Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Cell Mol Life Sci ; 79(4): 193, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35298717

ABSTRACT

Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBPß, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBPß overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBPß can be a promising therapeutic approach.


Subject(s)
Aging/metabolism , Axons/pathology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Energy Metabolism , Insulin-Like Growth Factor I/metabolism , Sensory Receptor Cells/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Axons/drug effects , Axons/metabolism , Base Sequence , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Respiration/drug effects , Cells, Cultured , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Energy Metabolism/drug effects , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Gene Expression Regulation/drug effects , Glycolysis/drug effects , HEK293 Cells , Humans , Insulin-Like Growth Factor I/genetics , Liver/metabolism , Male , Mitochondria/drug effects , Mitochondria/metabolism , NFATC Transcription Factors/metabolism , Neuronal Outgrowth/drug effects , Polymers/metabolism , Promoter Regions, Genetic/genetics , Protein Transport/drug effects , Rats, Sprague-Dawley , Sensory Receptor Cells/pathology , Signal Transduction/drug effects
2.
Biochem Biophys Res Commun ; 588: 140-146, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34954521

ABSTRACT

Smoking cessation increases body weight. The underlying mechanisms, however, have not been fully understood. We here report an establishment of a mouse model that exhibits an augmented body weight gain after nicotine withdrawal. High fat diet-fed mice were infused with nicotine for two weeks, and then with vehicle for another two weeks using osmotic minipumps. Body weight increased immediately after nicotine cessation and was significantly higher than that of mice continued on nicotine. Mice switched to vehicle consumed more food than nicotine-continued mice during the first week of cessation, while oxygen consumption was comparable. Elevated expression of orexigenic agouti-related peptide was observed in the hypothalamic appetite center. Pair-feeding experiment revealed that the accelerated weight gain after nicotine withdrawal is explained by enhanced energy intake. As a showcase of an efficacy of pharmacologic intervention, exendin-4 was administered and showed a potent suppression of energy intake and weight gain in mice withdrawn from nicotine. Our current model provides a unique platform for the investigation of the changes of energy regulation after smoking cessation.


Subject(s)
Nicotine/adverse effects , Substance Withdrawal Syndrome/pathology , Weight Gain , Agouti-Related Protein/metabolism , Animals , Calorimetry , Cell Respiration/drug effects , Disease Models, Animal , Energy Intake/drug effects , Exenatide/pharmacology , Feeding Behavior/drug effects , Gene Expression Regulation/drug effects , Hypothalamus/metabolism , Male , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Substance Withdrawal Syndrome/genetics , Weight Gain/drug effects , Weight Gain/genetics
3.
J Endocrinol ; 251(1): 111-123, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34370682

ABSTRACT

Supplementation with precursors of NAD has been shown to prevent and reverse insulin resistance, mitochondrial dysfunction, and liver damage in mouse models of diet-induced obesity. We asked whether the beneficial effects of supplementation with the NAD precursor nicotinamide riboside (NR) are dependent on mouse strain. We compared the effects of NR supplementation on whole-body energy metabolism and mitochondrial function in mildly obese C57BL/6N and C57BL/6J mice, two commonly used strains to investigate metabolism. Male C57BL/6N and C57BL/6J mice were fed a high-fat diet (HFD) or standard chow with or without NR supplementation for 8 weeks. Body and organ weights, glucose tolerance, and metabolic parameters as well as mitochondrial O2 flux in liver and muscle fibers were assessed. We found that NR supplementation had no influence on body or organ weight, glucose metabolism or hepatic lipid accumulation, energy expenditure, or metabolic flexibility but increased mitochondrial respiration in soleus muscle in both mouse strains. Strain-dependent differences were detected for body and fat depot weight, fasting blood glucose, hepatic lipid accumulation, and energy expenditure. We conclude that, in mild obesity, NR supplementation does not alter metabolic phenotype in two commonly used laboratory mouse strains.


Subject(s)
Energy Metabolism/drug effects , Niacinamide/analogs & derivatives , Obesity/drug therapy , Pyridinium Compounds/therapeutic use , Animals , Cell Respiration/drug effects , Diet, High-Fat , Disease Models, Animal , Drug Evaluation , Glucose Intolerance/prevention & control , Lipid Metabolism/drug effects , Liver/metabolism , Male , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Niacinamide/therapeutic use , Obesity/metabolism
4.
Life Sci ; 284: 119910, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34453939

ABSTRACT

AIMS: Quercetin has been investigated as an agent to treat rheumatoid arthritis. At high doses it improves inflammation and the antioxidant status of arthritic rats, but it also exerts mitochondriotoxic and pro-oxidant activities. Beneficial effects of quercetin have not been found at low doses because of its chemical instability and low bioavailability. In the hope of overcoming these problems this study investigated the effects of long-term administration of quercetin-loaded pectin/casein microparticles on the oxidative status of liver and brain of rats with adjuvant-induced arthritis. MAIN METHODS: Particle morphology was viewed with transmission electron microscopy and the encapsulation efficiency was measured indirectly by X-ray diffraction. Quercetin microcapsules (10 mg/Kg) were orally administered to rats during 60 days. Inflammation indicators and oxidative stress markers were measured in addition to the respiratory activity and ROS production in isolated mitochondria. KEY FINDINGS: Quercetin was efficiently encapsulated inside the polymeric matrix, forming a solid amorphous solution. The administration of quercetin microparticles to arthritic rats almost normalized protein carbonylation, lipid peroxidation, the levels of reactive oxygen species as well as the reduced glutathione content in both liver and brain. The paw edema in arthritic rats was not responsive, but the plasmatic activity of ALT and the mitochondrial respiration were not affected by quercetin, indicating absence of mitochondriotoxic or hepatotoxic actions. SIGNIFICANCE: Quercetin-loaded pectin/casein microcapsules orally administered at a low dose improve oxidative stress of arthritic rats without a strong anti-inflammatory activity. This supports the long-term use of quercetin as an antioxidant agent to treat rheumatoid arthritis.


Subject(s)
Arthritis, Experimental/pathology , Caseins/chemistry , Microspheres , Oxidative Stress , Pectins/chemistry , Quercetin/pharmacology , Alanine Transaminase/blood , Animals , Antioxidants/pharmacology , Arthritis, Experimental/blood , Brain/drug effects , Brain/pathology , Calorimetry, Differential Scanning , Cell Respiration/drug effects , Edema/pathology , Liver/drug effects , Liver/pathology , Male , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Oxidative Stress/drug effects , Oxidoreductases/metabolism , Rats , Reactive Oxygen Species/metabolism , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
5.
Metabolism ; 121: 154803, 2021 08.
Article in English | MEDLINE | ID: mdl-34090870

ABSTRACT

BACKGROUND AND AIMS: A diminution in skeletal muscle mitochondrial function due to ectopic lipid accumulation and excess nutrient intake is thought to contribute to insulin resistance and the development of type 2 diabetes. However, the functional integrity of mitochondria in insulin-resistant skeletal muscle remains highly controversial. METHODS: 19 healthy adults (age:28.4 ±â€¯1.7 years; BMI:22.7 ±â€¯0.3 kg/m2) received an overnight intravenous infusion of lipid (20% Intralipid) or saline followed by a hyperinsulinemic-euglycemic clamp to assess insulin sensitivity using a randomized crossover design. Skeletal muscle biopsies were obtained after the overnight lipid infusion to evaluate activation of mitochondrial dynamics proteins, ex-vivo mitochondrial membrane potential, ex-vivo oxidative phosphorylation and electron transfer capacity, and mitochondrial ultrastructure. RESULTS: Overnight lipid infusion increased dynamin related protein 1 (DRP1) phosphorylation at serine 616 and PTEN-induced kinase 1 (PINK1) expression (P = 0.003 and P = 0.008, respectively) in skeletal muscle while reducing mitochondrial membrane potential (P = 0.042). The lipid infusion also increased mitochondrial-associated lipid droplet formation (P = 0.011), the number of dilated cristae, and the presence of autophagic vesicles without altering mitochondrial number or respiratory capacity. Additionally, lipid infusion suppressed peripheral glucose disposal (P = 0.004) and hepatic insulin sensitivity (P = 0.014). CONCLUSIONS: These findings indicate that activation of mitochondrial fission and quality control occur early in the onset of insulin resistance in human skeletal muscle. Targeting mitochondrial dynamics and quality control represents a promising new pharmacological approach for treating insulin resistance and type 2 diabetes. CLINICAL TRIAL REGISTRATION: NCT02697201, ClinicalTrials.gov.


Subject(s)
Insulin/metabolism , Lipids/pharmacology , Mitochondria, Muscle/drug effects , Mitochondrial Dynamics/drug effects , Adult , Biopsy , Cell Respiration/drug effects , Emulsions/administration & dosage , Emulsions/pharmacology , Fatty Acids/administration & dosage , Fatty Acids/pharmacology , Female , Glucose Clamp Technique , Healthy Volunteers , Humans , Infusions, Intravenous , Insulin Resistance/physiology , Lipid Metabolism/drug effects , Lipid Metabolism/physiology , Lipids/administration & dosage , Male , Metabolic Networks and Pathways/drug effects , Mitochondria, Muscle/pathology , Mitochondria, Muscle/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Phospholipids/administration & dosage , Phospholipids/pharmacology , Soybean Oil/administration & dosage , Soybean Oil/pharmacology
6.
Dis Model Mech ; 13(10)2020 11 04.
Article in English | MEDLINE | ID: mdl-32917661

ABSTRACT

Astrocyte dysfunction is a primary factor in hepatic encephalopathy (HE) impairing neuronal activity under hyperammonemia. In particular, the early events causing ammonia-induced toxicity to astrocytes are not well understood. Using established cellular HE models, we show that mitochondria rapidly undergo fragmentation in a reversible manner upon hyperammonemia. Further, in our analyses, within a timescale of minutes, mitochondrial respiration and glycolysis were hampered, which occurred in a pH-independent manner. Using metabolomics, an accumulation of glucose and numerous amino acids, including branched chain amino acids, was observed. Metabolomic tracking of 15N-labeled ammonia showed rapid incorporation of 15N into glutamate and glutamate-derived amino acids. Downregulating human GLUD2 [encoding mitochondrial glutamate dehydrogenase 2 (GDH2)], inhibiting GDH2 activity by SIRT4 overexpression, and supplementing cells with glutamate or glutamine alleviated ammonia-induced inhibition of mitochondrial respiration. Metabolomic tracking of 13C-glutamine showed that hyperammonemia can inhibit anaplerosis of tricarboxylic acid (TCA) cycle intermediates. Contrary to its classical anaplerotic role, we show that, under hyperammonemia, GDH2 catalyzes the removal of ammonia by reductive amination of α-ketoglutarate, which efficiently and rapidly inhibits the TCA cycle. Overall, we propose a critical GDH2-dependent mechanism in HE models that helps to remove ammonia, but also impairs energy metabolism in mitochondria rapidly.


Subject(s)
Ammonia/pharmacology , Astrocytes/metabolism , Energy Metabolism , Glutamate Dehydrogenase/metabolism , Amination , Amino Acids/metabolism , Astrocytes/drug effects , Cell Line, Tumor , Cell Respiration/drug effects , Citric Acid Cycle/drug effects , Energy Metabolism/drug effects , Glycolysis/drug effects , Humans , Hydrogen-Ion Concentration , Hyperammonemia/metabolism , Ketoglutaric Acids/metabolism , Metabolome/drug effects , Metabolomics , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Models, Biological , Sirtuins/metabolism
7.
Nutrients ; 12(4)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218327

ABSTRACT

Cognitive decline is observed in aging and neurodegenerative diseases, including Alzheimer's disease (AD) and dementia. Intracellular energy produced via mitochondrial respiration is used in the regulation of synaptic plasticity and structure, including dendritic spine length and density, as well as for the release of neurotrophic factors involved in learning and memory. To date, a few synthetic agents for improving mitochondrial function have been developed for overcoming cognitive impairment. However, no natural compounds that modulate synaptic plasticity by directly targeting mitochondria have been developed. Here, we demonstrate that a mixture of Schisandra chinensis extract (SCE) and ascorbic acid (AA) improved cognitive function and induced synaptic plasticity-regulating proteins by enhancing mitochondrial respiration. Treatment of embryonic mouse hippocampal mHippoE-14 cells with a 4:1 mixture of SCE and AA increased basal oxygen consumption rate. We found that mice injected with the SCE-AA mixture showed enhanced learning and memory and recognition ability. We further observed that injection of the SCE-AA mixture in mice significantly increased expression of postsynaptic density protein 95 (PSD95), an increase that was correlated with enhanced brain-derived neurotrophic factor (BDNF) expression. These results demonstrate that a mixture of SCE and AA improves mitochondrial function and memory, suggesting that this natural compound mixture could be used to alleviate AD and aging-associated memory decline.


Subject(s)
Ascorbic Acid/pharmacology , Cell Respiration/drug effects , Cognition/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Plant Extracts/pharmacology , Schisandra/chemistry , Animals , Cell Line , Drug Synergism , Hippocampus/drug effects , Hippocampus/metabolism , Learning/drug effects , Male , Memory/drug effects , Mice , Oxygen Consumption/drug effects , Plant Extracts/chemistry , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism
8.
Methods Mol Biol ; 2138: 243-250, 2020.
Article in English | MEDLINE | ID: mdl-32219753

ABSTRACT

The single-celled yeast Saccharomyces cerevisiae is one of the most valuable laboratory models that has been used successfully to identify factors and pathways involved in several cellular processes, the counterparts of which are evolutionarily conserved. Furthermore, it is also a powerful tool for analyzing the effects of molecules of nutraceutical interest with the view of leading to human health benefits and improving the quality of aging. In this context, we present some of the methods that have allowed us to assess the beneficial influence of a form of vitamin B3, namely nicotinamide, on mitochondrial functionality during yeast chronological aging. Mitochondrial dysfunctions are considered to be hallmarks of aging, and of several metabolic and neurodegenerative diseases. More specifically, these methods concern the determination of the respiratory parameters in intact cells in order to evaluate the efficiency of mitochondrial respiration in concert with the risk of superoxide anion (O2-) production, which results from inefficient respiration. In addition, we describe fluorescent staining specific for O2- detection and mitochondrial membrane potential, as well as a simple clonogenic assay based on the ability of cells to grow on a carbon source that requires a functional mitochondrial metabolism.


Subject(s)
Aging/drug effects , Mitochondria/drug effects , Niacinamide/pharmacology , Saccharomyces cerevisiae/drug effects , Aging/metabolism , Cell Respiration/drug effects , Dietary Supplements , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Saccharomyces cerevisiae/metabolism , Superoxides/metabolism
9.
Plant Biol (Stuttg) ; 22(3): 425-432, 2020 May.
Article in English | MEDLINE | ID: mdl-32052535

ABSTRACT

Cyanide-resistant respiration in potato mitochondria is an important pathway for energy dissipation. It can be activated by high light; however, it is unclear what roles cyanide-resistant respiration plays in the response to high light stress in potato. We designed a CRISPR vector for the functional gene StAOX of the potato cyanide-resistant respiratory pathway. Agrobacterium tumefaciens GV3101 was transformed into potato. Hydrogen peroxide level, MDA content, antioxidant activity and cyanide-resistant respiratory capacity of potato leaves under high light stress were determined. Photosynthetic efficiency and chlorophyll content were determined. In addition, the operation of the malate-oxaloacetate shuttle route and transcription level of photorespiration-related enzymes were also examined. The results showed that two base substitutions occurred at the sequencing target site on leaves of the transformed potato. Accumulation of ROS and increased membrane lipid peroxidation were detected in the transformed potato leaves and lower photosynthetic efficiency was observed. The transcription level of the malate-oxaloacetate shuttle route and photorespiration-related enzymes also significantly increased. These results indicate that the cyanide-resistant respiration is an important physiological pathway in potato in response to high light stress. It also suggests that plant cyanide-resistant respiration is closely related to photosynthesis. This implies the unexplored importance of plant cyanide-resistant respiration in plant photosynthesis, energy conversion and carbon skeleton formation.


Subject(s)
Cell Respiration , Cyanides , Drug Resistance , Light , Plant Leaves , Solanum tuberosum , Agrobacterium tumefaciens/genetics , Cell Respiration/drug effects , Cell Respiration/radiation effects , Chlorophyll , Cyanides/toxicity , Oxidoreductases/genetics , Photosynthesis , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum tuberosum/radiation effects
10.
Mitochondrion ; 52: 8-19, 2020 05.
Article in English | MEDLINE | ID: mdl-32045716

ABSTRACT

Mitochondrial dysfunction occurring in response to cellular perturbations can include altered mitochondrial motility and bioenergetic function having intracellular heterogeneity. Exogenous mitochondrial directed therapy may correct these dysfunctions. Using in vitro approaches, we find that cell perturbations induced by rapid decompression from hyperbaric conditions with specific gas exposures has differential effects on mitochondrial motility, inner membrane potential, cellular respiration, reactive oxygen species production, impaired maintenance of cell shape and altered intracellular distribution of bioenergetic capacity in perinuclear and cell peripheral domains. Addition of a first-generation cell-permeable succinate prodrug to support mitochondrial function has positive overall effects in blunting the resultant bioenergy responses. Our results with this model of perturbed cell function induced by rapid decompression indicate that alterations in bioenergetic state are partitioned within the cell, as directly assessed by a combination of mitochondrial respiration and dynamics measurements. Reductions in the observed level of dysfunction produced can be achieved with application of the cell-permeable succinate prodrug.


Subject(s)
Decompression/adverse effects , Mitochondria, Muscle/physiology , Myocytes, Smooth Muscle/cytology , Succinic Acid/pharmacology , Cell Respiration/drug effects , Cells, Cultured , Energy Metabolism , Humans , Hyperbaric Oxygenation , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Muscle/drug effects , Mitochondrial Dynamics/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Nitrogen/adverse effects , Oxygen/adverse effects , Primary Cell Culture , Prodrugs , Reactive Oxygen Species/metabolism
11.
Nutrients ; 12(2)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973180

ABSTRACT

Anthracycline anticancer drugs, such as doxorubicin (DOX), can induce cardiotoxicity supposed to be related to mitochondrial damage. We have recently demonstrated that a branched-chain amino acid (BCAA)-enriched mixture (BCAAem), supplemented with drinking water to middle-aged mice, was able to promote mitochondrial biogenesis in cardiac and skeletal muscle. To maximally favor and increase oxidative metabolism and mitochondrial function, here we tested a new original formula, composed of essential amino acids, tricarboxylic acid cycle precursors and co-factors (named 5), in HL-1 cardiomyocytes and mice treated with DOX. We measured mitochondrial biogenesis, oxidative stress, and BCAA catabolic pathway. Moreover, the molecular relevance of endothelial nitric oxide synthase (eNOS) and mechanistic/mammalian target of rapamycin complex 1 (mTORC1) was studied in both cardiac tissue and HL-1 cardiomyocytes. Finally, the role of Krüppel-like factor 15 (KLF15), a critical transcriptional regulator of BCAA oxidation and eNOS-mTORC1 signal, was investigated. Our results demonstrate that the 5 mixture prevents the DOX-dependent mitochondrial damage and oxidative stress better than the previous BCAAem, implying a KLF15/eNOS/mTORC1 signaling axis. These results could be relevant for the prevention of cardiotoxicity in the DOX-treated patients.


Subject(s)
Amino Acids/administration & dosage , Cardiotoxicity/prevention & control , Cell Respiration/drug effects , Food, Formulated , Mitochondria/drug effects , Oxidative Stress/drug effects , Amino Acids, Branched-Chain/metabolism , Animals , Dietary Supplements , Doxorubicin/adverse effects , Mice , Myocytes, Cardiac/drug effects , Organelle Biogenesis , Signal Transduction
12.
Cell Biol Int ; 44(3): 795-807, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31777134

ABSTRACT

LETM1 is a mitochondrial inner-membrane protein, which is encoded by a gene present in a locus of 4p, which, in turn, is deleted in the Wolf-Hirschhorn Syndrome, and is assumed to be related to its pathogenesis. The cellular damage caused by the deletion is presumably related to oxidative stress. Melatonin has many beneficial roles in protecting mitochondria by scavenging reactive oxygen species, maintaining membrane potential, and improving functions. The aim of this study was to investigate the effects of melatonin administration to LETM1-silenced mouse embryonic fibroblast cells as a cellular model for LETM1 deficiency. We transfected mouse embryonic fibroblast cells with a pair of siRNA against LETM1 and monitored the oxidative stress and mitochondrial functions with or without melatonin addition. MnSOD expression and aconitase activity decreased and oxidized protein levels increased in LETM1-silenced cells. LETM1 suppression did not alter the expression of OXPHOS complexes, but the oxygen consumption rates decreased significantly; however, this change was not related to complex I but instead involved complex IV and complex II. Melatonin supplementation effectively normalized the parameters studied, including the oxygen consumption rate. Our findings identified a novel effect of LETM1 deficiency on cellular respiration via complex II as well as a potential beneficial role of melatonin treatment. On the other hand, these effects may be specific to the cell line used and need to be verified in other cell lines.


Subject(s)
Antioxidants , Melatonin , Mitochondria/drug effects , Oxidative Stress/drug effects , Wolf-Hirschhorn Syndrome/drug therapy , Wolf-Hirschhorn Syndrome/metabolism , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Calcium-Binding Proteins/genetics , Cation Transport Proteins/genetics , Cell Line , Cell Respiration/drug effects , Embryo, Mammalian , Fibroblasts , Gene Silencing , Melatonin/pharmacology , Melatonin/therapeutic use , Mice , Oxidative Phosphorylation/drug effects , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Wolf-Hirschhorn Syndrome/genetics
13.
Eur J Nutr ; 59(6): 2427-2437, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31494696

ABSTRACT

PURPOSE: Nicotinamide riboside (NR) acts as a potent NAD+ precursor and improves mitochondrial oxidative capacity and mitochondrial biogenesis in several organisms. However, the effects of NR supplementation on aerobic performance remain unclear. Here, we evaluated the effects of NR supplementation on the muscle metabolism and aerobic capacity of sedentary and trained mice. METHODS: Male C57BL/6 J mice were supplemented with NR (400 mg/Kg/day) over 5 and 10 weeks. The training protocol consisted of 5 weeks of treadmill aerobic exercise, for 60 min a day, 5 days a week. Bioinformatic and physiological assays were combined with biochemical and molecular assays to evaluate the experimental groups. RESULTS: NR supplementation by itself did not change the aerobic performance, even though 5 weeks of NR supplementation increased NAD+ levels in the skeletal muscle. However, combining NR supplementation and aerobic training increased the aerobic performance compared to the trained group. This was accompanied by an increased protein content of NMNAT3, the rate-limiting enzyme for NAD + biosynthesis and mitochondrial proteins, including MTCO1 and ATP5a. Interestingly, the transcriptomic analysis using a large panel of isogenic strains of BXD mice confirmed that the Nmnat3 gene in the skeletal muscle is correlated with several mitochondrial markers and with different phenotypes related to physical exercise. Finally, NR supplementation during aerobic training markedly increased the amount of type I fibers in the skeletal muscle. CONCLUSION: Taken together, our results indicate that NR may be an interesting strategy to improve mitochondrial metabolism and aerobic capacity.


Subject(s)
Aerobiosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , NAD/metabolism , Niacinamide/analogs & derivatives , Pyridinium Compounds/metabolism , Pyridinium Compounds/pharmacology , Animals , Cell Respiration/drug effects , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Niacinamide/metabolism , Niacinamide/pharmacology
14.
Aquat Toxicol ; 214: 105264, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31377504

ABSTRACT

A by-product of mitochondrial substrate oxidation and electron transfer to generate cellular energy (ATP) is reactive oxygen species (ROS). Superoxide anion radical and hydrogen peroxide (H2O2) are the proximal ROS produced by the mitochondria. Because low levels of ROS serve critical regulatory roles in cell physiology while excessive levels or inappropriately localized ROS result in aberrant physiological states, mitochondrial ROS need to be tightly regulated. While it is known that regulation of mitochondrial ROS involves balancing the rates of production and removal, the effects of stressors on these processes remain largely unknown. To illuminate how stressors modulate mitochondrial ROS homeostasis, we investigated the effects of temperature and cadmium (Cd) on H2O2 emission and consumption in rainbow trout liver mitochondria. We show that H2O2 emission rates increase with temperature and Cd exposure. Energizing mitochondria with malate-glutamate or succinate increased the rate of H2O2 emission; however, Cd exposure imposed different patterns of H2O2 emission depending on the concentration and substrate. Specifically, mitochondria respiring on malate-glutamate exhibited a saturable graded concentration-response curve that plateaued at 5 µM while mitochondria respiring on succinate had a biphasic concentration-response curve characterized by a spike in the emission rate at 1 µM Cd followed by gradual diminution at higher Cd concentrations. To explain the observed substrate- and concentration-dependent effects of Cd, we sequestered specific mitochondrial ROS-emitting sites using blockers of electron transfer and then tested the effect of the metal. The results indicate that the biphasic H2O2 emission response imposed by succinate is due to site IIF but is further modified at sites IQ and IIIQo. Moreover, the saturable graded H2O2 emission response in mitochondria energized with malate-glutamate is consistent with effect of Cd on site IF. Additionally, Cd and temperature acted cooperatively to increase mitochondrial H2O2 emission suggesting that increased toxicity of Cd at high temperature may be due to increased oxidative insult. Surprisingly, despite their clear stimulatory effect on H2O2 emission, Cd, temperature and bioenergetic status did not affect the kinetics of mitochondrial H2O2 consumption; the rate constants and half-lives for all the conditions tested were similar. Overall, our study indicates that the production processes of rainbow trout liver mitochondrial H2O2 metabolism are highly responsive to stressors and bioenergetics while the consumption processes are recalcitrant. The latter denotes the presence of a robust H2O2 scavenging system in liver mitochondria that would maintain H2O2 homeostasis in the face of increased production and reduced scavenging capacity.


Subject(s)
Cadmium/toxicity , Energy Metabolism , Mitochondria, Liver/metabolism , Oxygen Consumption/drug effects , Reactive Oxygen Species/metabolism , Temperature , Animals , Cell Respiration/drug effects , Electron Transport , Female , Hydrogen Peroxide/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria, Liver/drug effects , NAD/metabolism , Oncorhynchus mykiss/physiology , Water Pollutants, Chemical/toxicity
15.
Redox Biol ; 26: 101300, 2019 09.
Article in English | MEDLINE | ID: mdl-31437812

ABSTRACT

Inflammation is a major cause of morbidity and mortality in Western societies. Despite use of multiple drugs, both chronic and acute inflammation still represent major health burdens. Inflammation produces highly reactive dicarbonyl lipid peroxidation products such as isolevuglandins which covalently modify and cross-link proteins via lysine residues. Mitochondrial dysfunction has been associated with inflammation; however, its molecular mechanisms and pathophysiological role are still obscure. We hypothesized that inflammation-induced isolevuglandins contribute to mitochondrial dysfunction and mortality. To test this hypothesis, we have (a) investigated the mitochondrial dysfunction in response to synthetic 15-E2-isolevuglandin (IsoLG) and its adducts; (b) developed a new mitochondria-targeted scavenger of isolevuglandins by conjugating 2-hydroxybenzylamine to the lipophilic cation triphenylphosphonium, (4-(4-aminomethyl)-3-hydroxyphenoxy)butyl)-triphenylphosphonium (mito2HOBA); (c) tested if mito2HOBA protects from mitochondrial dysfunction and mortality using a lipopolysaccharide model of inflammation. Acute exposure to either IsoLG or IsoLG adducts with lysine, ethanolamine or phosphatidylethanolamine inhibits mitochondrial respiration and attenuates Complex I activity. Complex II function was much more resistant to IsoLG. We confirmed that mito2HOBA markedly accumulates in isolated mitochondria and it is highly reactive with IsoLGs. To test the role of mitochondrial IsoLGs, we studied the therapeutic potential of mito2HOBA in lipopolysaccharide mouse model of sepsis. Mito2HOBA supplementation in drinking water (0.1 g/L) to lipopolysaccharide treated mice increased survival by 3-fold, improved complex I-mediated respiration, and histopathological analyses supported mito2HOBA-mediated protection of renal cortex from cell injury. These data support the role of mitochondrial IsoLG in mitochondrial dysfunction and inflammation. We conclude that reducing mitochondrial IsoLGs may be a promising therapeutic target in inflammation and conditions associated with mitochondrial oxidative stress and dysfunction.


Subject(s)
Inflammation/metabolism , Lipids/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Animals , Cell Respiration/drug effects , Dose-Response Relationship, Drug , Electron Transport Complex I/metabolism , Electron Transport Complex II/metabolism , Enzyme Activation/drug effects , Inflammation/etiology , Kidney/metabolism , Lipid Peroxidation , Lipids/chemistry , Lipopolysaccharides/adverse effects , Lipopolysaccharides/immunology , Mice , Oxidative Stress , Sepsis/etiology , Sepsis/metabolism , Sepsis/mortality
16.
Mol Cell Endocrinol ; 494: 110491, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31255730

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease resulting from the loss of pancreatic ß cells and subsequent insulin production. Novel interventional therapies are urgently needed that can protect existing ß cells from cytokine-induced death and enhance their function before symptomatic onset. Our initial evidence is suggesting that bioactive ingredients within Cornus officinalis (CO) may be able to serve in this function. CO has been extensively used in Traditional Chinese Medicine (TCM) and reported to possess both anti-inflammatory and pro-metabolic effects. We hypothesize that CO treatment may provide a future potential candidate for interventional therapy for early stage T1D prior to significant ß cell loss. Our data demonstrated that CO can inhibit cytokine-mediated ß cell death, increase cell viability and oxidative capacity, and increase expression of NFATC2 (Nuclear Factor of Activated T Cells, Cytoplasmic 2). We have also profiled the bioactive components in CO from multiple sources by HPLC/MS (High Performance Liquid Chromatography/Mass Spectrometry) analysis. Altogether, CO significantly increases the energy metabolism of ß cells while inducing the NFAT pathway to signal for increased proliferation and endocrine function.


Subject(s)
Cornus/chemistry , Insulin-Secreting Cells/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Cell Line , Cell Proliferation/drug effects , Cell Respiration/drug effects , Cell Survival/drug effects , Cytokines/pharmacology , Glycolysis/drug effects , Humans , Insulin-Secreting Cells/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , NFATC Transcription Factors/metabolism , Phenotype , Phytochemicals/chemistry , Phytochemicals/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Th1 Cells/drug effects , Time Factors , Transcriptome/genetics , Up-Regulation/drug effects
17.
Int J Mol Sci ; 20(5)2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30862029

ABSTRACT

Peanut sprouts (PS), which are germinated peanut seeds, have recently been reported to have anti-oxidant, anti-inflammatory, and anti-obesity effects. However, the underlying mechanisms by which PS modulates lipid metabolism are largely unknown. To address this question, serial doses of PS extract (PSE) were added to 3T3-L1 cells during adipocyte differentiation. PSE (25 µg/mL) significantly attenuated adipogenesis by inhibiting lipid accumulation in addition to reducing the level of adipogenic protein and gene expression with the activation of AMP-activated protein kinase (AMPK). Other adipocyte cell models such as mouse embryonic fibroblasts C3H10T1/2 and primary adipocytes also confirmed the anti-adipogenic properties of PSE. Next, we investigated whether PSE attenuated lipid accumulation in mature adipocytes. We found that PSE significantly suppressed lipogenic gene expression, while fatty acid (FA) oxidation genes were upregulated. Augmentation of FA oxidation by PSE in mature 3T3-L1 adipocytes was confirmed via a radiolabeled-FA oxidation rate experiment by measuring the conversion of [³H]-oleic acid (OA) to [³H]-H2O. Furthermore, PSE enhanced the mitochondrial oxygen consumption rate (OCR), especially maximal respiration, and beige adipocyte formation in adipocytes. In summary, PSE was effective in reducing lipid accumulation in 3T3-L1 adipocytes through mitochondrial fatty acid oxidation involved in AMPK and mitochondrial activation.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Arachis/chemistry , Fatty Acids/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oxidation-Reduction , Plant Extracts/pharmacology , Triglycerides/metabolism , 3T3-L1 Cells , AMP-Activated Protein Kinases/metabolism , Adipogenesis/drug effects , Animals , Cell Respiration/drug effects , Cell Survival/drug effects , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Flavonoids/chemistry , Lipid Metabolism/drug effects , Mice , Oxygen Consumption , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Polyphenols/chemistry , Resveratrol/chemistry
18.
EBioMedicine ; 42: 511-523, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30898651

ABSTRACT

BACKGROUND: The vast majority of mitochondrial disorders have limited the clinical management to palliative care. Rapamycin has emerged as a potential therapeutic drug for mitochondrial diseases since it has shown therapeutic benefits in a few mouse models of mitochondrial disorders. However, the underlying therapeutic mechanism is unclear, the minimal effective dose needs to be defined and whether this therapy can be generally used is unknown. METHODS: We have evaluated whether low and high doses of rapamycin administration may result in therapeutic effects in a mouse model (Coq9R239X) of mitochondrial encephalopathy due to CoQ deficiency. The evaluation involved phenotypic, molecular, image (histopathology and MRI), metabolomics, transcriptomics and bioenergetics analyses. FINDINGS: Low dose of rapamycin induces metabolic changes in liver and transcriptomics modifications in midbrain. The high dose of rapamycin induces further changes in the transcriptomics profile in midbrain due to the general inhibition of mTORC1. However, neither low nor high dose of rapamycin were able to improve the mitochondrial bioenergetics, the brain injuries and the phenotypic characteristics of Coq9R239X mice, resulting in the lack of efficacy for increasing the survival. INTERPRETATION: These results may be due to the lack of microgliosis-derived neuroinflammation, the limitation to induce autophagy, or the need of a functional CoQ-junction. Therefore, the translation of rapamycin therapy into the clinic for patients with mitochondrial disorders requires, at least, the consideration of the particularities of each mitochondrial disease. FUND: Supported by the grants from "Fundación Isabel Gemio - Federación Española de Enfermedades Neuromusculares - Federación FEDER" (TSR-1), the NIH (P01HD080642) and the ERC (Stg-337327).


Subject(s)
Mitochondrial Diseases/drug therapy , Sirolimus/therapeutic use , Animals , Autophagy , Cell Respiration/drug effects , Cell Respiration/genetics , Disease Models, Animal , Gene Expression Profiling , Humans , Metabolomics/methods , Mice , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/etiology , Mitochondrial Encephalomyopathies/drug therapy , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Encephalomyopathies/metabolism , Phenotype , Sirolimus/administration & dosage , Sirolimus/adverse effects , Sirolimus/pharmacokinetics , Treatment Outcome , Ubiquinone/analogs & derivatives , Ubiquinone/genetics , Ubiquinone/metabolism
19.
Plant Cell Environ ; 42(7): 2151-2164, 2019 07.
Article in English | MEDLINE | ID: mdl-30903994

ABSTRACT

To quantify stem respiration (RS ) under elevated CO2 (eCO2 ), stem CO2 efflux (EA ) and CO2 flux through the xylem (FT ) should be accounted for, because part of respired CO2 is transported upwards with the sap solution. However, previous studies have used EA as a proxy of RS , which could lead to equivocal conclusions. Here, to test the effect of eCO2 on RS , both EA and FT were measured in a free-air CO2 enrichment experiment located in a mature Eucalyptus native forest. Drought stress substantially reduced EA and RS , which were unaffected by eCO2 , likely as a consequence of its neutral effect on stem growth in this phosphorus-limited site. However, xylem CO2 concentration measured near the stem base was higher under eCO2 , and decreased along the stem resulting in a negative contribution of FT to RS , whereas the contribution of FT to RS under ambient CO2 was positive. Negative FT indicates net efflux of CO2 respired below the monitored stem segment, likely coming from the roots. Our results highlight the role of nutrient availability on the dependency of RS on eCO2 and suggest stimulated root respiration under eCO2 that may shift vertical gradients in xylem [CO2 ] confounding the interpretation of EA measurements.


Subject(s)
Biological Transport/physiology , Carbon Dioxide/metabolism , Cell Respiration/physiology , Eucalyptus/metabolism , Plant Stems/metabolism , Xylem/chemistry , Carbon Dioxide/pharmacology , Cell Respiration/drug effects , Droughts , Forests , Models, Biological , Phosphorus , Plant Roots/metabolism , Plant Stems/drug effects , Soil
20.
Cell Cycle ; 18(4): 476-499, 2019 02.
Article in English | MEDLINE | ID: mdl-30755072

ABSTRACT

HepaRG is a proliferative human hepatoma-derived cell line that can be differentiated into hepatocyte-like and biliary-like cells. Differentiated HepaRG cultures maintain key hepatic functions including drug transporters and xenobiotic-metabolizing enzymes. To gain insight into proliferative and differentiated HepaRG metabolism we profiled various bioenergetic parameters and investigated cell culture levels of adenosine triphosphate (ATP), lactate, and lactate dehydrogenase (LDH) activity. Compared to differentiated-derived HepaRG, cells from proliferative cultures had increased basal and ATP-linked respiration and decreased maximal and spare respiratory capacities. Basal ATP levels but not lactate or LDH activity were increased in samples from proliferative-derived compared to differentiated-derived HepaRG. Further extracellular acidification rate (ECAR) experiments revealed parameters associated with glycolysis and oxidative phosphorylation. Under basal conditions, cells derived from both cultures had similar ECARs; however, under stressed conditions, proliferative-derived HepaRG had increases in ECAR capacity and apparent glycolytic reserve. The biguanide metformin has been reported to protect differentiated HepaRG against acetaminophen (APAP)-induced cell injury, as well as offer protection against bioenergetic deficiencies; therefore, we studied the outcome of exposure to these drugs in both culture conditions. Proliferative- and differentiated-derived cells were found to have distinct mitochondrial bioenergetic alterations when exposed to the hepatotoxic drug APAP. Metformin offered protection against loss of APAP-induced cellular viability and prevented APAP-induced decreases in bioenergetics in differentiated- but not proliferative-derived HepaRG. Distinguishingly, treatment with metformin alone reduced ATP-linked respiration, maximal respiratory capacity, and basal respiration in proliferative-derived HepaRG. Our results support that HepaRG represents an appropriate model to study drug-induced bioenergetic dysfunction.


Subject(s)
Acetaminophen/pharmacology , Cell Culture Techniques/methods , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Energy Metabolism , Hepatocytes/metabolism , Metformin/pharmacology , Adenosine Triphosphate/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Respiration/drug effects , Culture Media/chemistry , Glycolysis , Hepatocytes/drug effects , Humans , L-Lactate Dehydrogenase/metabolism , Lactic Acid/metabolism , Liver Neoplasms/pathology , Oxidative Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL