Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.818
Filter
Add more filters

Publication year range
1.
J Ethnopharmacol ; 330: 118228, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38643863

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Prostate cancer (PCa) is the most common malignancy of the male genitourinary system and currently lacks effective treatment. Semen Impatientis, the dried ripe seed of Impatiens balsamina L., is described by the Chinese Pharmacopoeia as a traditional Chinese medicine (TCM) and is used in clinical practice to treat tumors, abdominal masses, etc. In our previous study, the ethyl acetate extracts of Semen Impatientis (EAESI) was demonstrated to be the most effective extract against PCa among various extracts. However, the biological effects of EAESI against PCa in vivo and the specific antitumor mechanisms involved remain unknown. AIM OF THE STUDY: In this study, we aimed to investigate the antitumor effect of EAESI on PCa in vitro and in vivo by performing network pharmacology analysis, transcriptomic analysis, and experiments to explore and verify the underlying mechanisms involved. MATERIALS AND METHODS: The antitumor effect of EAESI on PCa in vitro and in vivo was investigated via CCK-8, EdU, flow cytometry, and wound healing assays and xenograft tumor models. Network pharmacology analysis and transcriptomic analysis were employed to explore the underlying mechanism of EAESI against PCa. Activating transcription factor 3 (ATF3) and androgen receptor (AR) were confirmed to be the targets of EAESI against PCa by RT‒qPCR, western blotting, and rescue assays. In addition, the interaction between ATF3 and AR was assessed by coimmunoprecipitation, immunofluorescence, and nuclear-cytoplasmic separation assays. RESULTS: EAESI decreased cell viability, inhibited cell proliferation and migration, and induced apoptosis in AR+ and AR- PCa cells. Moreover, EAESI suppressed the growth of xenograft tumors in vivo. Network pharmacology analysis revealed that the hub targets of EAESI against PCa included AR, AKT1, TP53, and CCND1. Transcriptomic analysis indicated that activating transcription factor 3 (ATF3) was the most likely critical target of EAESI. EAESI downregulated AR expression and decreased the transcriptional activity of AR through ATF3 in AR+ PCa cells; and EAESI promoted the expression of ATF3 and exerted its antitumor effect via ATF3 in AR+ and AR- PCa cells. CONCLUSIONS: EAESI exerts good antitumor effects on PCa both in vitro and in vivo, and ATF3 and AR are the critical targets through which EAESI exerts antitumor effects on AR+ and AR- PCa cells.


Subject(s)
Acetates , Activating Transcription Factor 3 , Mice, Nude , Network Pharmacology , Prostatic Neoplasms , Receptors, Androgen , Xenograft Model Antitumor Assays , Male , Animals , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Acetates/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Mice , Apoptosis/drug effects , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Transcriptome/drug effects , Mice, Inbred BALB C , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects
2.
Integr Cancer Ther ; 23: 15347354241247223, 2024.
Article in English | MEDLINE | ID: mdl-38646808

ABSTRACT

BACKGROUND: Luteolin, a common dietary flavonoid found in plants, has been shown to have anti-cancer properties. However, its exact mechanisms of action in non-small cell lung cancer (NSCLC) are still not fully understood, particularly its role in regulating broader genomic networks and specific gene targets. In this study, we aimed to elucidate the role of microRNAs (miRNAs) in NSCLC treated with luteolin, using A549 cells as a model system. MATERIALS AND METHODS: miRNA profiling was conducted on luteolin-treated A549 cells using Exiqon microarrays, with validation of selected miRNAs by qRT-PCR. Bioinformatic analysis identified the regulatory roles of miRNAs in biological processes and pathways following luteolin treatment. Computational algorithms were employed to identify potential target genes. A549 cells were transfected with miR-106a-5p mimic and inhibitor or their corresponding controls. The expression levels of 2 genes, twist basic helix-loop-helix transcription factor 1 (TWIST1) and matrix metallopeptidase 2 (MMP2), and cell migration were assessed. RESULTS: miRNA profiling identified 341 miRNAs, with 18 exhibiting significantly altered expression (P < 0.05). Subsequent qRT-PCR analysis confirmed altered expression of 6 selected miRNAs. KEGG and GO analyses revealed significant alterations in pathways and biological processes crucial for tumor biology. TWIST1 and MMP2, which both contain conserved miR-106a-5p binding sites, exhibited an inverse correlation with the expression levels of miR-106a-5p. Dual-luciferase reporter assays confirmed TWIST1 and MMP2 as direct targets of miR-106a-5p. Luteolin treatment led to a reduction in A549 cell migration, and this reduction was further amplified by the overexpression of miR-106a-5p. CONCLUSION: Luteolin inhibits A549 cell migration by modulating the miRNA landscape, shedding light on its mechanisms and laying the foundation for miRNA-based therapeutic approaches for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Movement , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Luteolin , Matrix Metalloproteinase 2 , MicroRNAs , Nuclear Proteins , Twist-Related Protein 1 , Up-Regulation , Humans , Luteolin/pharmacology , MicroRNAs/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Cell Movement/drug effects , Cell Movement/genetics , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism , A549 Cells , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Up-Regulation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics
3.
J Ethnopharmacol ; 329: 118061, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38614265

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fangji Huangqi Decoction (FHD) is frequently prescribed for the clinical treatment of wind-cold and wind-dampness pathogenic superficial deficiency syndrome. It also has a notable curative effect on rheumatoid arthritis (RA). AIM OF THE STUDY: The study aimed to explore the possible mechanism of FHD against RA and provided a theoretical basis for alternative therapies for RA. MATERIALS AND METHODS: We used UPLC-Q-TOF-MS to analysis the ingredients and absorbed blood components of FHD. At the same time, the collagen-induced arthritis (CIA) rat model was established to estimate the therapeutic effects on FHD by considering body weight, arthritis score, paw swelling, autonomous movement ability, and synovial microvessel counts. Subsequently, immunofluorescence, immunohistochemistry, and Western blot were employed to detect the anti-angiogenic capacity of FHD in vivo, as well as the levels of apoptosis and autophagy in the synovial tissue. In addition, flow cytometry and Western blot were used to assess the effects of FHD on apoptosis and autophagy in MH7A cells. The effects of FHD on the proliferation and migration of MH7A cells were measured by CCK8 assay, cell migration and, invasion experiments. Finally, a tube formation assay was performed to evaluate the angiogenic capacity of FHD in co-cultures of MH7A cells and HUVEC cells. RESULTS: Through testing of FHD's original formula, a total of 26 active ingredients have been identified, with 17 of them being absorbed into the bloodstream. FHD significantly improved the pathological symptoms and synovial hyperplasia of CIA rats. FHD could suppress the expression of HIF-1α, promote apoptosis in CIA rat synovial tissue, and suppress autophagy and angiogenesis. In vitro experiments showed that serum containing FHD inhibited the proliferation, migration, and invasion of MH7A cells, and also suppressed the expression of autophagy-related proteins while promoting apoptosis. FHD markedly repressed the expression of HIF-1α protein in TNF-α-stimulated MH7A cells and inhibited the tube formation capacity induced by MH7A cells in HUVEC cells. CONCLUSIONS: The study had proven that FHD played an excellent anti-RA role, which may be attributed to its potential mechanism of regulating the balance between autophagy and apoptosis in RA FLS by suppressing the HIF-1α, thus contributing to its anti-angiogenic activities.


Subject(s)
Apoptosis , Arthritis, Experimental , Arthritis, Rheumatoid , Autophagy , Drugs, Chinese Herbal , Hypoxia-Inducible Factor 1, alpha Subunit , Neovascularization, Pathologic , Animals , Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Autophagy/drug effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Rats , Male , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neovascularization, Pathologic/drug therapy , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Antirheumatic Agents/pharmacology , Angiogenesis
4.
Phytomedicine ; 129: 155548, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583347

ABSTRACT

BACKGROUND: Oral leukoplakia (OLK), characterized by abnormal epithelial hyperplasia, is the most common precancerous oral mucosa lesion and is closely related to oxidative stress. Cucurbitacin B (CuB), a tetracyclic triterpenoid molecule derived from plants, has shown promising anti-proliferative and antioxidant effects in preclinical studies. However, whether CuB can play an antiproliferative role in OLK by regulating oxidative stress remains elusive. PURPOSE: To investigate the role of CuB in inhibiting the malignant progression of oral leukoplakia and to further explore its underlying mechanisms of action. METHODS: In vitro, the effect of CuB on the proliferation, migration, apoptosis, and cell cycle of OLK cells DOK was detected. The core genes and key pathways of OLK and CuB were analyzed in the transcriptome database, by using immunofluorescence, qRT-PCR, and Western blot to evaluate the expression levels of the ferroptosis markers ROS, GSH, MDA, Fe2+, and marker genes SLC7A11, GPX4, and FTH1. Immunohistochemistry of human tissue was performed to investigate the expression of the SLC7A11. In vivo, the model of OLK was established in C57BL/6 mice and the biosafety of CuB treatment for OLK was further evaluated. RESULTS: CuB substantially suppressed the proliferation of DOK cells. Bioinformatics analysis showed that the core targets of OLK crossing with CuB include SLC7A11 and that the essential pathways involve ROS and ferroptosis. In vitro experiments indicated that CuB might promote ferroptosis by down-regulating the expression of SLC7A11. We observed a gradual increase in SLC7A11 expression levels during the progression from normal oral mucosa to oral leukoplakia with varying degrees of epithelial dysplasia. In vivo experiments demonstrated that CuB inhibited the malignant progression of OLK by promoting ferroptosis in OLK mice and exhibited a certain level of biosafety. CONCLUSION: This study demonstrated for the first time that CuB could effectively inhibit the malignant progression of OLK by inducing ferroptosis via activating the SLC7A11/ mitochondrial oxidative stress pathway. These findings indicate that CuB could serve as the lead compound for the future development of anti-oral leukoplakia drugs.


Subject(s)
Amino Acid Transport System y+ , Cell Proliferation , Ferroptosis , Leukoplakia, Oral , Mitochondria , Oxidative Stress , Triterpenes , Ferroptosis/drug effects , Leukoplakia, Oral/drug therapy , Animals , Oxidative Stress/drug effects , Triterpenes/pharmacology , Humans , Amino Acid Transport System y+/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Male , Cell Movement/drug effects
5.
Chin J Nat Med ; 22(4): 318-328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658095

ABSTRACT

Double cortin-like kinase 1 (DCLK1) exhibits high expression levels across various cancers, notably in human colorectal cancer (CRC). Diacerein, a clinically approved interleukin (IL)-1ß inhibitor for osteoarthritis treatment, was evaluated for its impact on CRC proliferation and migration, alongside its underlying mechanisms, through both in vitro and in vivo analyses. The study employed MTT assay, colony formation, wound healing, transwell assays, flow cytometry, and Hoechst 33342 staining to assess cell proliferation, migration, and apoptosis. Additionally, proteome microarray assay and western blotting analyses were conducted to elucidate diacerein's specific mechanism of action. Our findings indicate that diacerein significantly inhibits DCLK1-dependent CRC growth in vitro and in vivo. Through high-throughput proteomics microarray and molecular docking studies, we identified that diacerein directly interacts with DCLK1. Mechanistically, the suppression of p-STAT3 expression following DCLK1 inhibition by diacerein or specific DCLK1 siRNA was observed. Furthermore, diacerein effectively disrupted the DCLK1/STAT3 signaling pathway and its downstream targets, including MCL-1, VEGF, and survivin, thereby inhibiting CRC progression in a mouse model, thereby inhibiting CRC progression in a mouse model.


Subject(s)
Anthraquinones , Cell Proliferation , Colorectal Neoplasms , Doublecortin-Like Kinases , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , STAT3 Transcription Factor , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Humans , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Mice , Cell Proliferation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Anthraquinones/pharmacology , Cell Line, Tumor , Drug Repositioning , Apoptosis/drug effects , Cell Movement/drug effects , Mice, Inbred BALB C , Mice, Nude
6.
J Tradit Chin Med ; 44(2): 251-259, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504531

ABSTRACT

OBJECTIVE: To investigate the synergistic effects of polyphyllin I (PPI) combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the growth of osteosarcoma cells through downregulating the Wnt/ß-catenin signaling pathway. METHODS: Cell viability, apoptosis and cell cycle distribution were examined using cell counting kit-8 and flow cytometry assays. The morphology of cancer cells was observed with inverted phase contrast microscope. The migration and invasion abilities were examined by xCELLigence real time cell analysis DP system and transwell assays. The expressions of poly (adenosine diphosphate-ribose) polymerase, C-Myc, Cyclin B1, cyclin-dependent kinases 1, N-cadherin, Vimentin, Active-ß-catenin, ß-catenin, p-glycogen synthase kinase 3ß (GSK-3ß) and GSK-3ß were determined by Western blotting assay. RESULTS: PPI sensitized TRAIL-induced decrease of viability, migration and invasion, as well as increase of apoptosis and cell cycle arrest of MG-63 and U-2 OS osteosarcoma cells. The synergistic effect of PPI with TRAIL in inhibiting the growth of osteosarcoma cells was at least partially realized through the inactivation of Wnt/ß-catenin signaling pathway. CONCLUSION: The combination of PPI and TRAIL is potentially a novel treatment strategy of osteosarcoma.


Subject(s)
Bone Neoplasms , Diosgenin/analogs & derivatives , Osteosarcoma , Humans , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Ligands , Cell Line, Tumor , Cell Proliferation , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Osteosarcoma/metabolism , Cell Cycle , Apoptosis , Tumor Necrosis Factor-alpha/pharmacology , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Cell Movement
7.
Arch Oral Biol ; 162: 105940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479277

ABSTRACT

OBJECTIVE: Pseudolaric acid B (PAB) is a novel diterpenoid derived from the traditional Chinese medicinal herb Cortex pseudolaricis that exerts anticancer, anti-inflammatory, and immunomodulatory properties. While the anticancer potential of PAB has been studied, its effects on metastasis have not been well-studied. This study aims to determine the inhibitory effects of PAB on HSC-3 human tongue squamous cell carcinoma (TSCC) cell line. DESIGN: Cell viability and soft agar colony formation assays were conducted to assess cellular proliferation and in vitro tumorigenic capacity of TSCC cells, respectively. Additionally, wound healing, transwell migration, and invasion assays were conducted to monitor the aggressive behavior of TSCC cells. Furthermore, Western blotting analysis was conducted to reveal the signaling pathways involved in the modulation of epithelial-mesenchymal transition (EMT). RESULTS: The migratory and invasive capacities of HSC-3 cells were suppressed by PAB irrespective of their proliferation states. PAB's effects on EMT involved upregulation of E-cadherin expression and downregulation of Twist; these were concomitantly accompanied by downregulated phosphorylation of epidermal growth factor receptor (EGFR). CONCLUSIONS: PAB suppresses human TSCC in vitro by regulating Twist/E-cadherin through the EGFR signaling pathway. PAB may have potential as a candidate antimetastatic drug for TSCC treatment.


Subject(s)
Carcinoma, Squamous Cell , Diterpenes , Tongue Neoplasms , Humans , Tongue Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Diterpenes/pharmacology , Cell Proliferation , Tongue/pathology , ErbB Receptors/metabolism , Cadherins/metabolism , Cell Movement , Gene Expression Regulation, Neoplastic
8.
Phytomedicine ; 127: 155391, 2024 May.
Article in English | MEDLINE | ID: mdl-38452690

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the commonest cancers worldwide. Metastasis is the most common cause of death in patients with CRC. Arenobufagin is an active component of bufadienolides, extracted from toad skin and parotid venom. Arenobufagin reportedly inhibits epithelial-to-mesenchymal transition (EMT) and metastasis in various cancers. However, the mechanism through which arenobufagin inhibits CRC metastasis remains unclear. PURPOSE: This study aimed to elucidate the molecular mechanisms by which arenobufagin inhibits CRC metastasis. METHODS: Wound-healing and transwell assays were used to assess the migration and invasion of CRC cells. The expression of nuclear factor erythroid-2-related factor 2 (Nrf2) in the CRC tissues was assessed using immunohistochemistry. The protein expression levels of c-MYC and Nrf2 were detected by immunoblotting. A mouse model of lung metastasis was used to study the effects of arenobufagin on CRC lung metastasis in vivo. RESULTS: Arenobufagin observably inhibited the migration and invasion of CRC cells by downregulating c-MYC and inactivating the Nrf2 signaling pathway. Pretreatment with the Nrf2 inhibitor brusatol markedly enhanced arenobufagin-mediated inhibition of migration and invasion, whereas pretreatment with the Nrf2 agonist tert­butylhydroquinone significantly attenuated arenobufagin-mediated inhibition of migration and invasion of CRC cells. Furthermore, Nrf2 knockdown with short hairpin RNA enhanced the arenobufagin-induced inhibition of the migration and invasion of CRC cells. Importantly, c-MYC acts as an upstream modulator of Nrf2 in CRC cells. c-MYC knockdown markedly enhanced arenobufagin-mediated inhibition of the Nrf2 signaling pathway, cell migration, and invasion. Arenobufagin inhibited CRC lung metastasis in vivo. Together, these findings provide evidence that interruption of the c-MYC/Nrf2 signaling pathway is crucial for arenobufagin-inhibited cell metastasis in CRC. CONCLUSIONS: Collectively, our findings show that arenobufagin could be used as a potential anticancer agent against CRC metastasis. The arenobufagin-targeted c-MYC/Nrf2 signaling pathway may be a novel chemotherapeutic strategy for treating CRC.


Subject(s)
Bufanolides , Colorectal Neoplasms , Lung Neoplasms , Animals , Mice , Humans , NF-E2-Related Factor 2/metabolism , Colorectal Neoplasms/pathology , Cell Line, Tumor , Bufanolides/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Epithelial-Mesenchymal Transition , Cell Movement , Gene Expression Regulation, Neoplastic , Cell Proliferation , Neoplasm Metastasis
9.
Phytomedicine ; 128: 155488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493718

ABSTRACT

BACKGROUND: This research aimed to investigate the anti-tumor effects and underlying genetic mechanisms of herbal medicine Triphala (TRP) in oral squamous cell carcinoma (OSCC). METHODS: The target genes of Triphala (TRP) in oral squamous cell carcinoma (OSCC) were identified, and subsequent functional enrichment analysis was conducted to determine the enriched signaling pathways. Based on these genes, a protein-protein interaction network was constructed to identify the top 10 genes with the highest degree. Genes deregulated in OSCC tumor samples were identified to be hub genes among the top 10 genes. In vitro experiments were performed to investigate the influence of TRP extracts on the cell metabolic activity, migration, invasion, apoptosis, and proliferation of two OSCC cell lines (CAL-27 and SCC-9). The functional rescue assay was conducted to investigate the effect of applying the inhibitor and activator of an enriched pathway on the phenotypes of cancer cells. In addition, the zebrafish xenograft tumor model was established to investigate the influence of TRP extracts on tumor growth and metastasis in vivo. RESULTS: The target genes of TRP in OSCC were prominently enriched in the PI3K-Akt signaling pathway, with the identification of five hub genes (JUN, EGFR, ESR1, RELA, and AKT1). TRP extracts significantly inhibited cell metabolic activity, migration, invasion, and proliferation and promoted cell apoptosis in OSCC cells. Notably, the application of TRP extracts exhibited the capacity to downregulate mRNA and phosphorylated protein levels of AKT1 and ESR1, while concomitantly inducing upregulation of mRNA and phosphorylated protein levels in the remaining three hub genes (EGFR, JUN, and RELA). The functional rescue assay demonstrated that the co-administration of TRP and the PI3K activator 740Y-P effectively reversed the impact of TRP on the phenotypes of OSCC cells. Conversely, the combination of TRP and the PI3K inhibitor LY294002 further enhanced the effect of TRP on the phenotypes of OSCC cells. Remarkably, treatment with TRP in zebrafish xenograft models demonstrated a significant reduction in both tumor growth and metastatic spread. CONCLUSIONS: Triphala exerted significant inhibitory effects on cell metabolic activity, migration, invasion, and proliferation in OSCC cell lines, accompanied by the induction of apoptosis, which was mediated through the inactivation of the PI3K/Akt pathway.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Molecular Docking Simulation , Mouth Neoplasms , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Zebrafish , Animals , Mouth Neoplasms/drug therapy , Humans , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Protein Interaction Maps , Carcinoma, Squamous Cell/drug therapy , Xenograft Model Antitumor Assays , Chromones/pharmacology , Morpholines/pharmacology
10.
Phytomedicine ; 128: 155261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493716

ABSTRACT

BACKGROUND: Recurrence and metastasis are the main causes of disease deterioration in colorectal cancer (CRC) patients, yet efficient therapeutic strategies are lacking. Natural compounds for efficient antitumour therapeutics are becoming increasingly prominent. Kaempferol, one of the main components of flavonoids in plants, displays a variety of pharmacological activities. Our preliminary experiments suggested that kaempferol could inhibit CRC metastasis and is significantly associated with the ß-catenin signalling pathway. Moreover, we also defined the regulatory roles of JMJD2C in ß-catenin signalling in our previous work. PURPOSE: This study aims to reveal the mechanism by which kaempferol inhibits CRC progression and regulates the JMJD2C/ß-catenin signalling pathway. METHODS: The migratory capabilities of CRC cells after kaempferol intervention were measured by scratch wound healing and transwell assays. Circ_0000345 knockdown CRC stable cell lines were generated by lentivirus infection. The possible mechanism of kaempferol on circ_0000345 was verified by molecular-protein docking and verification program cellular thermal shift assay (CETSA). A dual luciferase reporter gene assay was carried out for the targeting relationship among circ_0000345, miR-205-5p and JMJD2C. Fluorescence in situ hybridization (FISH) was performed to determine the expression of circ_0000345 in tumour tissues. A pulmonary metastatic model of CRC in vitro was built to assess the antimetastatic effect and mechanism of kaempferol in vivo. RESULTS: In vitro, kaempferol inhibits the ability to migrate of CRC cells by reducing the activation of the JMJD2C/ß-catenin signalling pathway. MiR-205-5p is a key bridge for kaempferol to inhibit the expression of JMJD2C. The function of miR-205-5p is impeded by circ_0000345, which shows higher expression levels in human metastatic CRC tissues than nonmetastatic CRC tissues, and its formation is regulated by the RNA-binding proteins HNRNPK and HNRNPL. Mechanistically, kaempferol physically interacts with HNRNPK and HNRNPL to suppress JMJD2C by downregulating the expression of circ_0000345. In vivo, kaempferol suppresses CRC lung metastasis. Kaempferol inhibits the activation of JMJD2C/ß-catenin signalling through reducing the expression of circ_0000345 in the CRC lung metastasis model. CONCLUSION: Circ_0000345 enhances activation of the JMJD2C/ß-catenin signalling pathway through miR-205-5p to promote CRC metastasis. Kaempferol inhibits CRC metastasis through the circ_0000345-mediated JMJD2C/ß-catenin signalling pathway, and this effect is influenced as a direct consequence of the binding of kaempferol with HNRNPK and HNRNPL. This provides promising therapeutic and/or adjuvant agents for advanced CRC and sheds light on the multifaceted role of phytomedicine in cancer.


Subject(s)
Colorectal Neoplasms , Jumonji Domain-Containing Histone Demethylases , Kaempferols , beta Catenin , Kaempferols/pharmacology , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Jumonji Domain-Containing Histone Demethylases/metabolism , beta Catenin/metabolism , Animals , Cell Movement/drug effects , Cell Line, Tumor , RNA, Circular/metabolism , RNA, Circular/genetics , Signal Transduction/drug effects , Mice, Nude , Mice, Inbred BALB C , Male , MicroRNAs/metabolism , MicroRNAs/genetics , Mice , Molecular Docking Simulation
11.
Phytomedicine ; 128: 155532, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493722

ABSTRACT

BACKGROUND: The tumor microenvironment (TME) of hepatocellular carcinoma is heterogeneous enough to be prone to drug resistance and multidrug resistance during treatment, and reprogramming of cholesterol metabolism in TME mediates tumor-associated macrophages (TAMs) polarization, which has an impact on the regulation of malignant tumor progression. Arenobufagin (ARBU) was extracted and isolated from toad venom (purity ≥98 %), which is the main active ingredient of the traditional Chinese medicine Chan'su with good anti-tumor effects. PURPOSE: To investigate the regulatory effect of ARBU on lipid metabolism in tumor microenvironment, interfere with macrophage polarization, and determine its mechanism of action on liver cancer progression. METHODS: In this study, the inhibitory effect of ARBU on the proliferation of Hepa1-6 in C57 mice and the safety of administration were evaluated by establishing a transplanted tumor model of Hepa1-6 hepatocellular carcinoma mice and using 5-FU as a positive control drug. In addition, we constructed a co-culture system of Hepa1-6 cells and primary mouse macrophages to study the effects of ARBU on the polarization phenotypic transformation of macrophages and the proliferation and migration of hepatoma cells. The influence of ARBU on the metabolism of lipids in the hepatocellular carcinoma mouse model was investigated by combining it with lipidomics technology. The influence of ARBU on the PCSK9/LDL-R signaling pathway and macrophage polarization, which regulate cholesterol metabolism, was tested by using qRT-PCR, gene editing, IF, and WB. CONCLUSION: ARBU significantly inhibited the proliferation of Hepa1-6 in vivo and in vitro, regulated cholesterol metabolism, and promoted the M1-type polarization of macrophages in the tumor microenvironment. ARBU inhibits cholesterol synthesis in the TME through the PCSK9/LDL-R signaling pathway, thereby blocking macrophage M2 polarization, promoting apoptosis of the tumor cells, and inhibiting their proliferation and migration.


Subject(s)
Bufanolides , Carcinoma, Hepatocellular , Cell Proliferation , Cholesterol , Liver Neoplasms , Mice, Inbred C57BL , Proprotein Convertase 9 , Tumor Microenvironment , Tumor-Associated Macrophages , Animals , Bufanolides/pharmacology , Carcinoma, Hepatocellular/drug therapy , Proprotein Convertase 9/metabolism , Liver Neoplasms/drug therapy , Tumor-Associated Macrophages/drug effects , Tumor Microenvironment/drug effects , Mice , Cholesterol/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Male , Cell Movement/drug effects , Amphibian Venoms/pharmacology
12.
Phytomedicine ; 128: 155316, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518635

ABSTRACT

BACKGROUND: Gastric cancer (GC) represents a significant health burden with dire prognostic implications upon metastasis and recurrence. Pterostilbene (PTE) has been proven to have a strong ability to inhibit proliferation and metastasis in other cancers, while whether PTE exhibits anti-GC activity and its potential mechanism remain unclear. PURPOSE: To explore the efficacy and potential mechanism of PTE in treating GC. METHODS: We employed a comprehensive set of assays, including CCK-8, EdU staining, colony formation, flow cytometry, cell migration, and invasion assays, to detect the effect of PTE on the biological function of GC cells in vitro. The xenograft tumor model was established to evaluate the in vivo anti-GC activity of PTE. Network pharmacology was employed to predict PTE's potential targets and pathways within GC. Subsequently, Western blotting, immunofluorescence, and immunohistochemistry were utilized to analyze protein levels related to the cell cycle, EMT, and the JAK2/STAT3 pathway. RESULTS: Our study demonstrated strong inhibitory effects of PTE on GC cells both in vitro and in vivo. In vitro, PTE significantly induced cell cycle arrest at G0/G1 and S phases and suppressed proliferation, migration, and invasion of GC cells. In vivo, PTE led to a dose-dependent reduction in tumor volume and weight. Importantly, PTE exhibited notable safety, leaving mouse weight, liver function, and kidney function unaffected. The involvement of the JAK2/STAT3 pathway in PTE's anti-GC effect was predicted utilizing network pharmacology. PTE suppressed JAK2 kinase activity by binding to the JH1 kinase structural domain and inhibited the downstream STAT3 signaling pathway. Western blotting confirmed PTE's inhibition of the JAK2/STAT3 pathway and EMT-associated protein levels. The anti-GC effect was partially reversed upon STAT3 activation, validating the pivotal role of the JAK2/STAT3 signaling pathway in PTE's activity. CONCLUSION: Our investigation validates the potent inhibitory effects of PTE on the proliferation and metastasis of GC cells. Importantly, we present novel evidence implicating the JAK2/STAT3 pathway as the key mechanism through which PTE exerts its anti-GC activity. These findings not only establish the basis for considering PTE as a promising lead compound for GC therapeutics but also contribute significantly to our comprehension of the intricate molecular mechanisms underlying its exceptional anti-cancer properties.


Subject(s)
Cell Movement , Cell Proliferation , Janus Kinase 2 , Mice, Nude , STAT3 Transcription Factor , Signal Transduction , Stilbenes , Stomach Neoplasms , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stilbenes/pharmacology , Animals , Humans , Cell Proliferation/drug effects , Signal Transduction/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Cell Cycle Checkpoints/drug effects , Network Pharmacology , Male , Neoplasm Metastasis , Epithelial-Mesenchymal Transition/drug effects
13.
Phytomedicine ; 128: 155538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552432

ABSTRACT

OBJECTIVE: The effect of solamargine on lung adenocarcinoma and its effect on STAT1 signaling pathway mediated immune escape were studied through network pharmacology and in vitro and in vivo experiments. METHODS: The solamargine targets were screened using the TCMSP and the LUAD targets were screened using the GeneCard, OMIM, PharmGkb, TTD and DrugBank databases. PPI network analysis and target prediction were performed using GO and KEGG. Colony formation assay, EDU staining, wound healing, transwell assay, Hoechst and flow cytometry were used to detect the effects of solamargine on the proliferation, migration and apoptosis of LUAD. Western blotting (WB) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to detect P-STAT1 and PD-L1 expression. And immunofluorescence was used to detect P-STAT1 expression. In vivo experiments, C57BL/6 mice were divided into control group, low concentration group, high concentration group, positive control group and combination group. Every other day, following seven consecutive doses, the size of the tumor was assessed. Finally, the expressions of P-STAT1, STAT1, PD-L1 and apoptosis index proteins were detected by WB. RESULTS: The anti-LUAD effect of solamargine was found by wound healing, colony formation assay, transwell assay, hoechst and EdU staining. The results of network pharmacological analysis showed that solamargine could suppress STAT1 expression level. Further enrichment assay of STAT1 showed that STAT1 was associated with immune-related pathways. In addition, molecular signal analysis by WB and RT-qPCR indicated that solamargine could reduce the expression levels of P-STAT1 and PD-L1 in a concentration-dependent manner. According to the results of in vivo assays, combination of solamargine and immune checkpoint inhibitors (ICIs) durvalumab could significantly inhibit the growth of Lewis transplanted tumors in C57BL/6 mice, and no toxic side effect was recoded. CONCLUSION: These results indicated that solamargine could inhibit the proliferation and promote the apoptosis of LUAD. It also could reduce the expression level of P-STAT1 protein and inhibit the expression level of PD-L1. At the same time, the combination with the ICIs can better block the expression of PD-L1 in cells, thereby inhibiting the immune escape pathway of tumor cells and achieving anti-tumor effects. This study proposed a novel combined therapeutic approach, involving the inhibition of STAT1 by solamargine in conjunction with ICIs.


Subject(s)
Adenocarcinoma of Lung , Apoptosis , B7-H1 Antigen , Lung Neoplasms , Mice, Inbred C57BL , STAT1 Transcription Factor , STAT1 Transcription Factor/metabolism , Animals , Lung Neoplasms/drug therapy , B7-H1 Antigen/metabolism , Humans , Apoptosis/drug effects , Adenocarcinoma of Lung/drug therapy , Mice , Cell Proliferation/drug effects , Signal Transduction/drug effects , Cell Line, Tumor , Cell Movement/drug effects , A549 Cells , Immune Checkpoint Inhibitors/pharmacology
14.
Phytomedicine ; 128: 155418, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518647

ABSTRACT

BACKGROUND: Scutellaria barbata D. Don (SB), commonly known as Ban Zhi Lian and firstly documented by Shigong Chen, is a dried whole plant that has been studied for its therapeutic effects on breast cancer, colon cancer, and prostate cancer. Among its various compounds, scutellarin (SCU) has been demonstrated with anti-tumor effects. PURPOSE: This study aimed to evaluate the effects of SB water extract (SBW) and scutellarin on breast cancer stem cells (BCSCs), and to investigate their potential therapeutic effects on breast tumors in mice. METHODS: BCSCs were enriched from human breast cancer cells (MDA-MB-231 and MDA-MB-361) and their characteristics were analyzed. The effects of varying concentrations of SBW and scutellarin on cell viability, proliferation, self-renewal, and migration abilities were studied, along with the underlying mechanisms. The in vivo anti-tumor effects of scutellarin were further evaluated in SCID/NOD mice. Firstly, mice were inoculated with naïve BCSCs and subjected to treatment with scutellarin or vehicle. Secondly, BCSCs were pre-treated with scutellarin or vehicle prior to inoculation into mice. RESULTS: The derived BCSCs expressed CD44, CD133 and ALDH1, but not CD24, indicating that BCSCs have been successfully induced from both MDA-MB-231 and MDA-MB-361 cells. Both SBW and scutellarin reduced the viability, proliferation, sphere and colony formation, and migration of BCSCs. In mice with tumors derived from naïve BCSCs, scutellarin significantly reduced tumor growth, expression of proliferative (Ki67) and stem cell markers (CD44), and lung metastasis. In addition, pre-treatment with scutellarin also slowed tumor growth. Western blot results suggested the involvement of Wnt/ß-catenin, NF-κB, and PTEN/Akt/mTOR signaling pathways underlying the inhibitory effects of scutellarin. CONCLUSION: Our study demonstrated for the first time that both SB water extract and scutellarin could reduce the proliferation and migration of BCSCs in vitro. Scutellarin was shown to possess novel inhibitory activities in BCSCs progression. These findings suggest that Scutellaria barbata water extract, in particular, scutellarin, may have potential to be further developed as an adjuvant therapy for reducing breast cancer recurrence.


Subject(s)
Apigenin , Breast Neoplasms , Cell Proliferation , Glucuronates , Mice, Inbred NOD , Neoplastic Stem Cells , Scutellaria , Animals , Apigenin/pharmacology , Scutellaria/chemistry , Glucuronates/pharmacology , Neoplastic Stem Cells/drug effects , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Mice, SCID , Antineoplastic Agents, Phytogenic/pharmacology , Mice , Plant Extracts/pharmacology , Cell Movement/drug effects , Cell Survival/drug effects , Xenograft Model Antitumor Assays , Hyaluronan Receptors/metabolism
15.
Phytomedicine ; 128: 155338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520835

ABSTRACT

BACKGROUND: Liver cancer, one of the most common types of cancer worldwide, accounts for millions of cases annually. With its multi-target and wide-ranging therapeutic effects, traditional Chinese medicine has emerged as a potential approach for treating various tumors. Codonopsis pilosula, a traditional herb, is known for its anti-inflammatory and antioxidant properties. In this study, we investigated the potential molecular mechanisms of Codonopsis pilosula in regulating the inhibition of CDK1 and the modulation of PDK1/ß-catenin, which are involved in hepatocellular carcinoma growth and metastasis. STUDY DESIGN/METHODS: Firstly, we screened the active chemical constituents of Codonopsis pilosula and identified their respective target proteins using the Herb database. Then, we applied the GeneCards database and transcriptome sequencing analysis to screen for critical genes associated with the occurrence and development of liver cancer. The intersection of the target proteins and disease-related genes was used to determine the potential targets of Codonopsis pilosula in hepatocellular carcinoma. Protein-protein interaction analysis and GO/KEGG analysis were subsequently performed to uncover the pathways through which Codonopsis pilosula acts on liver cancer. The Huh-7 cell line, exhibiting the highest sensitivity to Codonopsis pilosula polysaccharide solution (CPP) intervention, was chosen for subsequent studies. Cell viability was evaluated using the CCK-8 assay, colony formation assay was conducted to determine cell proliferation capacity, flow cytometry was used to analyze cell cycle, TUNEL staining was performed to assess cell apoptosis, scratch assay was carried out to evaluate cell migration ability, the expression of EMT-related proteins was detected and analyzed, and cell sphere formation assay was conducted to investigate cell stemness. Finally, a liver cancer animal model was established, and different doses of CPP were administered via gavage the next day. The expression levels of CDK1, PDK1, and ß-catenin in mouse liver tissues were detected and analyzed, immunohistochemistry staining was performed to assess the expression of tumor cell proliferation-related proteins Ki67 and PCNA in mouse xenografts, and TUNEL staining was carried out to evaluate cell apoptosis in mouse liver tissues. After intervention with CDK1 expression, the expression levels of CDK1, PDK1, and ß-catenin proteins and mRNA in each group of cells were detected using Western blot and RT-qPCR. RESULTS: Through network pharmacology analysis, transcriptome sequencing, and bioinformatics analysis, 35 target genes through which Codonopsis pilosula acts on liver cancer were identified. Among them, CDK1, with the highest degree in the PPI network, was considered an essential target protein for Codonopsis pilosula in treating liver cancer. In vitro cell experiments revealed that CPP could inhibit the expression of CDK1/PDK1/ß-catenin signaling axis factors, suppress cell proliferation, decrease cell migration ability, influence the EMT process, and reduce cell stemness by inhibiting CDK1 and affecting the PDK1/ß-catenin signaling axis. Similarly, in vivo experiments demonstrated that CPP could regulate the CDK1/PDK1/ß-catenin signaling axis, inhibit tumor growth, and induce cell apoptosis. CONCLUSION: Codonopsis pilosula may inhibit hepatocellular carcinoma growth by suppressing CDK1 and affecting the PDK1/ß-catenin signaling axis, limiting cell EMT and reducing cell stemness. These findings provide insights into the potential therapeutic role of Codonopsis pilosula in liver cancer.


Subject(s)
CDC2 Protein Kinase , Carcinoma, Hepatocellular , Codonopsis , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Animals , Humans , Codonopsis/chemistry , Cell Line, Tumor , CDC2 Protein Kinase/metabolism , Mice , Cell Proliferation/drug effects , beta Catenin/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Nude , Mice, Inbred BALB C , Male , Cell Movement/drug effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Xenograft Model Antitumor Assays , Drugs, Chinese Herbal/pharmacology
16.
Phytomedicine ; 128: 155362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522312

ABSTRACT

BACKGROUND: Stroke is a leading cause of disability and death worldwide. Currently, there is a lack of clinically effective treatments for the brain damage following ischemic stroke. Catalpol is a bioactive compound derived from the traditional Chinese medicine Rehmannia glutinosa and shown to be protective in various neurological diseases. However, the potential roles of catalpol against ischemic stroke are still not completely clear. PURPOSE: This study aimed to further elucidate the protective effects of catalpol against ischemic stroke. METHODS: A rat permanent middle cerebral artery occlusion (pMCAO) and oxygen-glucose deprivation (OGD) model was established to assess the effect of catalpol in vivo and in vitro, respectively. Behavioral tests were used to examine the effects of catalpol on neurological function of ischemic rats. Immunostaining was performed to evaluate the proliferation, migration and differentiation of neural stem cells (NSCs) as well as the angiogenesis in each group. The protein level of related molecules was detected by western-blot. The effects of catalpol on cultured NSCs as well as brain microvascular endothelial cells (BMECs) subjected to OGD in vitro were also examined by similar methods. RESULTS: Catalpol attenuated the neurological deficits and improved neurological function of ischemic rats. It stimulated the proliferation of NSCs in the subventricular zone (SVZ), promoted their migration to the ischemic cortex and differentiation into neurons or glial cells. At the same time, catalpol increased the cerebral vessels density and the number of proliferating cerebrovascular endothelial cells in the infracted cortex of ischemic rats. The level of SDF-1α and CXCR4 in the ischemic cortex was found to be enhanced by catalpol treatment. Catalpol was also shown to promote the proliferation and migration of cultured NSCs as well as the proliferation of BMECs subjected to OGD insult in vitro. Interestingly, the impact of catalpol on cultured cells was inhibited by CXCR4 inhibitor AMD3100. Moreover, the culture medium of BMECs containing catalpol promoted the proliferation of NSCs, which was also suppressed by AMD3100. CONCLUSION: Our data demonstrate that catalpol exerts neuroprotective effects by promoting neurogenesis and angiogenesis via the SDF-1α/CXCR4 pathway, suggesting the therapeutic potential of catalpol in treating cerebral ischemia.


Subject(s)
Chemokine CXCL12 , Iridoid Glucosides , Ischemic Stroke , Neurogenesis , Rats, Sprague-Dawley , Receptors, CXCR4 , Rehmannia , Animals , Iridoid Glucosides/pharmacology , Receptors, CXCR4/metabolism , Neurogenesis/drug effects , Chemokine CXCL12/metabolism , Male , Rehmannia/chemistry , Ischemic Stroke/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Neural Stem Cells/drug effects , Cell Proliferation/drug effects , Rats , Neuroprotective Agents/pharmacology , Neovascularization, Physiologic/drug effects , Cell Movement/drug effects , Cell Differentiation/drug effects , Endothelial Cells/drug effects , Disease Models, Animal , Signal Transduction/drug effects , Cells, Cultured , Angiogenesis
17.
Fitoterapia ; 175: 105916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527590

ABSTRACT

Six previously unreported solanidane steroidal alkaloids, namely lyrasolanosides A-F, were isolated from Solanum lyratum. In addition, five known steroidal alkaloids were also identified. The structures of these compounds were determined through the use of NMR, HRESIMS,UV, IR and ECD analysis. To assess their bioactivities, the cytotoxic effects of the six previously unreported compounds were evaluated on A549 cells. The results revealed that lyrasolanoside B (2) exhibited the highest potency among them. Lyrasolanoside B (2) exhibited significant inhibition of cell migration, invasion, and adhesion dramatically. Mechanistically, it was found to suppress the activity of JAK2/STAT3 signaling pathway by downregulating the expression of phosphorylated JAK2/STAT3 in an exosome-dependent manner. In addition, lyrasolanoside B (2) was found to significantly upregulate the expression of E-cadherin and downregulate the expression of N-cadherin and vimentin. These findings indicate that lyrasolanoside B (2) inhibits the metastasis of A549 cells by suppressing exosome-mediated EMT. These findings suggest that lyrasolanoside B (2) may inhibit the metastasis of lung cancer by regulating A549-derived exosomes.


Subject(s)
Solanum , Humans , A549 Cells , Molecular Structure , Solanum/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Movement/drug effects , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Solanaceous Alkaloids/pharmacology , Solanaceous Alkaloids/isolation & purification , Signal Transduction/drug effects , Alkaloids/pharmacology , Alkaloids/isolation & purification , China
18.
Phytomedicine ; 128: 155536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513379

ABSTRACT

BACKGROUND: Lung cancer, a chronic and heterogeneous disease, is the leading cause of cancer-related death on a global scale. Presently, despite a variety of available treatments, their effectiveness is limited, often resulting in considerable toxicity and adverse effects. Additionally, the development of chemoresistance in cancer cells poses a challenge. Trilobolide-6-O-isobutyrate (TBB), a natural sesquiterpene lactone extracted from Sphagneticola trilobata, has exhibited antitumor effects. Its pharmacological properties in NSCLC lung cancer, however, have not been explored. PURPOSE: This study evaluated the impact of TBB on the A549 and NCI-H460 tumor cell lines in vitro, examining its antiproliferative properties and initial mechanisms of cell death. METHODS: TBB, obtained at 98 % purity from S. trilobata leaves, was characterized using chromatographic techniques. Subsequently, its impact on inhibiting tumor cell proliferation in vitro, TBB-induced cytotoxicity in LLC-MK2, THP-1, AMJ2-C11 cells, as well as its effects on sheep erythrocytes, and the underlying mechanisms of cell death, were assessed. RESULTS: In silico predictions have shown promising drug-likeness potential for TBB, indicating high oral bioavailability and intestinal absorption. Treatment of A549 and NCI-H460 human tumor cells with TBB demonstrated a direct impact, inducing significant morphological and structural alterations. TBB also reduced migratory capacity without causing toxicity at lower concentrations to LLC-MK2, THP-1 and AMJ2-C11 cell lines. This antiproliferative effect correlated with elevated oxidative stress, characterized by increased levels of ROS, superoxide anion radicals and NO, accompanied by a decrease in antioxidant markers: SOD and GSH. TBB-stress-induced led to changes in cell metabolism, fostering the accumulation of lipid droplets and autophagic vacuoles. Stress also resulted in compromised mitochondrial integrity, a crucial aspect of cellular function. Additionally, TBB prompted apoptosis-like cell death through activation of caspase 3/7 stressors. CONCLUSION: These findings underscore the potential of TBB as a promising candidate for future studies and suggest its viability as an additional component in the development of novel anticancer drugs prototypes.


Subject(s)
Butyrates , Lung Neoplasms , Sesquiterpenes , Sesquiterpenes/pharmacology , Butyrates/pharmacology , Tracheophyta/chemistry , Cell Line, Tumor , Lung Neoplasms/drug therapy , Humans , A549 Cells , THP-1 Cells , Toxicity Tests , Cell Movement/drug effects , Caspase 3/metabolism , Caspase 7/metabolism , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Animals
19.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 763-775, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38516703

ABSTRACT

Traditional Chinese medicine (TCM) has been used to treat triple-negative breast cancer (TNBC), a breast cancer subtype with poor prognosis. Clinical studies have verified that the Sanyingfang formula (SYF), a TCM prescription, has obvious effects on inhibiting breast cancer recurrence and metastasis, prolonging patient survival, and reducing clinical symptoms. However, its active ingredients and molecular mechanisms are still unclear. In this study, the active ingredients of each herbal medicine composing SYF and their target proteins are obtained from the Traditional Chinese Medicine Systems Pharmacology database. Breast cancer-related genes are obtained from the GeneCards database. Major targets and pathways related to SYF treatment in breast cancer are identified by analyzing the above data. By conducting molecular docking analysis, we find that the active ingredients quercetin and luteolin bind well to the key targets KDR1, PPARG, SOD1, and VCAM1. In vitro experiments verify that SYF can reduce the proliferation, migration, and invasion ability of TNBC cells. Using a TNBC xenograft mouse model, we show that SYF could delay tumor growth and effectively inhibit the occurrence of breast cancer lung metastasis in vivo. PPARG, SOD1, KDR1, and VCAM1 are all regulated by SYF and may play important roles in SYF-mediated inhibition of TNBC recurrence and metastasis.


Subject(s)
Cell Proliferation , Drugs, Chinese Herbal , Molecular Docking Simulation , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Humans , Animals , Female , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Network Pharmacology , Cell Movement/drug effects , Mice, Nude , Luteolin/pharmacology , Luteolin/therapeutic use , Mice, Inbred BALB C , Quercetin/pharmacology , Quercetin/chemistry , Medicine, Chinese Traditional , Gene Expression Regulation, Neoplastic/drug effects
20.
Chem Biol Interact ; 394: 110968, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38522564

ABSTRACT

Bone metastases caused by breast cancer pose a major challenge to the successful treatment of breast cancer patients. Many researchers have suggested that herbal medicines are extremely effective at preventing and treating cancer-associated osteolysis. Previous studies have revealed that Morusin (MOR) is cytotoxic to many cancer cells ex vivo. Nevertheless, how MOR contributes to osteolysis induced by breast cancer is still unknown, and the potential mechanism of action against osteolysis is worthy of further study. The protective effect and molecular mechanism of MOR in inhibiting breast cancer cell-induced osteolysis were verified by experiments and network pharmacology. Cell function was assessed by cell proliferation, osteoclast (OC) formation, bone resorption, and phalloidin staining. Tumour growth was examined by micro-CT scanning in vivo. To identify potential MOR treatments, the active ingredient-target pathway of breast cancer was screened using network pharmacology and molecular docking approaches. This study is the first to report that MOR can prevent osteolysis induced by breast cancer cells. Specifically, our results revealed that MOR inhibits RANKL-induced osteoclastogenesis and restrains the proliferation, invasion and migration of MDA-MB-231 breast cells through restraining the PI3K/AKT/MTOR signalling pathway. Notably, MOR prevented bone loss caused by breast cancer cell-induced osteolysis in vivo, indicating that MOR inhibited the development of OCs and the resorption of bone, which are essential for cancer cell-associated bone distraction. This study showed that MOR treatment inhibited osteolysis induced by breast cancer in vivo. MOR inhibited OC differentiation and bone resorption ex vivo and in vivo and might be a potential drug candidate for treating breast cancer-induced osteolysis.


Subject(s)
Breast Neoplasms , Osteolysis , Phosphatidylinositol 3-Kinase , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Female , Humans , Mice , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteolysis/metabolism , Osteolysis/drug therapy , Osteolysis/pathology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RANK Ligand/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL