Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.375
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Fitoterapia ; 175: 105931, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608733

ABSTRACT

Pararorine A, a new isoindolinone alkaloid was isolated from Paramyrothecium roridum, an endophytic fungus from the medicinal plant Gynochthodes officinalis (F.C. How) Razafim. & B. Bremer. The structure of this compound was elucidated by extensive spectroscopic (UV, IR, MS, and NMR) analyses. In addition, the antitumor activity of pararorine A was evaluated against SF-268, MCF-7, HepG2, and A549 tumor cell lines. The results revealed that pararorine A exhibited potent antitumor activities with the IC50 values ranging from 1.69 to 8.95 µM. Moreover, the tumor cell inhibitory activity of pararorine A was evidenced by promoting cytochrome C release and cell cycle arrest as well as the induction of apoptosis by the up-regulation of the protein expressions of JNK and Bax through PARP-cleavage and caspase 3-cleavage.


Subject(s)
Apoptosis , Humans , Molecular Structure , Cell Line, Tumor , Apoptosis/drug effects , Endophytes/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/chemistry , Cell Cycle Checkpoints/drug effects , China
2.
Phytomedicine ; 128: 155316, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518635

ABSTRACT

BACKGROUND: Gastric cancer (GC) represents a significant health burden with dire prognostic implications upon metastasis and recurrence. Pterostilbene (PTE) has been proven to have a strong ability to inhibit proliferation and metastasis in other cancers, while whether PTE exhibits anti-GC activity and its potential mechanism remain unclear. PURPOSE: To explore the efficacy and potential mechanism of PTE in treating GC. METHODS: We employed a comprehensive set of assays, including CCK-8, EdU staining, colony formation, flow cytometry, cell migration, and invasion assays, to detect the effect of PTE on the biological function of GC cells in vitro. The xenograft tumor model was established to evaluate the in vivo anti-GC activity of PTE. Network pharmacology was employed to predict PTE's potential targets and pathways within GC. Subsequently, Western blotting, immunofluorescence, and immunohistochemistry were utilized to analyze protein levels related to the cell cycle, EMT, and the JAK2/STAT3 pathway. RESULTS: Our study demonstrated strong inhibitory effects of PTE on GC cells both in vitro and in vivo. In vitro, PTE significantly induced cell cycle arrest at G0/G1 and S phases and suppressed proliferation, migration, and invasion of GC cells. In vivo, PTE led to a dose-dependent reduction in tumor volume and weight. Importantly, PTE exhibited notable safety, leaving mouse weight, liver function, and kidney function unaffected. The involvement of the JAK2/STAT3 pathway in PTE's anti-GC effect was predicted utilizing network pharmacology. PTE suppressed JAK2 kinase activity by binding to the JH1 kinase structural domain and inhibited the downstream STAT3 signaling pathway. Western blotting confirmed PTE's inhibition of the JAK2/STAT3 pathway and EMT-associated protein levels. The anti-GC effect was partially reversed upon STAT3 activation, validating the pivotal role of the JAK2/STAT3 signaling pathway in PTE's activity. CONCLUSION: Our investigation validates the potent inhibitory effects of PTE on the proliferation and metastasis of GC cells. Importantly, we present novel evidence implicating the JAK2/STAT3 pathway as the key mechanism through which PTE exerts its anti-GC activity. These findings not only establish the basis for considering PTE as a promising lead compound for GC therapeutics but also contribute significantly to our comprehension of the intricate molecular mechanisms underlying its exceptional anti-cancer properties.


Subject(s)
Cell Movement , Cell Proliferation , Janus Kinase 2 , Mice, Nude , STAT3 Transcription Factor , Signal Transduction , Stilbenes , Stomach Neoplasms , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stilbenes/pharmacology , Animals , Humans , Cell Proliferation/drug effects , Signal Transduction/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Cell Cycle Checkpoints/drug effects , Network Pharmacology , Male , Neoplasm Metastasis , Epithelial-Mesenchymal Transition/drug effects
3.
Int J Biol Macromol ; 266(Pt 2): 130943, 2024 May.
Article in English | MEDLINE | ID: mdl-38522690

ABSTRACT

The aim of this study is to evaluate and compare the biological properties of different extracts (methanol, ethanol, and water) obtained from Gypsophila eriocalyx (G. eriocalyx), a medicinal plant traditionally used in Turkey. The components of different extracts were defined using the GC-MS method. The effects of G. eriocalyx extracts on cell proliferation, apoptosis, and cell cycle arrest in MDA-MB-231 breast cancer as well as in vitro antioxidant, enzyme inhibition, and antimicrobial activities were investigated. In accordance with the results obtained, although ethanol and methanol extracts of G. eriocalyx show higher antioxidant activity than G. eriocalyx water extract, enzyme inhibition activities of the extracts were not found to be significant compared to the reference drug. The methanol and ethanol extract of G. eriocalyx exhibited moderate antimicrobial activity against Staphylococcus aureus and methanol extract showed significant antimicrobial activity against Bacillus cereus. In addition, both extracts significantly inhibited cell viability in a dose-dependent manner in breast cancer cells. The cell growth inhibition by methanol and ethanol extracts induced S phase cell-cycle arrest and apoptosis in MDA-MB-231 cells. Lastly, in order to compare the activities of the chemicals found in Gypsophila eriocalyx plant extract, their activities against various proteins that are breast cancer protein (PDB ID:1A52 and 1JNX), antioxidant protein (PDB ID: 1HD2), AChE enzyme protein (PDB ID: 4M0E), BChE enzyme protein (PDB ID: 5NN0), and Escherichia coli protein (PDB ID: 4PRV)were compared. Then, ADME/T analysis calculations were made to examine the effects of molecules with high activity on human metabolism. Eventually, G. eriocalyx is thought to be a potent therapeutic herb that can be considered as an alternative and functional therapy for the management of diseases of a progressive nature related to oxidative damage such as infection, diabetes, cancer, and Alzheimer's disease.


Subject(s)
Antioxidants , Apoptosis , Cell Proliferation , Plant Extracts , Plants, Medicinal , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Cell Line, Tumor , Turkey , Antioxidants/pharmacology , Antioxidants/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Caryophyllaceae/chemistry , Cell Survival/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Cycle Checkpoints/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
4.
Front Immunol ; 15: 1310443, 2024.
Article in English | MEDLINE | ID: mdl-38327525

ABSTRACT

Cancer is still considered a lethal disease worldwide and the patients' quality of life is affected by major side effects of the treatments including post-surgery complications, chemo-, and radiation therapy. Recently, new therapeutic approaches were considered globally for increasing conventional cancer therapy efficacy and decreasing the adverse effects. Bioactive peptides obtained from plant and animal sources have drawn increased attention because of their potential as complementary therapy. This review presents a contemporary examination of bioactive peptides derived from natural origins with demonstrated anticancer, ant invasion, and immunomodulation properties. For example, peptides derived from common beans, chickpeas, wheat germ, and mung beans exhibited antiproliferative and toxic effects on cancer cells, favoring cell cycle arrest and apoptosis. On the other hand, peptides from marine sources showed the potential for inhibiting tumor growth and metastasis. In this review we will discuss these data highlighting the potential befits of these approaches and the need of further investigations to fully characterize their potential in clinics.


Subject(s)
Neoplasms , Quality of Life , Humans , Animals , Neoplasms/drug therapy , Peptides/chemistry , Apoptosis , Cell Cycle Checkpoints
5.
Phytomedicine ; 126: 155267, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368795

ABSTRACT

BACKGROUND: Inhibition of NF-κB activity represents a strategy to treat acute myeloid leukemia, one of the most lethal leukemia types. Naphthylisoquinolines (NIQs) are cytotoxic alkaloids from lianas of the families Ancistrocladaceae and Dioncophyllaceae, which are indigenous to tropical rainforests. PURPOSE: Uncovering therapeutic possibilities and underlying molecular mechanisms of dioncophylline A and its derivatives towards NF-κB related cellular processes. METHODS: Resazurin-based cell viability assay was performed for dioncophylline A and three derivatives on wild-type CCRF-CEM and multidrug-resistant CEM/ADR5000 cells. Transcriptome analysis was executed to discover cellular functions and molecular networks associated with dioncophylline A treatment. Expression changes obtained by mRNA microarray hybridization were confirmed using qRT-PCR. Molecular docking was applied to predict the affinity of the NIQs with NF-κB. To validate the in silico approach, NF-κB reporter assays were conducted on HEK-Blue™ Null1 cells. Cell death mechanisms and cell cycle arrest were studied using flow cytometry. The potential activity on angiogenesis was evaluated with the endothelial cell tube formation assay on HUVECs using fluorescence microscopy. Intracellular NF-κB location in HEK-Blue™ Null1 cells was visualized with immunofluorescence. Finally, the anti-tumor activity of dioncophylline A was studied by a xenograft zebrafish model in vivo. RESULTS: Our study demonstrated that dioncophylline A and its derivatives exerted potent cytotoxicity on leukemia cells. Using Ingenuity Pathway Analysis, we identified the NF-κB network as the top network, and docking experiments predicted dioncophylline A and two of its derivatives sharing the same binding pocket with the positive control compound, triptolide. Dioncophylline A showed the best inhibitory activity in NF-κB reporter assays compared to its derivatives, caused autophagy rather than apoptosis, and induced G2/M arrest. It also prevented NF-κB translocation from the cytoplasm to the nucleus. Tube formation as an angiogenesis marker was significantly suppressed by dioncophylline A treatment. Finally, the remarkable anti-tumor activity of dioncophylline A was proven in zebrafish in vivo. CONCLUSION: Taken together, we report for the first time the molecular mechanism behind the cytotoxic effect of dioncophylline A on leukemia cells. Dioncophylline A showed strong cytotoxic activity, inhibited NF-κB translocation, significantly affected the NF-κB in silico and in vitro, subdued tube formation, induced autophagy, and exerted antitumor activity in vivo. Our findings enlighten both the cellular functions including the NF-κB signaling pathway and the cytotoxic mechanism affected by dioncophylline A.


Subject(s)
Antineoplastic Agents , Isoquinolines , Leukemia , Animals , Humans , NF-kappa B/metabolism , Zebrafish/metabolism , Apoptosis , Molecular Docking Simulation , Angiogenesis , G2 Phase Cell Cycle Checkpoints , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints , Autophagy
6.
Acta Trop ; 252: 107139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307362

ABSTRACT

Clotrimazole is an FDA approved drug and is widely used as an antifungal agent. An extensive body of research is available about its mechanism of action on various cell types but its mode of killing of Leishmania donovani parasites is unknown. L. donovani causes Visceral Leishmaniasis which is a public health problem with limited treatment options. Its present chemotherapy is expensive, has adverse effects and is plagued with drug resistance issues. In this study we have explored the possibility of repurposing clotrimazole as an antileishmanial drug. We have assessed its efficacy on the parasites and attempted to understand its mode of action. We found that it has a half-maximal inhibitory concentration (IC50) of 35.75 ± 1.06 µM, 12.75 ± 0.35 µM and 73 ± 1.41 µM in promastigotes, intracellular amastigotes and macrophages, respectively. Clotrimazole is 5.73 times more selective for the intracellular amastigotes as compared to the mammalian cell. Effect of clotrimazole was reduced by ergosterol supplementation. It leads to impaired parasite morphology. It alters plasma membrane permeability and disrupts plasma membrane potential. Mitochondrial function is compromised as is evident from increased ROS generation, depolarized mitochondrial membrane and decreased ATP levels. Cell cycle analysis of clotrimazole treated parasites shows arrest at sub-G0 phase suggesting apoptotic mode of cell death.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Leishmaniasis, Visceral , Animals , Clotrimazole/pharmacology , Clotrimazole/metabolism , Clotrimazole/therapeutic use , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Macrophages , Cell Cycle Checkpoints , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Mammals
7.
Phytomedicine ; 126: 155177, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412667

ABSTRACT

BACKGROUND: The mortality rate of liver cancer ranks third in the world, and hepatocellular carcinoma (HCC) is a malignant tumor of the digestive tract. Cucurbitacin B (CuB), a natural compound extracted from Cucurbitaceae spp., is the main active component of Chinese patent medicine the Cucurbitacin Tablet, which has been widely used in the treatment of various malignant tumors in clinics, especially HCC. PURPOSE: This study explored the role and mechanism of CuB in the suppression of liver cancer progression. METHODS: Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect the inhibitory function of CuB in Huh7, Hep3B, and Hepa1/6 hepatoma cells. Calcein-AM/propidium iodide (PI) staining and lactate dehydrogenase (LDH) measurement assays were performed to determine cell death. Mitochondrial membrane potential (Δψm) was measured, and flow cytometry was performed to evaluate cell apoptosis and cell cycle. Several techniques, such as proteomics, Western blotting (WB), and ribonucleic acid (RNA) interference, were utilized to explore the potential mechanism. The animal experiment was performed to verify the results of in vitro experiments. RESULTS: CuB significantly inhibited the growth of Huh7, Hep3B, and Hepa1/6 cells and triggered the cell cycle arrest in G2/M phage without leading to cell death, especially apoptosis. Knockdown of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a target of CuB, did not reverse CuB elicited cell cycle arrest. CuB enhanced phosphorylated ataxia telangiectasia mutated (p-ATM) and phosphorylated H2A histone family member X (γ-H2AX) levels. Moreover, CuB increased p53 and p21 levels and decreased cyclin-dependent kinase 1 (CDK1) expression, accompanied by improving phosphorylated checkpoint kinase 1 (p-CHK1) level and suppressing cell division cycle 25C (CDC25C) protein level. Interestingly, these phenomena were partly abolished by a deoxyribonucleic acid (DNA) protector methylproamine (MPA). Animal studies showed that CuB also significantly suppressed tumor growth in BALB/c mice bearing Hepa1/6 cells. In tumor tissues, CuB reduced the expression levels of proliferating cell nuclear antigen (PCNA) and γ-H2AX but did not change the terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) level. CONCLUSION: This study demonstrated for the first time that CuB could effectively impede HCC progression by inducing DNA damage-dependent cell cycle arrest without directly triggering cell death, such as necrosis and apoptosis. The effect was achieved through ataxia telangiectasia mutated (ATM)-dependent p53-p21-CDK1 and checkpoint kinase 1 (CHK1)-CDC25C signaling pathways. These findings indicate that CuB may be used as an anti-HCC drug, when the current findings are confirmed by independent studies and after many more clinical phase 1, 2, 3, and 4 testings have been done.


Subject(s)
Ataxia Telangiectasia , Carcinoma, Hepatocellular , Liver Neoplasms , Triterpenes , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/therapeutic use , Tumor Suppressor Protein p53/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/therapeutic use , Cell Cycle Checkpoints , DNA Damage , Apoptosis , Cell Line, Tumor , Cell Proliferation
8.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256052

ABSTRACT

Breast cancer stands out as the most widespread form of cancer globally. In this study, the anticancer activities of Clerodendrum chinense (C. chinense) stem ethanolic extract were investigated. High-performance liquid chromatography (HPLC) analysis identified verbascoside and isoverbascoside as the major bioactive compounds in the C. chinense stem extract. Successfully developed nanoparticles exhibited favorable hydrodynamic diameter, polydispersity index, and surface charge, thus ensuring stability after four months of storage. The total phenolic content and total flavonoid contents in the nanoparticles were reported as 88.62% and 95.26%, respectively. The C. chinense stem extract demonstrated a dose-dependent inhibitory effect on MCF-7, HeLa, A549, and SKOV-3 cancer cell lines, with IC50 values of 109.2, 155.6, 206.9, and 423 µg/mL, respectively. C. chinense extract and NPs exhibited dose-dependent cytotoxicity and the highest selectivity index values against MCF-7 cells. A dose-dependent reduction in the colony formation of MCF-7 cells was observed following treatment with the extract and nanoparticles. The extract induced cytotoxicity in MCF-7 cells through apoptosis and necrosis. C. chinense stem extract and nanoparticles decreased mitochondrial membrane potential (MMP) and induced G0/G1 phase arrest in MCF-7 cells. In conclusion, use of C. chinense stem extract and nanoparticles may serve as a potential therapeutic approach for breast cancer, thus warranting further exploration.


Subject(s)
Adenocarcinoma , Breast Neoplasms , Clerodendrum , Humans , Female , Membrane Potential, Mitochondrial , Breast Neoplasms/drug therapy , Apoptosis , Cell Cycle Checkpoints , HeLa Cells , Cell Proliferation , Plant Extracts/pharmacology
9.
Biol Trace Elem Res ; 202(3): 1288-1304, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37392361

ABSTRACT

As a leading global cause of mortality, cancer continues to pose a significant challenge. The shortcomings of prevalent cancer treatments, such as surgery, radiation therapy, and chemotherapy, necessitate the exploration of alternative therapeutic strategies. Selenium nanoparticles (SeNPs) have emerged as a promising solution, with their synthesis being widely researched due to their potential applications. Among the diverse synthesis methods for SeNPs, the green chemistry approach holds a distinctive position within nanotechnology. This research delves into the anti-proliferative and anticancer properties of green-synthesized SeNPs via the cell-free supernatant (CFS) of Lactobacillus casei (LC-SeNPs), with a specific focus on MCF-7 and HT-29 cancer cell lines. SeNPs were synthesized employing the supernatant of L. casei. The characterization of these green-synthesized SeNPs was performed using TEM, FE-SEM, XRD, FT-IR, UV-vis, energy-dispersive X-ray spectroscopy, and DLS. The biological impact of LC-SNPs on MCF-7 and HT-29 cancer cells was examined via MTT, flow cytometry, scratch tests, and qRT-PCR. Both FE-SEM and TEM images substantiated the spherical shape of the synthesized nanoparticles. The biosynthesized LC-SNPs reduced the survival of MCF-7 (by 20%) and HT-29 (by 30%) cells at a concentration of 100 µg/mL. Flow cytometry revealed that LC-SNPs were capable of inducing 28% and 23% apoptosis in MCF-7 and HT-29 cells, respectively. In addition, it was found that LC-SNPs treated MCF-7 and HT-29 cells were arrested in the sub-G1 phase. Gene expression analysis indicated that the expression levels of the CASP3, CASP9, and BAX genes were elevated after treating MCF-7 and HT-29 cells with LC-SNPs. Further, SeNPs were observed to inhibit migration and invasion of MCF-7 and HT-29 cancer cells. The SeNPs, produced via L. casei, demonstrated strong anticancer effects on MCF-7 and HT-29 cells, suggesting their potential as biological agents in cancer treatment following additional in vivo experiments.


Subject(s)
Breast Neoplasms , Colonic Neoplasms , Lacticaseibacillus casei , Nanoparticles , Selenium , Humans , Female , Selenium/metabolism , Breast Neoplasms/drug therapy , HT29 Cells , MCF-7 Cells , Spectroscopy, Fourier Transform Infrared , Nanoparticles/chemistry , Colonic Neoplasms/drug therapy , Apoptosis , Cell Cycle Checkpoints
10.
J Ethnopharmacol ; 321: 117546, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38061441

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Laetiporus sulphureus has long been used as an edible and medicinal mushroom in Asia, America, and Europe. Its fruiting bodies are widely used in folk medicine for treating cancer, gastric diseases, cough, and rheumatism. Polysaccharides are an important bioactive component of mushrooms. In nature, sulfated polysaccharides have never been reported in mushrooms. Furthermore, there is no information on differences in physicochemical properties and anti-breast cancer activities between polysaccharides (PS) and sulfated polysaccharides (SPS) of L. sulphureus. AIM OF THE STUDY: This study aimed to investigate the physicochemical properties of PS and SPS isolated from fruiting bodies of L. sulphureus and examine their anti-proliferative effects and mechanism(s) of action on MDA-MB-231 breast cancer cells. METHODS: Polysaccharides (PS) were isolated using hot water and ethanol precipitation methods. Sulfated polysaccharides (SPS) were isolated by the papain-assisted hydrolysis method. Physicochemical properties comprising sugar, protein, uronic acid, and sulfate contents, and molecular weight, monosaccharide composition, and structural conformation were analyzed on PS and SPS. In the anti-cancer study, a triple-negative breast cancer cell line (MDA-MB-231) and a normal human mammary epithelial cell line (H184B5F5/M10) were used to evaluate the anti-proliferative activity of PS and SPS, and their mechanism(s) of action. RESULTS: The results showed that SPS, which had higher sulfate and protein contents and diversified monosaccharide composition, exhibited more potent anti-proliferative activity against MDA-MB-231 cells than PS. Furthermore, it had a selective cytotoxic effect on breast cancer cells but not the normal cells. SPS induced cell cycle arrest at G0/G1 phase via down-regulating CDK4 and cyclin D1 and up-regulating p21 protein expression. Breast cancer cell apoptosis was not observed until 72 h after SPS treatment. In addition, SPS also markedly inhibited breast cancer cell migration. CONCLUSION: This study demonstrates that SPS exhibited selective cytotoxicity and was more potent than PS in inhibiting MDA-MB-231 cell proliferation. The contents of sulfate and protein, and monosaccharide composition could be the main factors affecting the anti-breast cancer activity of L. sulphureus SPS.


Subject(s)
Agaricales , Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Sulfates/analysis , Cell Cycle Checkpoints , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/analysis , Apoptosis , Triple Negative Breast Neoplasms/drug therapy , Fruiting Bodies, Fungal/chemistry , Cell Movement , Monosaccharides/analysis , Cell Line, Tumor , Cell Cycle
11.
Nat Prod Res ; 38(5): 768-772, 2024.
Article in English | MEDLINE | ID: mdl-37013695

ABSTRACT

The study evaluated the therapeutic potential of ethanolic leaf extract of Piliostigma foveolatum (Dalzell) Thoth. (EEBF), its toluene, ethylacetate, methanol soluble fractions (viz. TFBF, EFBF, MFBF), and isolated phytoconstituents against lung cancer. Four compounds were isolated from MFBF by column chromatography and preparative HPLC. Structures were elucidated by IR, 13C-NMR, 1H-NMR, mass spectroscopy and identified as Quercetin, Kaempferol, Isorhamnetin, and ß-glucogallin. EEBF and its biofractions exhibited remarkable antiproliferative activity with GI50<85µg/mL, while isolated Quercetin, Kaempferol, Isorhamnetin, and ß-Glucogallin displayed GI50 values of 56.15 ± 1.16 µM, 68.41 ± 3.98 µM, 55.08 ± 0.57 µM and 58.99 ± 12.39 µM respectively. MFBF demonstrated significant apoptotic activity with 42.24 ± 0.57% cells in early and 4.61 ± 0.88% cells in late apoptosis comparable to standard Doxorubicin. Kaempferol exhibited 23.03 ± 0.37% cells in early and 2.11 ± 0.55% cells in late apoptosis, arresting Hop-62 cells in S-phase. In silico molecular docking, revealed that isolated constituents effectively bound to the same binding site of caspase-3 as Doxorubicin, highlighting their apoptotic mode of action.


Subject(s)
Hydrolyzable Tannins , Kaempferols , Quercetin , Quercetin/pharmacology , Kaempferols/pharmacology , Cell Line, Tumor , Molecular Docking Simulation , Cell Cycle Checkpoints , Apoptosis , Doxorubicin , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Cycle
12.
Sci Total Environ ; 913: 169730, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38160834

ABSTRACT

Bisphenol A (BPA) is a phenolic organic synthetic compound that is used as the raw material of polycarbonate plastics, and its safety issues have recently attracted wide attention. Selenium (Se) deficiency has gradually developed into a global disease affecting intestinal function via oxidative stress and apoptosis. However, the toxic effects and potential mechanisms of BPA exposure and Se deficiency in the chicken intestines have not been studied. In this study, BPA exposure and/or Se deficiency models were established in vivo and in vitro to investigate the effects of Se deficiency and BPA on chicken jejunum. The results showed that BPA exposure and/or Se deficiency increased jejunum oxidative stress and DNA damage, activated P53 pathway, led to mitochondrial dysfunction, and induced apoptosis and cell cycle arrest. Using protein-protein molecular docking, we found a strong binding ability between P53 and peroxisome proliferator-activated receptor γ coactivator-1, thereby regulating mitochondrial dysfunctional apoptosis. In addition, we used N-acetyl-L-cysteine and pifithrin-α for in vitro intervention and found that N-acetyl-L-cysteine and pifithrin-α intervention reversed the aforementioned adverse effects. This study clarified the potential mechanism by which Se deficiency exacerbates BPA induced intestinal injury in chickens through reactive oxygen species/P53, which provides a new idea for the study of environmental combined toxicity of Se deficiency, and insights into animal intestinal health from a new perspective.


Subject(s)
Benzhydryl Compounds , Benzothiazoles , Phenols , Selenium , Toluene/analogs & derivatives , Animals , Reactive Oxygen Species/metabolism , Selenium/toxicity , Selenium/metabolism , Chickens/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylcysteine/pharmacology , Molecular Docking Simulation , Oxidative Stress , Intestines , Apoptosis , Cell Cycle Checkpoints
13.
BMC Complement Med Ther ; 23(1): 436, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049779

ABSTRACT

BACKGROUND: Despite the critical progress of non-small cell lung cancer (NSCLC) therapeutic approaches, the clinical outcomes remain considerably poor. The requirement of developing novel therapeutic interventions is still urgent. In this study, we showed for the first time that diosbulbin C, a natural diterpene lactone component extracted from traditional Chinese medicine Dioscorea bulbifera L., possesses high anticancer activity in NSCLC. METHODS: A549 and NCI-H1299 cells were used. The inhibitory effects of the diosbulbin C on NSCLC cell proliferation were evaluated using cytotoxicity, clone formation, EdU assay, and flow cytometry. Network pharmacology methods were used to explore the targets through which the diosbulbin C inhibited NSCLC cell proliferation. Molecular docking, qRT-PCR, and western blotting were used to validate the molecular targets and regulated molecules of diosbulbin C in NSCLC. RESULTS: Diosbulbin C treatment in NSCLC cells results in a remarkable reduction in cell proliferation and induces significant G0/G1 phase cell cycle arrest. AKT1, DHFR, and TYMS were identified as the potential targets of diosbulbin C. Diosbulbin C may inhibit NSCLC cell proliferation by downregulating the expression/activation of AKT, DHFR, and TYMS. In addition, diosbulbin C was predicted to exhibit high drug-likeness properties with good water solubility and intestinal absorption, highlighting its potential value in the discovery and development of anti-lung cancer drugs. CONCLUSIONS: Diosbulbin C induces cell cycle arrest and inhibits the proliferation of NSCLC cells, possibly by downregulating the expression/activation of AKT, DHFR, and TYMS.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Dioscorea , Lung Neoplasms , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Molecular Docking Simulation , Apoptosis , Cell Line, Tumor , Cell Cycle Checkpoints , Cell Proliferation , G1 Phase
14.
Molecules ; 28(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067602

ABSTRACT

Globally, prostate cancer is among the most threatening and leading causes of death in men. This study, therefore, aimed to search for an ideal antitumor strategy with high efficacy, low drug resistance, and no or few adverse effects. Resistomycin is a natural antibiotic derived from marine actinomycetes, and it possesses various biological activities. Prostate cancer cells (PC3) were treated with resistomycin (IC12.5: 0.65 or IC25: 1.3 µg/mL) or 5-fluorouracil (5-FU; IC25: 7 µg/mL) for 24 h. MTT assay and flow cytometry were utilized to assess cell viability and apoptosis. Oxidative stress, apoptotic-related markers, and cell cycle were also assessed. The results revealed that the IC50 of resistomycin and 5-FU on PC3 cells were 2.63 µg/mL and 14.44 µg/mL, respectively. Furthermore, treated cells with the high dose of resistomycin showed an increased number of apoptotic cells compared to those treated with the lower dose. Remarkable induction of reactive oxygen species generation and lactate dehydrogenase (LDH) leakage with high malondialdehyde (MDA), carbonyl protein (CP), and 8-hydroxyguanosine (8-OHdG) contents were observed in resistomycin-treated cells. In addition, marked declines in glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in PC3 cells subjected to resistomycin therapy were observed. Resistomycin triggered observable cell apoptosis by increasing Bax, caspase-3, and cytosolic cytochrome c levels and decreasing Bcl-2 levels. In addition, notable downregulation of proliferating cell nuclear antigen (PCNA) and cyclin D1 was observed in resistomycin-treated cancerous cells. According to this evaluation, the antitumor potential of resistomycin, in a concentration-dependent manner, in prostate cancer cells was achieved by triggering oxidative stress, mitochondrial apoptosis, and cell cycle arrest in cancer cells. In conclusion, our investigation suggests that resistomycin can be considered a starting point for developing new chemotherapeutic agents for human prostate cancer.


Subject(s)
Apoptosis , Prostatic Neoplasms , Male , Humans , Oxidative Stress , Cell Cycle Checkpoints , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Fluorouracil/pharmacology , Reactive Oxygen Species/metabolism , Cell Survival
15.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139241

ABSTRACT

Breast cancer (BC) continues to be one of the major causes of cancer deaths in women. Progress has been made in targeting hormone and growth factor receptor-positive BCs with clinical efficacy and success. However, little progress has been made to develop a clinically viable treatment for the triple-negative BC cases (TNBCs). The current study aims to identify potent agents that can target TNBCs. Extracts from microbial sources have been reported to contain pharmacological agents that can selectively inhibit cancer cell growth. We have screened and identified pigmented microbial extracts (PMBs) that can inhibit BC cell proliferation by targeting legumain (LGMN). LGMN is an oncogenic protein expressed not only in malignant cells but also in tumor microenvironment cells, including tumor-associated macrophages. An LGMN inhibition assay was performed, and microbial extracts were evaluated for in vitro anticancer activity in BC cell lines, angiogenesis assay with chick chorioallantoic membrane (CAM), and tumor xenograft models in Swiss albino mice. We have identified that PMB from the Exiguobacterium (PMB1), inhibits BC growth more potently than PMB2, from the Bacillus subtilis strain. The analysis of PMB1 by GC-MS showed the presence of a variety of fatty acids and fatty-acid derivatives, small molecule phenolics, and aldehydes. PMB1 inhibited the activity of oncogenic legumain in BC cells and induced cell cycle arrest and apoptosis. PMB1 reduced the angiogenesis and inhibited BC cell migration. In mice, intraperitoneal administration of PMB1 retarded the growth of xenografted Ehrlich ascites mammary tumors and mitigated the proliferation of tumor cells in the peritoneal cavity in vivo. In summary, our findings demonstrate the high antitumor potential of PMB1.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Animals , Mice , Breast Neoplasms/metabolism , Bacillus subtilis , Exiguobacterium , Cell Cycle Checkpoints , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Cell Proliferation , Cell Line, Tumor , Apoptosis , Tumor Microenvironment
16.
Sci Rep ; 13(1): 19208, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932321

ABSTRACT

Mucosal human papillomavirus (HPV) subtypes 16 and 18 are causative agents of cervical cancer, a leading cause of cancer-related deaths among women worldwide. In Japan, eggplant calyx is a folk remedy used to treat common warts. 9-oxo-(10E,12E)-octadecadienoic acid, isolated from eggplant calyx, may have antitumor effects. This study investigated the antitumor effects of 9-oxo-(10E, 12Z)-octadecadienoic acid and 9-oxo-(10E,12E)-octadecadienoic acid (9-oxo-ODAs) on human cervical cancer cells. 9-oxo-ODAs suppressed the proliferation of human cervical cancer cell lines (HeLa, and SiHa) in a concentration-dependent manner (IC50 = 25-50 µM). FCM analysis revealed that 9-oxo-ODAs induced apoptosis. Transcriptome, proteomics, and enrichment analyses revealed that treatment with 9-oxo-ODAs significantly altered the cell cycle and p53 pathways and decreased cyclin-dependent kinase 1 (CDK1) protein expression. Real-time PCR analysis demonstrated that 9-oxo-ODAs reduced CDK1 mRNA expression in a concentration-dependent manner. In vitro, 9-oxo-ODAs reduced the HPV oncoprotein expression. In ex vivo human cervical cancer tissues, 9-oxo-ODAs decreased CDK1 expression and increased cleaved caspase 3, an apoptosis marker. Further, 9-oxo-ODAs showed the potential to suppressed metastatic formation and growth of cervical cancer in vivo. These findings suggest that 9-oxo-ODAs induce cell cycle arrest and apoptosis in HPV-positive human cervical cancer cells, and this process involves CDK1. Consequently, 9-oxo-ODAs may be potential therapeutic agents for cervical cancer.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Cell Cycle Checkpoints , Cyclin-Dependent Kinases/metabolism , HeLa Cells , Apoptosis , Oncogene Proteins/metabolism , Human papillomavirus 16/metabolism , Cell Proliferation , Oncogene Proteins, Viral/genetics , Tumor Suppressor Protein p53/metabolism
17.
Biomed Pharmacother ; 168: 115690, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37939611

ABSTRACT

Colorectal cancer (CRC) is the most prevalent cancer of the digestive tract. Herba Patriniae (also known as Bai Jiang Cao, HP) have been widely used to manage diarrhea, ulcerative colitis, and several cancers, including CRC. Nonetheless, the molecular mechanisms underlying the pharmacological action of HP on CRC remain unclear. This study investigated the underlying mechanisms of HP against CRC using network pharmacology analysis and in vitro and in vivo experiments. The results revealed nine bioactive compounds of HP. Furthermore, 3460 CRC-related targets of the identified active compounds were predicted from the Gene Expression Omnibus (GEO) database. Furthermore, 65 common targets were identified through the intersection of two related targets. Moreover, ten hub genes, including CDK4, CDK2, CDK1, CCND1, CCNB1, CCNA2, MYC, E2F1, CHEK1, and CDKN1A were identified through the topological analysis. Meanwhile, the GO and KEGG pathway analysis revealed that the core target genes were majorly enriched in the p53 and HIF-1 signaling pathways. Moreover, HP promoted apoptosis and suppressed cell proliferation by activating the p53 signaling pathway in a dose-dependent manner, while a similar effect was observed for Isovitexin (the primary component of HP). Overall, this study provides valuable insights into the underlying mechanisms of HP and its component Isovitexin against CRC, providing a theoretical foundation for additional experimental verification of its clinical application.


Subject(s)
Colorectal Neoplasms , Drugs, Chinese Herbal , Tumor Suppressor Protein p53 , Apoptosis , Cell Cycle Checkpoints , Genes, cdc , Tumor Suppressor Protein p53/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Humans , Drugs, Chinese Herbal/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology
18.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003541

ABSTRACT

Prostate cancer (PCa) is the second most common male cancer. Its incidence derives from the interaction between modifiable and non-modifiable factors. The progression of prostate cancer into a more aggressive phenotype is associated with chronic inflammation and increased ROS production. For their biological properties, some phytochemicals from fruits and vegetable emerge as a promise strategy for cancer progression delay. These bioactive compounds are found in the highest amounts in peels and seeds. Poncirus trifoliata (L.) Raf. (PT) has been widely used in traditional medicine and retains anti-inflammatory, anti-bacterial, and anticancer effects. The seeds of P. trifoliata were exhaustively extracted by maceration with methanol as the solvent. The cell proliferation rate was performed by MTT and flow cytometry, while the apoptosis signals were analyzed by Western blotting and TUNEL assay. P. trifoliata seed extract reduced LNCaP and PC3 cell viability and induced cell cycle arrest at the G0/G1phase and apoptosis. In addition, a reduction in the AKT/mTOR pathway has been observed together with the up-regulation of stress-activated MAPK (p38 and c-Jun N-terminal kinase). Based on the study, the anti-growth effects of PT seed extract on prostate tumor cells give indications on the potential of the phytochemical drug for the treatment of this type of cancer. However, future in-depth studies are necessary to identify which components are mainly responsible for the anti-neoplastic response.


Subject(s)
Poncirus , Prostatic Neoplasms , Male , Humans , Receptors, Androgen , Poncirus/chemistry , Cell Cycle Checkpoints , Prostatic Neoplasms/metabolism , Apoptosis , Seeds/metabolism , Cell Line, Tumor , Plant Extracts/pharmacology , Cell Proliferation , Cell Cycle
19.
Food Chem Toxicol ; 182: 114102, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865333

ABSTRACT

Ginger exosome-like nanoparticles (GELNs) have been extensively implicated in alleviating inflammation, maintaining intestinal microbiome and are considered competent drug delivery vehicles. Despite this, the current knowledge of the GELN interaction with cancer cells is limited. Triple-negative breast cancer (TNBC), an aggressive variant lacking efficient therapeutics, necessitates novel natural counterparts with minimal side effects. This study investigates the action of GELNs isolated from ginger rhizomes against TNBC cells. GELNs were isolated by ultracentrifugation and characterized physicochemically. The interaction of GELNs with TNBC cells (MDA-MB-231) was studied in detail. The GELNs induced a concentration-dependent decrease in cell viability in MDA-MB-231 cells without affecting the normal cell lines tested. GELNs induced apoptosis as indicated by morphological changes, nuclear fragmentation, membrane damage, phosphatidyl serine translocation, ROS generation, drop in mitochondrial membrane potential, expression of apoptotic specific proteins, and increased caspase activity. GELNs also instigated cell cycle arrest, retarded cell migration and colony formation in TNBC cells. These findings report a novel action of GELNs against TNBC cells and a closer look at the underlying molecular mechanism of this interspecies communication. This opens newer prospects for using dietary ELNs to target therapeutically challenging cancers.


Subject(s)
Exosomes , Nanoparticles , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , MDA-MB-231 Cells , Exosomes/metabolism , Cell Line, Tumor , Cell Cycle Checkpoints , Apoptosis , Cell Proliferation
20.
Mol Biol Rep ; 50(12): 9845-9857, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37847443

ABSTRACT

BACKGROUND: Apoptotic agents from natural products like phenolic compounds can be used effectively in the treatment of cancer. Chlorogenic acid (CGA) is one of the phenolic compounds in medicinal plants with anti-cancer properties. In this research, we aimed to explore the anti-cancer mode of action of CGA on colorectal cancer (CRC) cells in vitro conditions. METHODS: HT-29 and HEK-293 cells were cultured after MTT assay for 24 h with CGA 100 µM, and without CGA. Then, flow cytometry assays and the expression of apoptosis-related genes including caspase 3 and 9, Bcl-2 and Bax, and cell cycle-related genes including P21, P53 and NF-κB at mRNA and protein levels were examined. Finally, we measured the amount of intracellular reactive oxygen species (ROS). RESULTS: The cell viability of all two-cell lines decreased in a dose-dependent manner. Moreover, CGA induces cell cycle arrest in HT-29 cells by increasing the expression of P21 and P53. It also induces apoptosis in HT-29 cells by mitigating Bcl-2 and NF-κB expression and elevating caspase 3 and 9 expression and ROS levels. CONCLUSIONS: Considering the cytotoxicity and cell cycle arrest and induction of apoptosis in the colon cancer cell line by CGA, it can be concluded that CGA is a suitable option for the treatment of colon cancer.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Chlorogenic Acid/pharmacology , Caspase 3/genetics , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , HEK293 Cells , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Cycle Checkpoints , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism , Colonic Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL