTRACT

The periparturient period is characterized by the increased demand for calcium (Ca) in dairy cows. This has resulted in the use of several different prepartal nutritional strategies to prevent hypocalcemia postpartum. The objective of our study was to determine the effects of feeding synthetic zeolite A (XZ), a diet with negative dietary cation-anion difference (-DCAD), or a positive-DCAD diet (CON) during the close-up period on peripartal mineral dynamics and hormones involved in calcium metabolism. To this end, 121 multiparous Holstein cows, blocked by lactation number and expected due date, were enrolled at 254 d of gestation and randomly assigned to 1 of 3 prepartum diets: CON (+190 mEq/kg; n = 40), -DCAD (-65 mEq/kg; n = 41), or a diet supplemented with sodium aluminum silicate (XZ; +278 mEq/kg, fed at 3.3% DM, targeting 500 g/d; n = 40; Protekta Inc.). Blood, urine, and saliva samples were collected from enrollment until parturition, with data analyzed and presented beginning 14 d before parturition (d -14) until parturition (d 0), and on d 1, 2, 3, 6, 9, 12, 15, 18, 21, 35, and 49 postpartum, to assess mineral and hormone dynamics. Total fecal collections were performed in a subset of 8 cows per treatment group to assess fecal mineral loss. Data were analyzed as a randomized complete block design in SAS. Cows fed XZ and -DCAD had higher blood Ca concentrations compared with CON-fed cows, with XZ-fed cows exhibiting the highest blood Ca concentrations pre- and postpartum. Cows fed XZ had decreased blood and salivary phosphorus (P), increased fecal water-extractable phosphate, and the highest blood calcium concentrations pre- and postpartum. Parathyroid hormone was unaffected by diet but was increased at parturition in all treatments. Serotonin concentrations were increased in -DCAD and XZ cows compared with CON during the prepartum period. Our data indicate that the XZ group's improvement in blood Ca concentrations pre- and postpartum is most likely regulated by a dietary P restriction. Taken together, these data suggest that XZ and -DCAD diets improve postpartum calcium metabolism; however, they appear to work through different mechanisms.


Subject(s)
Calcium , Cations , Diet , Minerals , Zeolites , Animals , Cattle , Female , Diet/veterinary , Zeolites/pharmacology , Calcium/metabolism , Cations/metabolism , Minerals/metabolism , Lactation , Animal Feed , Pregnancy , Anions , Postpartum Period , Dietary Supplements
2.
BMC Genomics ; 25(1): 144, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317113

ABSTRACT

BACKGROUND: The cation/proton antiporter (CPA) superfamily plays a crucial role in regulating ion homeostasis and pH in plant cells, contributing to stress resistance. However, in potato (Solanum tuberosum L.), systematic identification and analysis of CPA genes are lacking. RESULTS: A total of 33 StCPA members were identified and classified into StNHX (n = 7), StKEA (n = 6), and StCHX (n = 20) subfamilies. StCHX owned the highest number of conserved motifs, followed by StKEA and StNHX. The StNHX and StKEA subfamilies owned more exons than StCHX. NaCl stress induced the differentially expression of 19 genes in roots or leaves, among which StCHX14 and StCHX16 were specifically induced in leaves, while StCHX2 and StCHX19 were specifically expressed in the roots. A total of 11 strongly responded genes were further verified by qPCR. Six CPA family members, StNHX1, StNHX2, StNHX3, StNHX5, StNHX6 and StCHX19, were proved to transport Na+ through yeast complementation experiments. CONCLUSIONS: This study provides comprehensive insights into StCPAs and their response to NaCl stress, facilitating further functional characterization.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Protons , Sodium Chloride/pharmacology , Antiporters/genetics , Antiporters/metabolism , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant , Cations/metabolism , Stress, Physiological/genetics
3.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38285624

ABSTRACT

Diets that provide a negative dietary anion cation difference (DCAD) and supplement with a vitamin D metabolite 25-OH-D3 (calcidiol) may increase calcium availability at parturition, and enhance piglet survival and performance. This factorial study assessed the effects of DCAD, calcidiol (50 µg/kg), and parity (parity 1 or >1) and their interactions. Large White and Landrace sows (n = 328), parity 1 to 8 were randomly allocated in blocks to treatment diets from day 103 of gestation until day 3 postfarrow: 1) negative DCAD without calcidiol (negative DCAD + no CA), n = 84, 2) negative DCAD with calcidiol (negative DCAD + CA) n = 84, 3) positive DCAD without calcidiol (negative DCAD + no CA), n = 81, and 4) positive DCAD with calcidiol (positive DCAD + CA), n = 79. Negative DCAD diets were acidified with an anionic feed (2 kg/t) and magnesium sulfate (2 kg/t). All treatment diets contained cholecalciferol at 1,000 IU/kg. Dry sow diets contained 14.8% crude protein (CP), 5.4% crude fiber (CF), 0.8% Ca, and 83 mEq/kg DCAD. Treatment diets 1 and 2 contained 17.5% CP, 7.3% CF, 0.8% Ca, and -2 mEq/kg DCAD. Treatment diets 3 and 4 contained 17.4% CP, 7.4% CF, 0.8% Ca, and 68 mEq/kg DCAD. Before farrowing, all negative DCAD sows had lower urine pH than all sows fed a positive DCAD (5.66 ± 0.05 and 6.29 ± 0.05, respectively; P < 0.01); urinary pH was acidified for both DCAD treatments indicating metabolic acidification. The percentage of sows with stillborn piglets was not affected by DCAD, calcidiol, or parity alone but sows fed the negative DCAD + CA diet had a 28% reduction in odds of stillbirth compared to the negative DCAD + no CA diet and even lesser odds to the positive DCAD + CA diet. At day 1 after farrowing, blood gas, and mineral and metabolite concentrations were consistent with feeding a negative DCAD diet and that negative DCAD diets influence energy metabolism, as indicated by increased glucose, cholesterol, and osteocalcin concentrations and reduced nonesterified free fatty acids and 3-hydroxybutyrate concentrations. In the subsequent litter, total piglets born and born alive (14.7 ± 0.3 and 13.8 ± 0.3 piglets, respectively; P = 0.029) was greater for positive DCAD diets compared to negative DCAD diets; and there was an interaction between DCAD, calcidiol, and parity (P = 0.002). Feeding a negative DCAD diet influenced stillbirth, subsequent litter size, and metabolic responses at farrowing. More studies are needed to define optimal diets prefarrowing for sows.


The transition period between late gestation and lactation is critical to farrowing and successful lactation; sows with higher blood calcium have less risk of dystocia. We evaluated transition diets that provided a negative dietary cation­anion difference (DCAD) and supplemented with calcidiol (CA), both of which influence calcium metabolism. Purebred Landrace or Large White sows (n = 328) were enrolled in the experiment and selected sows that were either primiparous (n = 99) or multiparous (n = 229; average parity = 2.59 ± 1.51; parity range = 1 to 8) were fed a dry sow ration until day 103 of gestation and were then fed transition diets until day 3 postfarrowing in a factorial study. The diets were formulated to include 1) negative DCAD + no CA, 2) negative DCAD + CA, 3) positive DCAD + no CA, or 4) positive DCAD + CA. All diets induced a metabolic acidosis as indicated by urinary pH. Sows fed the negative DCAD with added calcidiol had a >28% reduction in odds of stillbirth over negative DCAD + no CA and positive DCAD + CA diets. Following weaning and re-mating, there were 0.9 more piglets born in the subsequent litter for both positive DCAD diets compared to negative DCAD diets. Blood gas, and mineral and metabolite concentrations provided evidence that negative DCAD diets positively influenced energy metabolism.


Subject(s)
Calcifediol , Swine Diseases , Pregnancy , Female , Animals , Swine , Stillbirth/veterinary , Lactation , Diet/veterinary , Dietary Supplements , Anions/metabolism , Cations/metabolism , Animal Feed/analysis
4.
Arterioscler Thromb Vasc Biol ; 43(8): 1494-1509, 2023 08.
Article in English | MEDLINE | ID: mdl-37381987

ABSTRACT

BACKGROUND: MAGT1 (magnesium transporter 1) is a subunit of the oligosaccharide protein complex with thiol-disulfide oxidoreductase activity, supporting the process of N-glycosylation. MAGT1 deficiency was detected in human patients with X-linked immunodeficiency with magnesium defect syndrome and congenital disorders of glycosylation, resulting in decreased cation responses in lymphocytes, thereby inhibiting the immune response against viral infections. Curative hematopoietic stem cell transplantation of patients with X-linked immunodeficiency with magnesium defect causes fatal bleeding and thrombotic complications. METHODS: We studied the role of MAGT1 deficiency in platelet function in relation to arterial thrombosis and hemostasis using several in vitro experimental settings and in vivo models of arterial thrombosis and transient middle cerebral artery occlusion model of ischemic stroke. RESULTS: MAGT1-deficient mice (Magt1-/y) displayed accelerated occlusive arterial thrombus formation in vivo, a shortened bleeding time, and profound brain damage upon focal cerebral ischemia. These defects resulted in increased calcium influx and enhanced second wave mediator release, which further reinforced platelet reactivity and aggregation responses. Supplementation of MgCl2 or pharmacological blockade of TRPC6 (transient receptor potential cation channel, subfamily C, member 6) channel, but not inhibition of store-operated calcium entry, normalized the aggregation responses of Magt1-/y platelets to the control level. GP (glycoprotein) VI activation of Magt1-/y platelets resulted in hyperphosphorylation of Syk (spleen tyrosine kinase), LAT (linker for activation of T cells), and PLC (phospholipase C) γ2, whereas the inhibitory loop regulated by PKC (protein kinase C) was impaired. A hyperaggregation response to the GPVI agonist was confirmed in human platelets isolated from a MAGT1-deficient (X-linked immunodeficiency with magnesium defect) patient. Haploinsufficiency of TRPC6 in Magt1-/y mice could normalize GPVI signaling, platelet aggregation, and thrombus formation in vivo. CONCLUSIONS: These results suggest that MAGT1 and TRPC6 are functionally linked. Therefore, deficiency or impaired functionality of MAGT1 could be a potential risk factor for arterial thrombosis and stroke.


Subject(s)
Cation Transport Proteins , Homeostasis , Infarction, Middle Cerebral Artery , Ischemic Stroke , Thrombosis , Animals , Humans , Mice , Blood Platelets/metabolism , Calcium/metabolism , Cations/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/complications , Ischemic Stroke/metabolism , Magnesium/metabolism , Platelet Activation , Platelet Aggregation , Platelet Membrane Glycoproteins/metabolism , Thrombosis/genetics , Thrombosis/metabolism , TRPC6 Cation Channel/metabolism , Cation Transport Proteins/deficiency
5.
Animal ; 17(4): 100731, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36868058

ABSTRACT

Pragmatic studies, evaluating the effectiveness of an intervention under its usual conditions, are less commonly reported than the explanatory trials. For instance, the effectiveness of prepartum negative dietary cation-anion difference (DCAD) diets on inducing a compensated metabolic acidosis that promotes a higher blood Ca concentration at calving has not been frequently described under commercial farm management conditions without researchers' interference. Thus, the objectives were to study cows under commercial farm management conditions to (1) describe the daily close-up dairy cows' urine pH and fed DCAD, and (2) evaluate the association between urine pH and fed DCAD, and preceding urine pH and blood Ca at calving. A total of 129 close-up Jersey cows about to commence their ≥2nd lactation were enrolled in the study after 7 days of exposure to DCAD diets in two commercial dairy herds. Urine pH was determined daily from mid-stream urine samples from enrollment to calving. Fed DCAD was determined from feed bunk samples obtained during 29 (Herd 1) and 23 (Herd 2) consecutive days. Plasma Ca concentration was determined within 12 h after calving. Descriptive statistics were generated at the herd- and cow-level. Multiple linear regression was used to evaluate the associations between urine pH and fed DCAD for each herd, and preceding urine pH and plasma Ca concentration at calving for both herds. At herd-level, the average urine pH and CV during the study period were 6.1 and 12.0% (Herd 1) and 5.9 and 10.9% (Herd 2), respectively. At the cow-level, the average urine pH and CV during the study period were 6.1 and 10.3% (Herd 1) and 6.1 and 12.3% (Herd 2), respectively. During the study period, fed DCAD averages were -121.3 and -165.7 mEq/kg of DM and CV 22.8 and 60.6% for Herd 1 and Herd 2, respectively. No evidence of association between cows' urine pH and fed DCAD was observed in Herd 1, whereas a quadratic association was observed in Herd 2. When both herds were combined, a quadratic association was observed between the urine pH intercept (at calving) and plasma Ca concentration. Although average urine pH and fed DCAD were within recommended ranges, the high variability observed indicates that acidification and fed DCAD are not constant, and often outside the recommended ranges in commercial settings. Monitoring of DCAD programs is warranted to ensure their effectiveness under commercial settings.


Subject(s)
Diet , Dietary Supplements , Female , Cattle , Animals , Farms , Diet/veterinary , Lactation , Anions/metabolism , Cations/metabolism , Animal Feed/analysis , Calcium/metabolism
6.
mBio ; 14(1): e0307322, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36629455

ABSTRACT

The bacterial cell membrane is an interface for cell envelope synthesis, protein secretion, virulence factor assembly, and a target for host cationic antimicrobial peptides (CAMPs). To resist CAMP killing, several Gram-positive pathogens encode the multiple peptide resistance factor (MprF) enzyme that covalently attaches cationic amino acids to anionic phospholipids in the cell membrane. While E. faecalis encodes two mprF paralogs, MprF2 plays a dominant role in conferring resistance to killing by the CAMP human ß-defensin 2 (hBD-2) in E. faecalis strain OG1RF. The goal of the current study is to understand the broader lipidomic and functional roles of E. faecalis mprF. We analyzed the lipid profiles of parental wild-type and mprF mutant strains and show that while ΔmprF2 and ΔmprF1 ΔmprF2 mutants completely lacked cationic lysyl-phosphatidylglycerol (L-PG), the ΔmprF1 mutant synthesized ~70% of L-PG compared to the parent. Unexpectedly, we also observed a significant reduction of PG in ΔmprF2 and ΔmprF1 ΔmprF2. In the mprF mutants, particularly ΔmprF1 ΔmprF2, the decrease in L-PG and phosphatidylglycerol (PG) is compensated by an increase in a phosphorus-containing lipid, glycerophospho-diglucosyl-diacylglycerol (GPDGDAG), and D-ala-GPDGDAG. These changes were accompanied by a downregulation of de novo fatty acid biosynthesis and an accumulation of long-chain acyl-acyl carrier proteins (long-chain acyl-ACPs), suggesting that the suppression of fatty acid biosynthesis was mediated by the transcriptional repressor FabT. Growth in chemically defined media lacking fatty acids revealed severe growth defects in the ΔmprF1 ΔmprF2 mutant strain, but not the single mutants, which was partially rescued through supplementation with palmitic and stearic acids. Changes in lipid homeostasis correlated with lower membrane fluidity, impaired protein secretion, and increased biofilm formation in both ΔmprF2 and ΔmprF1 ΔmprF2, compared to the wild type and ΔmprF1. Collectively, our findings reveal a previously unappreciated role for mprF in global lipid regulation and cellular physiology, which could facilitate the development of novel therapeutics targeting MprF. IMPORTANCE The cell membrane plays a pivotal role in protecting bacteria against external threats, such as antibiotics. Cationic phospholipids such as lysyl-phosphatidyglycerol (L-PG) resist the action of cationic antimicrobial peptides through electrostatic repulsion. Here we demonstrate that L-PG depletion has several unexpected consequences in Enterococcus faecalis, including a reduction of phosphatidylglycerol (PG), enrichment of a phosphorus-containing lipid, reduced fatty acid synthesis accompanied by an accumulation of long-chain acyl-acyl carrier proteins (long chain acyl-ACPs), lower membrane fluidity, and impaired secretion. These changes are not deleterious to the organism as long as exogenous fatty acids are available for uptake from the culture medium. Our findings suggest an adaptive mechanism involving compensatory changes across the entire lipidome upon removal of a single phospholipid modification. Such adaptations must be considered when devising antimicrobial strategies that target membrane lipids.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Enterococcus faecalis/metabolism , Drug Resistance, Bacterial , Phospholipids/metabolism , Anti-Infective Agents/metabolism , Fatty Acids/metabolism , Phosphatidylglycerols/metabolism , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/metabolism , Cations/metabolism , Carrier Proteins/metabolism , Bacterial Proteins/metabolism
7.
J Hazard Mater ; 446: 130668, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36608581

ABSTRACT

Uranium (U) is a naturally-occurring radionuclide that is toxic to living organisms. Given that proteins are primary targets of U(VI), their identification is an essential step towards understanding the mechanisms of radionuclide toxicity, and possibly detoxification. Here, we implemented a chromatographic strategy including immobilized metal affinity chromatography to trap protein targets of uranyl in Arabidopsis thaliana. This procedure allowed the identification of 38 uranyl-binding proteins (UraBPs) from root and shoot extracts. Among them, UraBP25, previously identified as plasma membrane-associated cation-binding protein 1 (PCaP1), was further characterized as a protein interacting in vitro with U(VI) and other metals using spectroscopic and structural approaches, and in planta through analyses of the fate of U(VI) in Arabidopsis lines with altered PCaP1 gene expression. Our results showed that recombinant PCaP1 binds U(VI) in vitro with affinity in the nM range, as well as Cu(II) and Fe(III) in high proportions, and that Ca(II) competes with U(VI) for binding. U(VI) induces PCaP1 oligomerization through binding at the monomer interface, at both the N-terminal structured domain and the C-terminal flexible region. Finally, U(VI) translocation in Arabidopsis shoots was affected in pcap1 null-mutant, suggesting a role for this protein in ion trafficking in planta.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Uranium , Arabidopsis/genetics , Arabidopsis/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Membrane Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ferric Compounds/metabolism , Cell Membrane/metabolism , Cations/chemistry , Cations/metabolism , Uranium/chemistry , Calcium-Binding Proteins/metabolism
8.
Int J Biol Macromol ; 228: 385-399, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36581029

ABSTRACT

The cation/H+ exchanger (CAX) involved in Ca2+, Mg2+ and Mn2+ transport is a special class of vacuolar transporters that play an important role in maintaining ion homeostasis in plant cells. However, it has been rarely reported whether CAX proteins have unique tolerance to cadmium stress. In our research, the cadmium-resistant potato variety "Yunshu 505" was taken as the object, through biological etc. methods, explored 1: response mode of StCAXs to cadmium stress; 2: the evolutionary characteristics and Cd ion binding sites of StCAXs; and 3: possible upstream regulatory pathways of StCAXs. The results showed that cadmium stress significantly induced the expression of StCAX1/4, and there were specific mutations in the evolution process, thus the possible main binding site of Cd ion (EDEE/DH/GxxxxxS/EEEE) was speculated. StCAX1/4 interacts with several proteins, and be regulated by transcription factors, especially the WRKY6. This synergistic regulation through WRKY6 may be an important pathway through which StCAX1/4 imparts high cadmium tolerance to potato. These results provide certain support for understanding the binding sites and specific evolutionary mechanisms of key amino acid residues of cadmium ion in StCAXs, also provide new clues for the identification and regulatory model of potato CAX key positive stress-responsive proteins under cadmium stress.


Subject(s)
Cadmium , Solanum tuberosum , Cadmium/chemistry , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cations/metabolism , Homeostasis , Gene Expression Regulation, Plant
9.
Int J Mol Sci ; 23(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36555847

ABSTRACT

Usnic acid (UA), a unique lichen metabolite, is a protonophoric uncoupler of oxidative phosphorylation, widely known as a weight-loss dietary supplement. In contrast to conventional proton-shuttling mitochondrial uncouplers, UA was found to carry protons across lipid membranes via the induction of an electrogenic proton exchange for calcium or magnesium cations. Here, we evaluated the ability of various divalent metal cations to stimulate a proton transport through both planar and vesicular bilayer lipid membranes by measuring the transmembrane electrical current and fluorescence-detected pH gradient dissipation in pyranine-loaded liposomes, respectively. Thus, we obtained the following selectivity series of calcium, magnesium, zinc, manganese and copper cations: Zn2+ > Mn2+ > Mg2+ > Ca2+ >> Cu2+. Remarkably, Cu2+ appeared to suppress the UA-mediated proton transport in both lipid membrane systems. The data on the divalent metal cation/proton exchange were supported by circular dichroism spectroscopy of UA in the presence of the corresponding cations.


Subject(s)
Calcium , Protons , Calcium/metabolism , Magnesium/metabolism , Mitochondria, Liver/metabolism , Lipid Bilayers/chemistry , Cations/metabolism , Cations, Divalent/metabolism
10.
Animal ; 16(10): 100645, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36202060

ABSTRACT

Hypocalcemia remains a common metabolic disorder of dairy cattle; therefore, an efficient prevention is still challenging. Among the various prevention strategies for hypocalcemia is the use of anionic compounds to induce a mild metabolic acidosis during the prepartum period. Acid-base status can be readily assessed through urine pH. Accordingly, a target urine pH during the prepartum period between 6.0 and 6.8 has been recommended for Holstein cows; however, in several countries, including the US, certain nutritional strategies are still focused on benchmarking the urine pH to below 6.0. Unfortunately, over-acidification can have no advantages and/or detrimental effects on both the dam and her offspring. In this review, updated information regarding the use of anionic diets on prepartum dairy cows and the potential negative impact of such diets on both cow and calf performance are discussed. There is an urgent need for studies that will elucidate the pathophysiological mechanisms by which very acidotic diets may impact the well-being and productive efficiency of dairy cows, and the transgenerational effects of such diets on offspring performance and survival.


Subject(s)
Hypocalcemia , Animal Feed/analysis , Animals , Anions/metabolism , Anions/pharmacology , Cations/metabolism , Cations/pharmacology , Cattle , Diet/veterinary , Dietary Supplements , Female , Hydrogen-Ion Concentration , Hypocalcemia/metabolism , Hypocalcemia/prevention & control , Hypocalcemia/veterinary , Lactation/physiology , Milk/metabolism , Postpartum Period
11.
Nature ; 608(7923): 558-562, 2022 08.
Article in English | MEDLINE | ID: mdl-35948632

ABSTRACT

The productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change.


Subject(s)
Climate Change , Phosphorus , Rainforest , Soil , Trees , Tropical Climate , Acclimatization , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Carbon Sequestration , Cations/metabolism , Cations/pharmacology , Climate Change/statistics & numerical data , Models, Biological , Nitrogen/metabolism , Nitrogen/pharmacology , Phosphorus/metabolism , Phosphorus/pharmacology , Soil/chemistry , Trees/drug effects , Trees/metabolism , Uncertainty
12.
BMC Plant Biol ; 22(1): 203, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35439932

ABSTRACT

BACKGROUND: Tea is one of the most popular non-alcoholic beverages in the world for its flavors and numerous health benefits. The tea tree (Camellia sinensis L.) is a well-known aluminum (Al) hyperaccumulator. However, it is not fully understood how tea plants have adapted to tolerate high concentrations of Al, which causes an imbalance of mineral nutrition in the roots. RESULTS: Here, we combined ionomic and transcriptomic profiling alongside biochemical characterization, to probe the changes of metal nutrients and Al responsive genes in tea roots grown under increasing concentrations of Al. It was found that a low level of Al (~ 0.4 mM) maintains proper nutrient balance, whereas a higher Al concentration (2.5 mM) compromised tea plants by altering micro- and macro-nutrient accumulation into roots, including a decrease in calcium (Ca), manganese (Mn), and magnesium (Mg) and an increase in iron (Fe), which corresponded with oxidative stress, cellular damage, and retarded root growth. Transcriptome analysis revealed more than 1000 transporter genes that were significantly changed in expression upon Al exposure compared to control (no Al) treatments. These included transporters related to Ca and Fe uptake and translocation, while genes required for N, P, and S nutrition in roots did not significantly alter. Transporters related to organic acid secretion, together with other putative Al-tolerance genes also significantly changed in response to Al. Two of these transporters, CsALMT1 and CsALS8, were functionally tested by yeast heterologous expression and confirmed to provide Al tolerance. CONCLUSION: This study shows that tea plant roots respond to high Al-induced mineral nutrient imbalances by transcriptional regulation of both cation and anion transporters, and therefore provides new insights into Al tolerance mechanism of tea plants. The altered transporter gene expression profiles partly explain the imbalanced metal ion accumulation that occurred in the Al-stressed roots, while increases to organic acid and Al tolerance gene expression partly explains the ability of tea plants to be able to grow in high Al containing soils. The improved transcriptomic understanding of Al exposure gained here has highlighted potential gene targets for breeding or genetic engineering approaches to develop safer tea products.


Subject(s)
Aluminum , Camellia sinensis , Aluminum/metabolism , Anions/metabolism , Camellia sinensis/metabolism , Cations/metabolism , Gene Expression Regulation, Plant , Minerals/metabolism , Nutrients , Plant Breeding , Plant Roots/metabolism , Tea
13.
J Exp Bot ; 73(3): 636-645, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34718542

ABSTRACT

Soil flooding creates low-oxygen environments in root zones and thus severely affects plant growth and productivity. Plants adapt to low-oxygen environments by a suite of orchestrated metabolic and anatomical alterations. Of these, formation of aerenchyma and development of adventitious roots are considered very critical to enable plant performance in waterlogged soils. Both traits have been firmly associated with stress-induced increases in ethylene levels in root tissues that operate upstream of signalling pathways. Recently, we used a bioinformatic approach to demonstrate that several Ca2+ and K+ -permeable channels from KCO, AKT, and TPC families could also operate in low oxygen sensing in Arabidopsis. Here we argue that low-oxygen-induced changes to cellular ion homeostasis and operation of membrane transporters may be critical for cell fate determination and formation of the lysigenous aerenchyma in plant roots and shaping the root architecture and adventitious root development in grasses. We summarize the existing evidence for a causal link between tissue-specific changes in oxygen concentration, intracellular Ca2+ and K+ homeostasis, and reactive oxygen species levels, and their role in conferring those two major traits enabling plant adaptation to a low-oxygen environment. We conclude that, for efficient operation, plants may rely on several complementary signalling pathway mechanisms that operate in concert and 'fine-tune' each other. A better understanding of this interaction may create additional and previously unexplored opportunities to crop breeders to improve cereal crop yield losses to soil flooding.


Subject(s)
Oxygen , Plant Roots , Cations/metabolism , Membrane Transport Proteins/metabolism , Oxygen/metabolism , Plant Roots/metabolism , Plants/metabolism
14.
J Mol Med (Berl) ; 99(3): 349-358, 2021 03.
Article in English | MEDLINE | ID: mdl-33486566

ABSTRACT

Breast cancer is currently the most common cancer and the leading cause of cancer death among women worldwide. Advanced breast cancer is prone to metastasis, and there is currently no drug to cure metastatic breast cancer. The purinergic ligand-gated ion channel 7 receptor is an ATP-gated nonselective cation channel receptor and is involved in signal transduction, growth regulation, cytokine secretion, and tumor cell development. Recent studies have shown that upregulation of the P2X7 receptor in breast cancer can mediate AKT signaling pathways, Ca2 þ-activated SK3 potassium channels, and EMT and regulate the secretion of small extracellular vesicles to promote breast cancer invasion and migration, which are affected by factors such as hypoxia and ATP. In addition, studies have shown that microRNAs can bind to the 3' untranslated region of the P2X7 receptor, which affects the occurrence and development of breast cancer by upregulating and downregulating P2X7 receptor expression. Studies have shown that new P2X7 receptor inhibitors, such as emodin and Uncaria tomentosa, can inhibit P2X7 receptor-mediated breast cancer invasion and are expected to be used clinically. This article reviews the research progress on the relationship between the P2X7 receptor and breast cancer to provide new ideas and a basis for clinical diagnosis and treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/metabolism , Molecular Targeted Therapy/methods , Neoplasm Proteins/physiology , Purinergic P2X Receptor Antagonists/therapeutic use , Receptors, Purinergic P2X7/physiology , Adenosine Triphosphate/metabolism , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cat's Claw , Cations/metabolism , Disease Progression , Emodin/therapeutic use , Female , Gene Expression Regulation, Neoplastic , Humans , Ion Transport , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Proteins/drug effects , Plant Extracts/therapeutic use , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/chemistry , Receptors, Purinergic P2X7/drug effects , Signal Transduction/physiology , Structure-Activity Relationship , Up-Regulation
15.
Pharmacology ; 106(1-2): 91-105, 2021.
Article in English | MEDLINE | ID: mdl-33113543

ABSTRACT

BACKGROUND/AIMS: Monensin, an Na ionophore, increases intracellular Na ([Na]i). Alteration of [Na]i influences ion transport through the sarcolemmal membrane. So far, the effects of monensin on ventricular myocytes have not been examined in detail. The main objective of this study was to elucidate the mechanism via which monensin-evoked increases in [Na]i affect the membrane potential and currents in ventricular myocytes of guinea pigs. METHODS: Membrane potentials and currents were measured using the whole-cell patch-clamp technique in single myocytes. The concentration of intracellular Ca ([Ca]i) was evaluated by measuring fluorescence intensity of Fluo-4. RESULTS: Monensin (10-5M) shortened the action potential duration (APD) and reduced the amplitude of the plateau phase. In addition, monensin decreased the sodium current (INa) and shifted the inactivation curve to the hyperpolarized direction. Moreover, it decreased the L-type calcium current (ICa). However, this effect was attenuated by increasing the buffering capacity of [Ca]i. The Na-Ca exchange current (INa-Ca) was activated particularly in the reverse mode. Na-K pump current (INa-K) was also activated. Notably, the inward rectifying K current (IK1) was not affected, and the change in the delayed outward K current (IK) was not evident. CONCLUSION: These results suggest that the monensin-induced shortened APD and reduced amplitude of the plateau phase are primarily due to the decrease in the ICa, the activation of the reverse mode of INa-Ca, and the increased INa-K, and second due to the decreased INa. The IK and the IK1 may not be associated with the abovementioned changes induced by monensin. The elevation of [Na]i can exert multiple influences on electrophysiological phenomena in cardiac myocytes.


Subject(s)
Monensin/pharmacology , Myocytes, Cardiac/drug effects , Sodium Ionophores/pharmacology , Sodium/metabolism , Action Potentials/drug effects , Animals , Calcium/metabolism , Cardiotonic Agents/pharmacology , Cations/metabolism , Cells, Cultured , Electrophysiologic Techniques, Cardiac , Guinea Pigs , Intracellular Space/drug effects , Intracellular Space/metabolism , Male , Membrane Potentials/drug effects , Microscopy, Fluorescence , Myocytes, Cardiac/metabolism , Ouabain/pharmacology , Patch-Clamp Techniques , Potassium/metabolism , Sodium-Calcium Exchanger/drug effects , Sodium-Potassium-Exchanging ATPase/drug effects
16.
J Ethnopharmacol ; 269: 113713, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33352237

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dysmenorrhea is one of the most common gynecological problems among menstruating females. Blood-activating and stasis-resolving herbs (BASRHs) have been employed to be the first choice for treating dysmenorrhea in China. Especially, the essential oils of some BASRHs have been confirmed to play important roles in the treatment of dysmenorrhea, but the constituents and uterine smooth muscle relaxant activity of some commonly used BASRH essential oils have not been fully assessed, and whether there are differences in the constituents and anti-dysmenorrhea effect among BASRH essential oils has not been evaluated. AIM OF THE STUDY: This study aims to systematically investigate the chemical constituents of 10 BASRH essential oils and assess their uterine smooth muscle relaxant activity and the preliminary mechanism of the most effective essential oil. MATERIALS AND METHODS: The chemical constituents of 10 BASRH essential oils were analyzed by Gas Chromatography-Mass Spectrometer. A rat model of dysmenorrhea in vitro was established to investigate the uterine smooth muscle relaxant activity of 10 kinds of essential oils. Rat isolated uterus strips were given different dose of 10 kinds of essential oils (0.04, 0.08, 0.16 mg/mL). The contractile responses were recorded with Power Lab recording system, and contractile tension, contractile frequency, and contractile activity were evaluated. The preliminary mechanism of the essential oil of the rhizomes of Curcuma phaeocaulis Valeton (CPEO) was assessed using a rat model of dysmenorrhea in vivo and in vitro, and rats were given the CPEO (15, 30, and 60 mg/kg) by gavage. The level of Ca2+ in uterine tissue of rats was determined by methyl thyme phenol blue colorimetric and Bradford methods. The effects of CPEO on extracellular Ca2+ influx and intracellular Ca2+ release were evaluated using the isolated uterus. RESULTS: The results of Gas Chromatography-Mass Spectrometer analysis showed that more than 81 components (content: 1% max appearance) were identified. The main components of the 10 BASRH essential oils were found to be monoterpenoids, sesquiterpenoids, diterpenoids, aromatics, aliphatics, and phthalides. The study of in vitro smooth muscle relaxant activity demonstrated that all the essential oils except the essential oil of the roots of Cyathula officinalis K.C.Kuan markedly decrease the contractile activity, tension, and frequency (P < 0.05 or P < 0.01). Among these oils, CPEO has the most pronounced effect. Further in vivo studies indicated that CPEO can significantly decrease the level of Ca2+ in uterine tissue when compared with the model group (P < 0.05 or P < 0.01). In vitro studies indicated that CPEO can inhibit the extracellular Ca2+ influx and intracellular Ca2+ release in favor of uterine relaxation. CONCLUSIONS: BASRH essential oils play an important role in inhibiting uterine smooth muscle contractions, and sesquiterpenoids and phthalides in BASRH essential oils are important active compounds for relaxing uterine smooth muscle. CPEO is a favorable candidate for developing anti-dysmenorrhea drugs.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Uterus/drug effects , Animals , Calcium/metabolism , Calcium Signaling/drug effects , Cations/metabolism , China , Curcuma/chemistry , Drugs, Chinese Herbal/therapeutic use , Dysmenorrhea/drug therapy , Ethnopharmacology , Female , Gas Chromatography-Mass Spectrometry , In Vitro Techniques , Medicine, Chinese Traditional , Oils, Volatile/therapeutic use , Oxytocin/pharmacology , Plant Roots/chemistry , Rats, Sprague-Dawley , Uterine Contraction/drug effects
17.
Int J Mol Sci ; 21(19)2020 09 27.
Article in English | MEDLINE | ID: mdl-32992595

ABSTRACT

Some plasma membrane intrinsic protein (PIP) aquaporins can facilitate ion transport. Here we report that one of the 12 barley PIPs (PIP1 and PIP2) tested, HvPIP2;8, facilitated cation transport when expressed in Xenopus laevis oocytes. HvPIP2;8-associated ion currents were detected with Na+ and K+, but not Cs+, Rb+, or Li+, and was inhibited by Ba2+, Ca2+, and Cd2+ and to a lesser extent Mg2+, which also interacted with Ca2+. Currents were reduced in the presence of K+, Cs+, Rb+, or Li+ relative to Na+ alone. Five HvPIP1 isoforms co-expressed with HvPIP2;8 inhibited the ion conductance relative to HvPIP2;8 alone but HvPIP1;3 and HvPIP1;4 with HvPIP2;8 maintained the ion conductance at a lower level. HvPIP2;8 water permeability was similar to that of a C-terminal phosphorylation mimic mutant HvPIP2;8 S285D, but HvPIP2;8 S285D showed a negative linear correlation between water permeability and ion conductance that was modified by a kinase inhibitor treatment. HvPIP2;8 transcript abundance increased in barley shoot tissues following salt treatments in a salt-tolerant cultivar Haruna-Nijo, but not in salt-sensitive I743. There is potential for HvPIP2;8 to be involved in barley salt-stress responses, and HvPIP2;8 could facilitate both water and Na+/K+ transport activity, depending on the phosphorylation status.


Subject(s)
Aquaporins/metabolism , Calcium/metabolism , Hordeum/metabolism , Ion Transport , Oocytes/metabolism , Plant Proteins/metabolism , Plant Shoots/metabolism , Potassium/metabolism , Sodium/metabolism , Animals , Aquaporins/genetics , Cations/metabolism , Cell Membrane/metabolism , Cells, Cultured , Female , Gene Expression Regulation, Plant , Hordeum/genetics , Patch-Clamp Techniques , Phosphorylation , Plant Proteins/genetics , Plant Shoots/genetics , RNA, Complementary/administration & dosage , Water/metabolism , Xenopus laevis
18.
J Dairy Sci ; 103(8): 7039-7054, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32448578

ABSTRACT

Acidogenic prepartum diets with negative dietary cation-anion difference (DCAD) induce compensated metabolic acidosis, which stimulates calcium (Ca) mobilization before calving and decreases clinical and subclinical hypocalcemia postpartum. This strategy is often combined with limiting dietary Ca concentrations, which historically has been used to mobilize Ca prepartum to prepare cows for lactation. Supplemental dietary Ca in combination with a negative DCAD formulation that does not reverse the effect of compensated metabolic acidosis may be beneficial. Our objective was to determine the effects of prepartum dietary strategies on dry matter intake (DMI), milk production, peripartal Ca status, and health during the transition period in multiparous Holstein cows (n = 81). Treatments during the last 28 d before calving were: (1) positive DCAD diet, +6 mEq/100 g of DM, target urine pH >7.5, low dietary Ca (0.40% DM; CON); (2) negative DCAD diet, -24 mEq/100 g of DM, target urine pH 5.5 to 6.0, low dietary Ca (0.40% DM; ND); or (3) negative DCAD diet, -24 mEq/100 g of DM, target urine pH 5.5 to 6.0, , high dietary Ca (2.0% DM; NDCA). Preplanned treatment contrasts were: (1) CON versus (ND and NDCA), and (2) ND versus NDCA. Individual DMI were recorded daily. Cows were milked 3 times daily, with individual DMI and milk yield summarized by week. Whole blood sampled at calving and 24 h, 48 h, and 4 d after calving was analyzed for ionized Ca concentration, and serum was analyzed for total Ca. Prepartum urine pH for cows fed ND or NDCA averaged 5.7, whereas cows fed CON remained >7.5. During the 3 wk before calving, cows fed CON had greater DMI than cows fed ND or NDCA, with NDCA greater than ND. Postpartum DMI (% of body weight) tended to be less for cows fed CON than for those fed ND or NDCA prepartum. Thresholds for subclinical hypocalcemia were ionized Ca <1.0 mM at 24 h, and total Ca ≤2.125 mM at 48 h after calving. On average, blood Ca for cows fed CON indicated subclinical hypocalcemia, whereas blood Ca for cows fed ND or NDCA was greater than subclinical hypocalcemia thresholds for both ionized Ca and total Ca. No milk production differences were detected. Cows fed CON had an elevated adverse health score (calculated by assigning numerical values to recorded health events) and tended to have an elevated somatic cell count during the fresh period compared with cows fed ND or NDCA. Overall, an acidogenic diet prepartum without or with high Ca improved postpartum Ca status and health. Supplementation of additional Ca to the acidogenic diet had little effect.


Subject(s)
Anions/metabolism , Calcium, Dietary/administration & dosage , Cations/metabolism , Cattle Diseases/prevention & control , Cattle/physiology , Dietary Supplements/analysis , Milk/metabolism , Acids/metabolism , Animal Feed/analysis , Animals , Body Weight , Calcium/blood , Cattle Diseases/metabolism , Dairying , Diet/veterinary , Female , Hypocalcemia/prevention & control , Hypocalcemia/veterinary , Lactation/drug effects , Postpartum Period
19.
J Dairy Sci ; 102(12): 11636-11651, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31548051

ABSTRACT

The objective of this study was to evaluate expression of a cluster of genes encoding ß-defensin antimicrobial peptides in neutrophils of postpartum cows in relation to prepartum dietary cation-anion difference (DCAD), vitamin D, and postpartum disease. Pregnant dry Holstein cows (28 nulliparous and 51 parous) at 255 d gestation were blocked by parity and randomly assigned to 4 prepartum diets of positive (+130 mEq/kg) or negative (-130 mEq/kg) DCAD and either 3 mg vitamin D3 or 3 mg of 25-hydroxyvitamin D3 per 11 kg of dry matter/d. Treatment diets were fed from 255 d of gestation until calving. Peripheral blood neutrophils of 35 parous cows were collected at 0 and 3 d after calving and stimulated with 0 or 100 ng/mL of lipopolysaccharide (LPS). Furthermore, serum Ca and incidences of postpartum diseases were recorded for all cows. The mRNA transcripts of ß-defensin genes were quantified by real-time PCR, and data were analyzed with a general linear mixed model to test for fixed effects and interactions of day, level of DCAD, source of vitamin D, and incidence of disease. Effects of DCAD and vitamin D on neutrophil oxidative burst and phagocytosis were previously reported but were analyzed for effects of disease in the present study. Transcripts for DEFB1, DEFB3, DEFB4, DEFB5, DEFB7, DEFB10, and lingual antimicrobial peptide (LAP) in neutrophils were upregulated by LPS at 0 d but not at 3 d. Transcripts for DEFB4 and DEFB7 in LPS-stimulated neutrophils were greater in cows fed negative DCAD diets compared with positive DCAD. Source of vitamin D (vitamin D3 vs. 25-hydroxyvitamin D3) did not affect expression of ß-defensins in neutrophils. Cows with postpartum subclinical hypocalcemia (serum Ca <2.0 mM) had decreased DEFB3, DEFB4, DEFB6, DEFB7, DEFB10, and LAP expression in LPS-stimulated neutrophils compared with cows that did not experience subclinical hypocalcemia. Likewise, DEFB4, DEFB6, DEFB7, DEFB10, and LAP in LPS-stimulated neutrophils at 3 d postpartum were positively associated with serum Ca at 0 d postpartum. Transcripts for DEFB7, DEFB10 and LAP also were less abundant in neutrophils from cows with metritis compared with healthy cows. In conclusion, feeding a prepartum negative DCAD to improve postpartum serum Ca resulted in greater neutrophil ß-defensin expression, and greater neutrophil ß-defensin expression was positively associated with postpartum health.


Subject(s)
Animal Feed/analysis , Anions/metabolism , Cations/metabolism , Cattle Diseases/metabolism , Hypocalcemia/veterinary , beta-Defensins/genetics , Animals , Cattle , Diet/veterinary , Dietary Supplements/analysis , Female , Gene Expression Regulation , Humans , Hypocalcemia/metabolism , Lactation , Neutrophils/metabolism , Parity , Postpartum Period , Pregnancy , Random Allocation , Vitamin D/metabolism
20.
J Biosci Bioeng ; 127(4): 472-478, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30337232

ABSTRACT

In this study, we investigated the lipopolysaccharide (LPS)-neutralizing and angiogenic activities of cationic peptides derived from the traditional Japanese fermented product Natto, which is made by fermenting cooked soybeans using Bacillus subtilis. Initially, we prepared 20 fractions of Natto extracts with various isoelectric points (pI's) using ampholyte-free isoelectric focusing (autofocusing). Cationic peptides were then purified from fractions 19 and 20, whose pH values were greater than 12, using reversed-phase high-performance liquid chromatography, and were identified using matrix-assisted laser/desorption ionization-time-of-flight mass spectroscopy. Among the 13 identified cationic peptides, seven (KFNKYGR, FPFPRPPHQK, GQSSRPQDRHQK, QRFDQRSPQ, ERQFPFPRPPHQK, GEIPRPRPRPQHPE, and EQPRPIPFPRPQPR) had pI's greater than 9.5, positive net charges, and differing molecular weights. These peptides were then chemically synthesized and applied to chromogenic LPS-neutralizing assays using Limulus amebocyte lysates, and 50% effective (neutralizing) concentrations of 2.6-5.5 µM were demonstrated. In addition, tube formation assays in human umbilical vein endothelial cells revealed angiogenic activities for all but one (GEIPRPRPRPQHPE) of these seven cationic peptides, with increases in relative tube lengths of 23-31% in the presence of peptides at 10 µM. Subsequent experiments showed negligible hemolytic activity of these peptides at concentrations of up to 500 µM in mammalian red blood cells. Collectively, these data demonstrate that six cationic peptides from Natto extracts, with the exception of GEIPRPRPRPQHPE, have LPS-neutralizing and angiogenic activities but do not induce hemolysis.


Subject(s)
Cations , Glycine max/chemistry , Peptides , Soy Foods/analysis , Animals , Bacillus subtilis/metabolism , Cations/analysis , Cations/isolation & purification , Cations/metabolism , Cations/pharmacology , Cells, Cultured , Fermentation , Food Analysis , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Japan , Molecular Weight , Peptides/analysis , Peptides/isolation & purification , Peptides/metabolism , Peptides/pharmacology , Plant Extracts/analysis , Plant Extracts/pharmacology , Sheep , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL