Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 315
Filter
Add more filters

Publication year range
1.
J Ethnopharmacol ; 289: 115053, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35104575

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Houttuynia cordata Thunb., a plant belonging to the family of Saururaceae, has been used as a traditional Chinese medicine for more than 1500 years. Because of its various pharmacological activities, it was widely used as antipyretic, detoxification, anti-inflammatory drugs. Houttuynia cordata (HC) injection was prepared using contemporary methods to extract effective components from H. cordata Thunb. However, the adverse event reports of HC injection are accumulating remarkably with the HC injection clinical applications increased. Previous studies demonstrated that the major side effects of HC injection were anaphylactoid reactions. Our work might shed the light on the role of Mas-related G-protein coupled receptor-X2 (MRGPRX2) in modulating drug-induced anaphylactoid reactions. AIM OF THE STUDY: We aimed to investigate the role of the mouse Mas-related G-protein coupled receptor B2 (Mrgprb2) (the orthologous gene of human MRGPRX2) in anaphylactoid reactions induced by HC injection. MATERIALS AND METHODS: Mrgprb2 related anaphylactoid reactions induced by HC injection were investigated by histamine/ß-hexosaminidase releasing, mast cell degranulation, and hind paw swelling assays by using a Mrgprb2 knockout mouse model. Furthermore, the transcriptomic profiles of the anaphylactoid reaction induced by HC injection was analyzed by RNA sequencing. RESULTS: Mice without Mrgprb2 exhibited significantly decreasing in mast cell degranulation, serum histamine release, and hind paw swelling degrees. The RNA sequencing results indicated that Mrgprb2 could play a pivotal role in HC injection induced anaphylactoid reaction mediated by mTOR/AMPK pathway. Intriguingly, our results showed that Mrgprb2 might involve in Compound 48/80 induced anaphylactoid reactions mediated by Reelin/E-cadherin axis, which suggested different roles of Mrgprb2 in anaphylactoid reactions induced by HC injection and C48/80. CONCLUSION: Our studies reported effects and underlying mechanisms of Mrgprb2 in the anaphylactoid reaction induced by HC injection.


Subject(s)
Anaphylaxis/etiology , Drugs, Chinese Herbal/toxicity , Houttuynia/chemistry , Receptors, G-Protein-Coupled/genetics , Anaphylaxis/genetics , Animals , Cell Degranulation/drug effects , Drugs, Chinese Herbal/administration & dosage , Female , Histamine Release/drug effects , Male , Mast Cells/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , p-Methoxy-N-methylphenethylamine/toxicity
2.
J Pharm Pharmacol ; 74(3): 397-408, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-34969089

ABSTRACT

OBJECTIVES: The ethyl acetate extraction of Artemisia ordosica Krasch (AOK) root showed anti-allergic rhinitis (AR) effect, while the active compounds and pharmacological targets were unknown. METHODS: The P815 degranulation was established by cell counting kit 8 assay, ß-hexosaminidase releasing assay and toluidine blue staining. The flavonoids were screened in vitro. Then toluidine blue staining and ELISA were carried out to investigate the anti-inflammatory effects of the active compound. Network pharmacology was implemented to explain the mechanisms of the active compound. iGEMDOCK was used to investigate the binding between active compound and hub targets. KEY FINDINGS: C48/80 was the optimum reagent in triggering P815 degranulation. Naringenin could significantly decrease P815 degranulation. Meanwhile, naringenin could remarkably increase the IL-4 and decrease the tumour necrosis factor-α. The effect of naringenin on AR was achieved by regulating multiple targets (e.g. AKT1, MAPK3, VEGFA) and pathways (e.g. pathways in cancer, VEGF signalling pathway). Nine hub proteins were obtained by topological analysis. Multiple hydrogen bonds and van der Waals forces were formed between the naringenin and the residues of hub proteins. CONCLUSIONS: Naringenin might be one of the effective ingredients of AOK against AR. And its effects could achieve through regulating multiple targets and pathways.


Subject(s)
Artemisia/chemistry , Flavanones/pharmacology , Mast Cells/drug effects , Rhinitis, Allergic/drug therapy , Acetates/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Cell Degranulation/drug effects , Cell Line, Tumor , Flavanones/isolation & purification , Mast Cells/metabolism , Mice , Molecular Docking Simulation , Network Pharmacology , Plant Roots
3.
Biochem Biophys Res Commun ; 577: 32-37, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34500233

ABSTRACT

4,8-Sphingadienines (SD), metabolites of glucosylceramides (GlcCer), are sometimes determined as key mediators of the biological activity of dietary GlcCer, and cis/trans geometries of 4,8-SD have been reported to affect its activity. Since regulating excessive activation of mast cells seems an important way to ameliorate allergic diseases, this study was focused on cis/trans stereoisomeric-dependent inhibitory effects of 4,8-SD on mast cell activation. Degranulation of RBL-2H3 was inhibited by treatment of 4-cis-8-trans- and 4-cis-8-cis-SD, and their intradermal administrations ameliorated ear edema in passive cutaneous anaphylaxis reaction, but 4-trans-8-trans- and 4-trans-8-cis-SD did not. Although the activation of mast cells depends on the bound IgE contents, those stereoisomers did not affect IgE contents on RBL-2H3 cells after the sensitization of anti-TNP IgE. These results indicated that 4-cis-8-trans- and 4-cis-8-cis-SD directly inhibit the activation of mast cells. In conclusion, it was assumed that 4,8-SD stereoisomers with cis double bond at C4-position shows anti-allergic activity by inhibiting downstream pathway after activation by the binding of IgE to mast cells.


Subject(s)
Anti-Allergic Agents/pharmacology , Cell Degranulation/drug effects , Ethanolamines/pharmacology , Mast Cells/drug effects , Passive Cutaneous Anaphylaxis/drug effects , Animals , Anti-Allergic Agents/chemistry , Caco-2 Cells , Cell Line, Tumor , Ear/pathology , Edema/prevention & control , Ethanolamines/chemistry , Ethanolamines/metabolism , Female , Glucosylceramides/chemistry , Glucosylceramides/metabolism , Glucosylceramides/pharmacology , Humans , Mast Cells/physiology , Mice, Inbred BALB C , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats , Stereoisomerism
4.
Food Funct ; 12(16): 7448-7468, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34195738

ABSTRACT

The incidence of allergic diseases has increased to such a point that they have become common and have reached epidemic levels. However, their pathogenesis is not fully understood. Paeoniae Radix Rubra is a traditional Chinese medicine that is also used as a dietary supplement. Its main active ingredient is paeoniflorin. Paeoniflorin has good anti-inflammatory, immunomodulation, and antitumor effects. It is utilized in the treatment of various diseases in clinical settings. However, its effects on type I allergies and pseudoallergic reactions have not been comprehensively studied. In this study, we aimed to use DNP-IgE/DNP-BSA and C48/80 to simulate type I allergies and pseudoallergic reactions to evaluate the therapeutic effects of paeoniflorin to these diseases and identify its molecular mechanisms in cell degranulation both in vivo and in vitro. Results showed that paeoniflorin inhibited the degranulation of RBL-2H3 cells induced by these two stimuli (IgE-dependent and IgE-independent stimuli) in a dose-dependent manner. Moreover, qPCR and western blot analyses indicated that paeoniflorin may regulate the IgE/FcεR I, MRGPRB3, and downstream signal transduction pathways to exert its therapeutic effects on type I allergies and pseudoallergic reactions. In addition, DNP-IgE/DNP-BSA and compound 48/80 were used to induce the establishment of a passive cutaneous anaphylaxis mouse model. Paeoniflorin was found to suppress the extravasation of Evans Blue and tissue edema in the ears, back skin, and paws of the mice. This result further confirmed that paeoniflorin has a notable therapeutic effect on type I allergies and pseudoallergic reactions. Therefore, paeoniflorin could potentially be used as a drug for the treatment of type I allergies and pseudoallergic reactions. This study provides new insights into expanding the treatment range of paeoniflorin and its pharmacological mechanism.


Subject(s)
Cell Degranulation/drug effects , Glucosides/pharmacology , Immunoglobulin E/drug effects , Mast Cells/drug effects , Monoterpenes/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Disease Models, Animal , Mice , Plant Extracts/pharmacology
5.
J Ethnopharmacol ; 280: 114454, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34329716

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: A Traditional Chinese Medicine (TCM) formula (VYAC) consists of three herbs including Viola yedoensis Makino, herb (Violaceae, Viola), Sophora flavescens Aiton, root (Fabaceae, Sophora) and Dictamnus dasycarpus Turcz, root and rhizome (Rutaceae, Dictamnus), has been traditionally prescribed to treat various skin diseases in clinic. AIM OF THE STUDY: This study aims to investigate the therapeutic effects of VYAC on the 2,4-dinitrobenzene (DNCB) induced atopic dermatitis (AD)-like mice and to explore the underlying mechanisms. MATERIALS AND METHODS: VYAC was extracted with 70 % aqueous ethanol and lyophilized powder was used. AD-like mice were challenged by DNCB, VYAC (150 and 300 mg/kg) were oral administration daily from day 7 to day 28. At the end of experiment, the clinical scores were recorded, serum and skin in the dorsal were isolated to evaluate the therapeutic effects of VYAC. RBL-2H3 cells were stimulated with C48/80 for degranulation and plasmids expressing constitutively active form of Syk (Silence or overexpression) were transfected into RBL-2H3 cells to explore the underlying mechanisms in vitro. RESULTS: VYAC significantly ameliorated the cardinal symptoms in the DNCB-induced AD-like mice by repairing the skin barrier function, inhibiting mast cells infiltration, restraining the serum IgE and histamine release and decreasing TNF-α, IL-4 as well as Syk mRNA level in dorsal skin and alleviating inflammation. Besides, VYAC significantly blocked RBL-2H3 cells degranulation, reduced ß-hexosaminidase and histamine release, and suppressed NF-κB pathway. What's more, the degranulation of RBL-2H3 was reduced after Syk silence and increased after Syk overexpression. CONCLUSION: Our findings clearly suggested that VYAC treat AD through inhibiting the inflammatory mediator productions and blocking mast cell degranulation via suppressing Syk mediated NF-κB pathway.


Subject(s)
Dermatitis, Atopic/drug therapy , Drugs, Chinese Herbal/pharmacology , Mast Cells/drug effects , NF-kappa B/metabolism , Animals , Cell Degranulation/drug effects , Cell Line, Tumor , Dermatitis, Atopic/pathology , Dinitrochlorobenzene , Disease Models, Animal , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Female , Gene Silencing , Inflammation Mediators/metabolism , Mice , Mice, Inbred BALB C , Rats , Syk Kinase/genetics
6.
Front Immunol ; 12: 585595, 2021.
Article in English | MEDLINE | ID: mdl-34093515

ABSTRACT

Introduction: Asthma is a chronic and recurring airway disease, which related to mast cell activation. Many compounds derived from Chinese herbal medicine has promising effects on stabilizing mast cells and decreasing inflammatory mediator production. Safranal, one of the active compounds from Crocus sativus, shows many anti-inflammatory properties. In this study, we evaluated the effect of safranal in ovalbumin (OVA)-induced asthma model. Furthermore, we investigate the effectiveness of safranal on stabilizing mast cell and inhibiting the production of inflammatory mediators in passive systemic anaphylaxis (PSA) model. Methods: OVA-induced asthma and PSA model were used to evaluate the effect of safranal in vivo. Lung tissues were collected for H&E, TB, IHC, and PAS staining. ELISA were used to determine level of IgE and chemokines (IL-4, IL-5, TNF-α, and IFN-γ). RNA sequencing was used to uncovers genes that safranal regulate. Bone marrow-derived mast cells (BMMCs) were used to investigate the inhibitory effect and mechanism of safranal. Cytokine production (IL-6, TNF-α, and LTC4) and NF-κB and MAPKs signaling pathway were assessed. Results: Safranal reduced the level of serum IgE, the number of mast cells in lung tissue were decreased and Th1/Th2 cytokine levels were normalized in OVA-induced asthma model. Furthermore, safranal inhibited BMMCs degranulation and inhibited the production of LTC4, IL-6, and TNF-α. Safranal inhibits NF-κB and MAPKs pathway protein phosphorylation and decreases NF-κB p65, AP-1 nuclear translocation. In the PSA model, safranal reduced the levels of histamine and LTC4 in serum. Conclusions: Safranal alleviates OVA-induced asthma, inhibits mast cell activation and PSA reaction. The possible mechanism occurs through the inhibition of the MAPKs and NF-κB pathways.


Subject(s)
Allergens/immunology , Asthma/etiology , Cyclohexenes/pharmacology , Mast Cells/drug effects , Mast Cells/immunology , Ovalbumin/adverse effects , Terpenes/pharmacology , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Asthma/drug therapy , Asthma/metabolism , Asthma/pathology , Cell Degranulation/drug effects , Cell Degranulation/immunology , Cyclohexenes/administration & dosage , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Female , Immunoglobulin E/immunology , Inflammation Mediators/metabolism , Mast Cells/metabolism , Mice , NF-kappa B/metabolism , Ovalbumin/immunology , Signal Transduction/drug effects , Terpenes/administration & dosage
7.
Phytother Res ; 35(6): 3181-3193, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33893660

ABSTRACT

Anaphylactoid reactions are potentially fatal allergic diseases caused by mast cells (MCs), which release histamine and lipid mediators under certain stimuli. Therefore, there is an urgent need to develop new drug candidates to treat anaphylactoid reactions. The MrgX2 receptor mediates anaphylactoid reactions that cause inflammatory diseases. Cortex dictamni is a Chinese herb used for treating allergy-related diseases; however, its active compound is still unknown and its mechanism of action has not yet been reported. The aim of this study was to screen the anti-anaphylactoid compound from C. dictamni extracts. An MrgX2/CMC-HPLC method was established for screening MrgX2-specific compounds retained from the alcohol extract of C. dictamni. A mouse model of hindpaw extravasation was used to evaluate the anti-anaphylactoid effect of this ingredient. Intracellular Ca2+ mobilization was assessed using a calcium imaging assay. Enzyme immunoassays were performed to measure cytokine and chemokine release levels. The molecular signaling pathways were explored by western blotting. As a result, dictamnine was identified as an effective compound using the MrgX2/CMC method, which remarkably suppressed MC intracellular Ca2+ mobilization and the release of de novo degranulated substances, and inhibited PKC-PLCγ-IP3R-associated protein signaling molecules. Hence, dictamnine is a novel therapeutic candidate for anaphylactoid reactions via MrgX2.


Subject(s)
Anaphylaxis/drug therapy , Mast Cells/drug effects , Nerve Tissue Proteins/metabolism , Quinolines/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Animals , Calcium/metabolism , Cell Degranulation/drug effects , Chemokines/metabolism , Cytokines/metabolism , Disease Models, Animal , Histamine/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Signal Transduction
8.
Pharm Res ; 38(4): 569-581, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33754256

ABSTRACT

PURPOSE: Ephedra herb (Mao) exerts potent anti-allergic effects. This study aimed to examine the underlying mechanisms of Mao on allergic inflammation using in vitro cultured mast cells (MCs) and an in vivo model of MC-dependent anaphylaxis. METHODS: Bone marrow-derived MCs (BMMCs) were presensitized with anti-2,4-dinitrophenol (DNP) immunoglobulin E (IgE) and challenged with antigens (Ag; DNP-human serum albumin). Degranulation responses and cell surface high-affinity receptor for IgE (FcεRI) expression were assessed with/without Mao treatment. Passive systemic anaphylaxis (PSA)-treated mice were administered Mao and the pathophysiological responses were evaluated. RESULTS: Mao inhibited Ag-induced BMMC degranulation, but not polyclonal activation with phorbol 12-myristate 13-acetate (PMA) and ionomycin, indicating that Mao inhibits IgE-dependent activation of BMMCs. Mao-treated BMMCs exhibited significant reductions in expression of surface IgE and its receptor FcεRI. Analysis of subcellular localization revealed that Mao induces FcεRI internalization in BMMCs without degranulation. In the PSA mouse model, Mao administration prevented antigen-induced hypothermia. Mao administration significantly reduced cell surface expression of IgE-bound FcεRI on peritoneal MCs. CONCLUSIONS: Mao induced FcεRI internalization in MCs, thereby inhibiting Ag-induced IgE-dependent degranulation. The inhibitory effects of Mao on MC degranulation may offer a novel therapeutic approach for allergic diseases.


Subject(s)
Anaphylaxis/drug therapy , Anti-Allergic Agents/pharmacology , Ephedra/chemistry , Mast Cells/drug effects , Plant Extracts/pharmacology , Anaphylaxis/immunology , Animals , Anti-Allergic Agents/therapeutic use , Cell Degranulation/drug effects , Cell Degranulation/immunology , Cells, Cultured , Disease Models, Animal , Female , Humans , Immunoglobulin E/metabolism , Ionomycin/immunology , Mast Cells/immunology , Medicine, Kampo/methods , Mice , Plant Extracts/therapeutic use , Plant Stems/chemistry , Primary Cell Culture , Signal Transduction/drug effects , Signal Transduction/immunology , Tetradecanoylphorbol Acetate/immunology
9.
Int Immunopharmacol ; 94: 107394, 2021 May.
Article in English | MEDLINE | ID: mdl-33582590

ABSTRACT

Black soybean hull extract (BSHE) exhibits a variety of biological activities. However, little is known about the effects of BSHE on immunoglobulin E (IgE)-mediated type I allergic reactions. The anti-allergic effect of BSHE was assessed with the degranulation assay using rat basophilic leukemia RBL-2H3 cells and the passive cutaneous anaphylaxis (PCA) reaction in mice. An active compound in BSHE was identified by ultra-performance liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry analysis. BSHE inhibited the release of ß-hexosaminidase and histamine in RBL-2H3 cells, and cyanidin-3-O-glucoside (C3G) was identified as one of its active compounds. Oral administering of 200 µmol/kg of C3G to IgE-sensitized mice prior to antigen injection suppressed the PCA reaction, as compared with control (p < 0.01). Intravenous administration of BSHE (C3G content, 5.4%) more strongly inhibited PCA responses at lower doses (100 mg/kg, p < 0.01) than oral administration (1,000 mg/kg, p = 0.059). Intravenous C3G also suppressed PCA response at a low dose (40 mg/kg, p < 0.05), showing the same trend as BSHE. This information can be useful to design appropriate formulations of anthocyanin-based drug products to suppress allergic reactions. This study provides evidence for the potential use of BSHE and C3G for the prevention or the treatment of type I allergies.


Subject(s)
Anthocyanins/pharmacology , Anthocyanins/therapeutic use , Cell Degranulation/drug effects , Passive Cutaneous Anaphylaxis/drug effects , Animals , Cell Line , Hexosaminidases/metabolism , Histamine Release/drug effects , Male , Mice, Inbred ICR , Plant Extracts , Rats , Glycine max
10.
Mol Immunol ; 135: 408-420, 2021 07.
Article in English | MEDLINE | ID: mdl-33518365

ABSTRACT

Jing-Fang powder (Schizonepeta tenuifolia Briq. and Saposhnikovia divaricata (Turcz.) Schischk.) was used to treat chronic bronchitis, asthma and chronic urticaria. Based on the preliminary results of screening research on the antiallergic effective parts of Jing-Fang powder, its ethyl acetate extract fractions (JFEE) and isolate D (JFEE-D) showed the best anti-allergic effect. RBL-2H3 cell activation degranulation model and mice passive cutaneous anaphylaxis (PCA) reaction model were used to investigate the effects and mechanisms of JFEE and JFEE-D on IgE-mediated type I allergic reactions. LC-MS was utilized to determine the composition of JFEE and JFEE-D. We found that JFEE and JFEE-D significantly reduced ß-HEX, histamine, IL-4, IL-6 levels in cell supernatants, and improved the degree and morphology of cell degranulation. JFEE and JFEE-D significantly inhibited the increase of ear vascular permeability and abnormal increase of serum IgE, TNF-α, IL-6 levels. JFEE and JFEE-D inhibited mRNA expression of PI3K and Akt and down-regulated protein expression of PI3K, Akt, p-Akt, and PLCγ1 in sensitized RBL-2H3 cells. The combined use of JFEE and JFEE-D with pathway inhibitor Wortmannin revealed synergistic down-regulation of PI3K, Akt, and p-Akt protein expression. The combined use of pathway agonist IGF-1, JFEE and JFEE-D down-regulated increase of p-Akt/Akt protein expression. Moreover, JFEE and JFEE-D significantly inhibited protein expression of PI3K, p-Akt and PLCγ1 in PCA model mice. These results show that JFEE and JFEE-D inhibit type I allergic reactions by inhibiting PI3K/Akt signaling pathway.


Subject(s)
Anti-Allergic Agents/pharmacology , Apiaceae/chemistry , Lamiaceae/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Anaphylaxis/drug therapy , Anaphylaxis/prevention & control , Animals , Asthma/drug therapy , Bronchitis, Chronic/drug therapy , Capillary Permeability/drug effects , Cell Degranulation/drug effects , Cell Line , Chronic Urticaria/drug therapy , Mice , Phosphatidylinositol 3-Kinases/biosynthesis , Proto-Oncogene Proteins c-akt/biosynthesis , Rats , Wortmannin/pharmacology
11.
Int J Biol Macromol ; 171: 275-287, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33422511

ABSTRACT

In this work, cashew apple pectin (CP) of the species Anacardium occidentale L. was used as an encapsulation matrix for hydrophobic drugs. The model drug chosen was mangiferin (Mf), a glycosylated C-xanthone which has antioxidant properties but low solubility in aqueous medium. CP (1-100 µg mL-1) was not toxic to human neutrophils and also did not significantly interfere with the pro-inflammatory mechanism of these cells in the concentration range of 12.5 and 100 µg mL-1. The results are promising because they show that pectin encapsulated mangiferin after spray drying presented an efficiency of 82.02%. The results obtained in the dissolution test, simulating the release of mangiferin in the gastrointestinal tract (pH 1.2, 4.6 and 6.8) and using Franz diffusion cells (pH 7.4), showed that cashew pectin may be a promising vehicle in prolonged drug delivery systems for both oral and dermal applications.


Subject(s)
Anacardium/chemistry , Drug Carriers/administration & dosage , Drug Compounding/methods , Neutrophils/drug effects , Pectins/administration & dosage , Spray Drying , Xanthones/administration & dosage , Capsules , Cell Degranulation/drug effects , Cells, Cultured , Chemistry Techniques, Analytical , Delayed-Action Preparations , Diffusion , Drug Liberation , Fruit/chemistry , Humans , Microscopy, Electron, Scanning , Pectins/isolation & purification , Peroxidase/analysis , Solubility , Viscosity
12.
Lasers Med Sci ; 36(2): 375-386, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32696423

ABSTRACT

We investigated the probable involvement of mast cell degranulation and their numbers in the remodeling step of wound healing in a diabetic ischemic skin wound model treated with photobiomodulation plus curcumin. A total of 108 adult male Wistar rats were randomized into one healthy control and five diabetic groups. Type I diabetes was inflicted in 90 of the 108 rats. After 1 month, an excisional wound was generated in each of the 108 rats. There were one healthy group (group 1) and five diabetic groups as follows: group 2 was the untreated diabetic control group and group 3 rats were treated with sesame oil. Rats in group 4 were treated with photobiomodulation (890 nm, 890 ± 10 nm, 80 Hz, 0.2 J/cm2) and those in group 5 received curcumin dissolved in sesame oil. Group 6 rats were treated with photobiomodulation and curcumin. We conducted stereological and tensiometric tests on days 4, 7, and 15 after treatment. The results indicated that photobiomodulation significantly improved wound strength in the diabetic rats and significantly decreased the total numbers of mast cells. The diabetic control group had significantly reduced tensiometric properties of the healing wounds and a significant increase in the total numbers of mast cells. Photobiomodulation significantly improved the healing process in diabetic animals and significantly decreased the total number of mast cells. The increased numbers of mast cells in the diabetic control group negatively affected tensiometric properties of the ischemic skin wound.


Subject(s)
Curcumin/pharmacology , Diabetes Mellitus, Experimental/pathology , Low-Level Light Therapy , Mast Cells/drug effects , Mast Cells/radiation effects , Wound Healing/drug effects , Wound Healing/radiation effects , Animals , Biomechanical Phenomena , Cell Count , Cell Degranulation/drug effects , Cell Degranulation/radiation effects , Male , Mast Cells/physiology , Rats, Wistar , Stress, Mechanical
13.
Biomed Pharmacother ; 133: 111029, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33254020

ABSTRACT

Asthma is a chronic inflammatory lung disorder with continuously increasing prevalence worldwide. Novel strategies are needed to prevent or improve asthma. The aim of this study was to investigate the effects of sophoricoside from Sophora japonica on allergic asthma. The mature seeds of S. japonica contain a large amount of sophoricoside. Sophoricoside reduced allergic and asthmatic symptoms by suppressing airway inflammation and antibody-antigen reaction in mouse models. In particular, sophoricoside suppressed immune cell recruitment into the airway lumens of the lungs and production of pro-inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) of ovalbumin (OVA)-induced mice. It also decreased the amounts of histamine and arachidonic acid metabolites released in OVA-induced mice and antibody-antigen stimulated mast cells. In addition, sophoricoside decreased differentiation of naïve CD4+ T cells into T helper type 1 (Th1), Th2, and Th17 cells. Overall, we demonstrated that sophoricoside improved allergic asthma by suppressing mast cell activation and CD4+ T cell differentiation.


Subject(s)
Anti-Allergic Agents/pharmacology , Anti-Asthmatic Agents/pharmacology , Benzopyrans/pharmacology , CD4-Positive T-Lymphocytes/drug effects , Cell Differentiation/drug effects , Lung/drug effects , Mast Cells/drug effects , Plant Extracts/pharmacology , Sophora , Animals , Anti-Allergic Agents/isolation & purification , Anti-Asthmatic Agents/isolation & purification , Asthma/drug therapy , Asthma/immunology , Asthma/metabolism , Benzopyrans/isolation & purification , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Degranulation/drug effects , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Histamine Release/drug effects , Immunoglobulins/metabolism , Inflammation Mediators/metabolism , Lung/immunology , Lung/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice, Inbred BALB C , Ovalbumin , Plant Extracts/isolation & purification , Sophora/chemistry
14.
Phytomedicine ; 80: 153391, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33113502

ABSTRACT

BACKGROUND: Pseudo-allergic reactions are potentially fatal hypersensitivity responses caused by mast cell activation. α-linolenic acid (ALA) is known for its anti-allergic properties. However, its potential anti-pseudo-allergic effects were not much investigated. PURPOSE: To investigate the inhibitory effects of ALA on IgE-independent allergy in vitro, and in vivo, as well as the mechanism underlying its effects. METHODS/STUDY DESIGNS: The anti-anaphylactoid activity of ALA was evaluated in passive cutaneous anaphylaxis reaction (PCA) and systemic anaphylaxis models. Calcium imaging was used to assess intracellular Ca2+ mobilization. The release of cytokines and chemokines was measured using enzyme immunoassay kits. Western blot analysis was conducted to investigate the molecules of Lyn-PLCγ-IP3R-Ca2+ and Lyn-p38/NF-κB signaling pathway. RESULTS: ALA (0, 1.0, 2.0, and 4.0 mg/kg) dose-dependently reduced serum histamine, chemokine release, vasodilation, eosinophil infiltration, and the percentage of degranulated mast cells in C57BL/6 mice. In addition, ALA (0, 50, 100, and 200 µM) reduced Compound 48/80 (C48/80) (30 µg/ml)-or Substance P (SP) (4 µg/ml)-induced calcium influx, mast cell degranulation and cytokines and chemokine release in Laboratory of Allergic Disease 2 (LAD2) cells via Lyn-PLCγ-IP3R-Ca2+ and Lyn-p38/NF-κB signaling pathway. Moreover, ALA (0, 50, 100, and 200 µM) inhibited C48/80 (30 µg/ml)- and SP (4 µg/ml)-induced calcium influx in Mas-related G-protein coupled receptor member X2 (MrgX2)-HEK293 cells and in vitro kinase assays confirmed that ALA inhibited the activity of Lyn kinase. In response to 200 µM of ALA, the activity of Lyn kinase by (7.296 ± 0.03751) × 10-5 units/µl and decreased compared with C48/80 (30 µg/ml) by (8.572 ± 0.1365) ×10-5 units/µl. CONCLUSION: Our results demonstrate that ALA might be a potential Lyn kinase inhibitor, which could be used to treat pseudo-allergic reaction-related diseases such as urticaria.


Subject(s)
Anaphylaxis/drug therapy , Anti-Allergic Agents/pharmacology , Passive Cutaneous Anaphylaxis/drug effects , alpha-Linolenic Acid/pharmacology , src-Family Kinases/antagonists & inhibitors , Animals , Cell Degranulation/drug effects , Chemokines/metabolism , Dose-Response Relationship, Drug , Humans , Immunoglobulin E/immunology , Male , Mast Cells/drug effects , Mast Cells/immunology , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , p-Methoxy-N-methylphenethylamine/toxicity , src-Family Kinases/chemistry , src-Family Kinases/immunology , src-Family Kinases/metabolism
15.
Nutrients ; 13(1)2020 Dec 26.
Article in English | MEDLINE | ID: mdl-33375275

ABSTRACT

Zinc plays an important physiological role in the entire body, especially in the immune system. It is one of the most abundant microelements in our organism and an essential component of enzymes and antibacterial proteins. Zinc levels were reported to be correlated with the intensity of innate immunity responses, especially those triggered by neutrophils. However, as the results are fragmentary, the phenomenon is still not fully understood and requires further research. In this study, we aimed to perform a comprehensive assessment and study the impact of zinc on several basic neutrophils' functions in various experimental setups. Human and murine neutrophils were preincubated in vitro with zinc, and then phagocytosis, oxidative burst, degranulation and release of neutrophil extracellular traps (NETs) were analyzed. Moreover, a murine model of zinc deficiency and zinc supplementation was introduced in the study and the functions of isolated cells were thoroughly studied. We showed that zinc inhibits NETs release as well as degranulation in both human and murine neutrophils. Our study revealed that zinc decreases NETs release by inhibiting citrullination of histone H3. On the other hand, studies performed in zinc-deficient mice demonstrated that low zinc levels result in increased release of NETs and enhanced neutrophils degranulation. Overall, it was shown that zinc affects neutrophils' functions in vivo and in vitro. Proper zinc level is necessary to maintain efficient functioning of the innate immune response.


Subject(s)
Cell Degranulation/drug effects , Extracellular Traps/drug effects , Neutrophils/drug effects , Neutrophils/physiology , Zinc/administration & dosage , Animals , Cell Degranulation/physiology , Citrullination/drug effects , Diet , Dietary Supplements , Extracellular Traps/physiology , Histones/metabolism , Humans , Immunity, Innate/physiology , Mice , Mice, Inbred C57BL , Phagocytosis/drug effects , Respiratory Burst/drug effects , Zinc/deficiency
16.
Sci Rep ; 10(1): 20940, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33262354

ABSTRACT

Eucalyptus oil has been used since ancient times for its bactericidal, anti-inflammatory, analgesic and sedative effects. In recent years, the action of Eucalyptus oil has been scientifically proven, and there have been reports that Eucalyptus oil suppresses the production of chemokines, cytokines and lipid mediators in basophils, alveolar macrophages and monocytes. Based on this information, we aimed to verify whether Eucalyptus oil can be used for allergic dermatitis, the incidence of which has been increasing among human skin diseases. This effect was verified using a mouse IgE-mediated local allergic model. In conclusion, topical application of Eucalyptus oil suppressed oedema and vascular permeability enhancement due to IgE-mediated allergic on the skin. In addition, we also verified the degranuration of mast cells, which is a part of its action, and examined whether 1,8-cineole, which is the main component of Eucalyptus oil, suppresses the phosphorylation of PLCγ and p38 directly or indirectly. 1,8-cineole was found to suppress degranulation of mast cells.


Subject(s)
Cell Degranulation , Down-Regulation , Eucalyptus Oil/therapeutic use , Hypersensitivity/drug therapy , Immunoglobulin E/metabolism , Mast Cells/physiology , Receptors, IgE/metabolism , Signal Transduction , Animals , Bone Marrow Cells/drug effects , Calcium/metabolism , Cell Degranulation/drug effects , Chemokines/metabolism , Disease Models, Animal , Down-Regulation/drug effects , Eucalyptol/pharmacology , Inflammation/pathology , Inflammation Mediators/metabolism , Intracellular Space/metabolism , Mast Cells/drug effects , Mice , Models, Biological , Passive Cutaneous Anaphylaxis/drug effects , Phospholipase C gamma/metabolism , Phosphorylation , Signal Transduction/drug effects , Syk Kinase/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases
17.
Phytomedicine ; 79: 153346, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33002828

ABSTRACT

BACKGROUND: Immunoglobulin E (IgE)-mediated mast cell (MC) activation is crucial in multiple allergic diseases. Parkinson disease protein 7 (DJ-1) and Lyn kinase were reported as the receptor-proximal events in IgE receptor (FcεRI) signals in human MC. Kaempferol, a natural flavonol mainly derived from the rhizome of traditional Chinese herb Kaempferia galanga L. (Zingiberaceae), has been known to inhibit allergic reactions, but it was limited to the receptor-distal signals on rat basophilic leukemia cells. A thorough investigation of the inhibitory effects of kaempferol on human MC has not been done. PURPOSE: To investigate the inhibitory effects of kaempferol on IgE-mediated anaphylaxis in vivo and in human MCs, as well as the mechanism underlying its effects, especially the receptor-proximal signals. METHODS: IgE-mediated passive cutaneous anaphylaxis and systemic anaphylaxis model were applied to elucidate the antiallergic activity of kaempferol in vivo. The degranulation assay, calcium imaging, the release of cytokines and chemokines on the laboratory of allergic disease 2 (LAD2) cells were used to evaluate the antiallergic effect of kaempferol in vitro. Western blot analysis was performed to investigate the DJ-1/Lyn signaling pathway and downstream molecules. Kinase activity assay, immunofluorescence, and molecular docking were conducted to confirm the influence of kaempferol on DJ-1/Lyn molecules. RESULTS: Kaempferol dose-dependently attenuated ovalbumin/IgE-induced mice paw swelling, primary MC activation from paw skin, as well as rehabilitated the hypothermia, and reduced the serum concentrations of histamine, tumor necrosis factor-alpha, interleukin-8, and monocyte chemo-attractant protein-1. Additionally, kaempferol suppressed IgE-mediated LAD2 cell degranulation and calcium fluctuation. Remarkably, kaempferol was found to bind with DJ-1 protein, and initially prevented DJ-1 from translocating to the plasma membrane, thereby inhibited full activation of Lyn, and eventually restrained those receptor-distal signaling molecules, involved Syk, Btk, PLCγ, IP3R, PKC, MAPKs, Akt and NF-κB. CONCLUSION: Kaempferol could be used as a DJ-1 modulator for preventing MC-mediated allergic disorders through attenuating Lyn activation.


Subject(s)
Anaphylaxis/drug therapy , Anti-Allergic Agents/pharmacology , Kaempferols/pharmacology , Mast Cells/drug effects , Anaphylaxis/immunology , Animals , Cell Degranulation/drug effects , Cell Line , Dose-Response Relationship, Drug , Humans , Immunoglobulin E/adverse effects , Immunoglobulin E/metabolism , Kaempferols/chemistry , Male , Mast Cells/immunology , Mast Cells/metabolism , Mice, Inbred C57BL , Molecular Docking Simulation , Ovalbumin/toxicity , Passive Cutaneous Anaphylaxis/drug effects , Phospholipase C gamma/metabolism , Protein Deglycase DJ-1/metabolism , Receptors, IgE/metabolism , Signal Transduction/drug effects , src-Family Kinases/metabolism
18.
Molecules ; 25(17)2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32887288

ABSTRACT

In the present study the effects and molecular mechanisms of wheat bran (WB), the hard outer layer of the wheat kernel used in food ingredients, on mast cell-mediated allergic responses in vitro and in vivo were investigated. The water extract of WB inhibited degranulation and expression of allergic and inflammatory mediators such as tumor necrosis factor-α, cyclooxygenase-2 and inducible nitric oxide synthase in antigen-stimulated RBL-2H3 cells. These anti-allergic activities of WB were mediated by the inactivation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase, which play important roles in degranulation and expression of various allergic and inflammatory molecules. In agreement with its in vitro effects, WB inhibited immunoglobulin E (IgE)/antigen-induced and compound 48/80-induced anaphylactic reactions in vivo. Taken together, these findings suggest the pharmacological potential of WB in the regulation of allergic diseases, including allergic rhinitis, atopic dermatitis, asthma and anaphylaxis.


Subject(s)
Dietary Fiber/pharmacology , Hypersensitivity/pathology , Mast Cells/pathology , Plant Extracts/pharmacology , Animals , Antigens/immunology , Cell Degranulation/drug effects , Cell Line , Cell Survival/drug effects , Immunoglobulin E/metabolism , Inflammation Mediators/metabolism , MAP Kinase Signaling System/drug effects , Mast Cells/drug effects , Mast Cells/physiology , Mice, Inbred BALB C , Passive Cutaneous Anaphylaxis/drug effects , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism , beta-N-Acetylhexosaminidases/metabolism , p-Methoxy-N-methylphenethylamine/pharmacology
19.
Eur J Pharmacol ; 885: 173435, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32745602

ABSTRACT

Zanthoxylum piperitum (ZP, 'Japanese pepper') is a traditional medicine and pepper used in Asian countries such as Japan. Hydroxy-α-sanshool, a pungent-tasting substance contained within ZP, has been reported to slightly suppress immunoglobulin E (IgE)-mediated mast cell degranulation. The current study aims to newly identify anti-allergic compounds derived from ZP. We examine the inhibitory mechanisms behind IgE-mediated mast cell degranulation. By inhibitory effect-guided isolation, we identified degranulation inhibitory compounds derived from ZP fruit: 1-acetoxy-7-hydroxy-3, 7-dimethylocta-2E, 5E-diene (ZP1) and 8-hydroxygeranyl acetate (ZP2). ZP1 and ZP2 inhibited IgE-mediated degranulation and A23187-mediated degranulation in RBL-2H3 mast cells. Our findings suggest the inhibition of degranulation by ZP1 and ZP2 was by inhibition of Lyn phosphorylation, followed by inhibition of intracellular Ca2+ mobilization, protein kinase C alpha phosphorylation, membrane ruffling, and granule-to-plasma membrane fusion. Oral administration of ZP1 or ZP2 attenuated an IgE-mediated passive cutaneous anaphylactic reaction in mice. Histological observation suggests that this effect occurred via inhibition of mast cell degranulation. These findings indicate that ZP1 and ZP2 attenuate allergic reaction via inhibition of IgE-mediated mast cell degranulation.


Subject(s)
Anti-Allergic Agents/pharmacology , Cell Degranulation/drug effects , Fruit/chemistry , Hypersensitivity/drug therapy , Immunoglobulin E/drug effects , Mast Cells/drug effects , Zanthoxylum/chemistry , Animals , Calcimycin/pharmacology , Cell Line/drug effects , Cell Survival/drug effects , Male , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Passive Cutaneous Anaphylaxis/drug effects , Rats
20.
Fitoterapia ; 146: 104694, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32712132

ABSTRACT

Resins from various Boswellia species have a long track record in different cultures as a treatment for inflammatory diseases. This study was designed to provide evidence for the anti-inflammatory capacity and medicinal use of Boswellia carteri (Burseraceae). A dichloromethane (DCM) extract of B. carteri gum resin and isolated compounds thereof were immunologically characterized. Flow cytometric-based analysis was performed to investigate the impact of B. carteri extract on proliferation, viability, and function of anti-CD3 and anti-CD28 activated human primary T cells. The secretion level of IL-2 and IFN-γ was determined by a bead array-based flow cytometric technique. HPLC-based activity profiling of the B. carteri extract identified active compounds. The impact of B. carteri extract and isolated compounds on the IL-2 transcription factor activity was addressed using specially designed Jurkat reporter cells. The extract of B. carteri suppressed the proliferation of human primary T lymphocytes in vitro in a concentration-dependent manner, without inducing cytotoxicity. Thereby, the B. carteri extract further reduced the degranulation capacity and cytokine secretion of stimulated human T cells. Transcription factor analysis showed that the immunosuppressive effects of the extract are based on specific NFAT-conditioned suppression within T cell signaling. Through HPLC-based activity profiling of the extract, 3-O-acetyl-alpha-boswellic acid was identified as the compound responsible for the NFAT-based mechanism. The recent study presents a scientific base for the immunosuppressive effects of B. carteri gum resin extract including a mode-of-action via the NFAT-conditioned suppression of T lymphocyte proliferation. The immunosuppressive effects of 3-O-acetyl-alpha-boswellic acid are depicted for the first time.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Boswellia/chemistry , Immunosuppressive Agents/pharmacology , Plant Extracts/pharmacology , T-Lymphocytes/drug effects , Triterpenes/pharmacology , Anti-Inflammatory Agents/isolation & purification , Apoptosis , Cell Degranulation/drug effects , Cell Proliferation/drug effects , Cytokines/analysis , Humans , Immunosuppressive Agents/isolation & purification , Jurkat Cells , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Resins, Plant/pharmacology , Triterpenes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL