Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 925
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Photobiomodul Photomed Laser Surg ; 42(4): 306-313, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38546858

ABSTRACT

Background: This investigation set out to compare the impacts of low-level diode laser (LLDL) and red light-emitting diode (LED) on the survival of human dental pulp stem cells (hDPSCs) and osteogenic/odontogenic differentiation. Methods and materials: In this ex vivo experimental study, the experimental groups underwent the irradiation of LLDL (4 J/cm2 energy density) and red LED in the osteogenic medium. Survival of hDPSCs was assessed after 24 and 48 h (n = 9) using the methyl thiazolyl tetrazolium (MTT) assay. The assessment of osteogenic/odontogenic differentiation was conducted using alizarin red staining (ARS; three repetitions). The investigation of osteogenic and odontogenic gene expression was performed at two time points, specifically 24 and 48 h (n = 12). This analysis was performed utilizing real-time reverse-transcription polymerase chain reaction (RT-PCR). The groups were compared at each time point using SPSS version 24. To analyze the data, the Mann-Whitney U test, analysis of variance, Tukey's test, and t-test were utilized. Results: The MTT assay showed that LLDL significantly decreased the survival of hDPSCs after 48 h, compared with other groups (p < 0.05). The qualitative results of ARS revealed that LLDL and red LED increased the osteogenic differentiation of hDPSCs. LLDL and red LED both upregulated the expression of osteogenic/odontogenic genes, including bone sialoprotein (BSP), alkaline phosphatase (ALP), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP), in hDPSCs. The LLDL group exhibited a higher level of gene upregulation (p < 0.0001). Conclusions: The cell survival of hDPSCs was reduced, despite an increase in osteogenic/odontogenic activity. Clinical relevance: Introduction of noninvasive methods in regenerative endodontic treatments.


Subject(s)
Cell Differentiation , Cell Survival , Dental Pulp , Lasers, Semiconductor , Low-Level Light Therapy , Odontogenesis , Osteogenesis , Stem Cells , Humans , Dental Pulp/cytology , Dental Pulp/radiation effects , Cell Differentiation/radiation effects , Osteogenesis/radiation effects , Stem Cells/radiation effects , Stem Cells/cytology , Cell Survival/radiation effects , Odontogenesis/radiation effects , Cells, Cultured , Red Light
2.
Fitoterapia ; 168: 105544, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37182750

ABSTRACT

A new alkaloid, Orychophragine D (1), together with three known alkaloids, were isolated from the seeds of Orychophragmus violaceus. Orychophragine D represented the first example of 2-piperazinone fused 5-azacytosine skeleton. Their structures and absolute configurations were determined by spectroscopic analyses and X-ray crystallography. Compared to Ex-RAD, compound 1 exhibited a significant radioprotective activity on cell survival of irradiated HUVEC. In vivo experiments showed that 1 not only remarkably enhanced the survival of irradiated mice in 30 days, but also significantly promoted the recovery of the blood system of irradiated mice. These results suggested that 1 was valuable for further research as promising radioprotectors.


Subject(s)
Alkaloids , Brassicaceae , Radiation-Protective Agents , Animals , Mice , Alkaloids/pharmacology , Alkaloids/analysis , Brassicaceae/chemistry , Crystallography, X-Ray , Molecular Structure , Seeds/chemistry , Radiation-Protective Agents/chemistry , Radiation-Protective Agents/isolation & purification , Radiation-Protective Agents/pharmacology , Cell Survival/drug effects , Cell Survival/radiation effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Male , Mice, Inbred C57BL , Whole-Body Irradiation , Survival Analysis , Blood Cell Count , Gamma Rays
3.
Lasers Med Sci ; 37(9): 3571-3581, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36125659

ABSTRACT

The aim of the present study was to analyze for the first time the effect of photobiomodulation therapy (PBMT) using defocused high-power laser (DHPL) in myoblast cell line C2C12 viability and migration and compare them with low-power laser therapy. Cells were divided into 9 groups: Sham irradiation 10% fetal bovine serum (FBS); Sham irradiation 5%FBS; low-power laser 0.1 W; DHPL 810 1 W; DHPL 810 2 W; DHPL 980 1 W; DHPL 980 2 W; DHPL dual 1 W; DHPL dual 2 W. To simulate stress conditions, all groups exposed to irradiation were maintained in DMEM 5% FBS. The impact of therapies on cell viability was assessed through sulforhodamine B assay and on cells migration through scratch assays and time-lapse. Myoblast viability was not modified by PBMT protocols. All PBMT protocols were able to accelerate the scratch closure after 6 and 18 h of the first irradiation (p < 0.001). Also, an increase in migration speed, with a more pronounced effect of DHPL laser using dual-wavelength protocol with 2 W was observed (p < 0.001). In conclusion, the diverse PBMT protocols used in this study accelerated the C2C12 myoblasts migration, with 2-W dual-wavelength outstanding as the most effective protocol tested. Benefits from treating muscle injuries with PBMT appear to be related to its capacity to induce cell migration without notable impact on cell viability.


Subject(s)
Low-Level Light Therapy , Myoblasts , Myoblasts/radiation effects , Low-Level Light Therapy/methods , Cell Survival/radiation effects , Cell Movement , Lasers
4.
J Photochem Photobiol B ; 234: 112527, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35914464

ABSTRACT

In recent decades, the laser treatment of cancer has been introduced as a promising treatment option. Because of the maldistribution of optical energy and an ambiguous boundary between the normal and tumor tissues, laser irradiation can stimulate residual cancer cells, leading to a cancer regrowth. As photobiomodulation (PBM) is involved in an extensive range of cellular responses, profound comprehension of photo-stimulated mechanisms against the cancer cells is required to establish a safety margin for PBM. Therefore, we aimed to identify the stimulant effects of PBM at various wavelengths against the tumor cells to establish a safety margin for the laser treatment. CT26 murine colon cancer cells were exposed to either 405 (BL), 635 (VIS), or 808 (NIR) nm laser lights at the fluences of 0, 10, 30, and 50 J/cm2. In addition, CT26 tumor-bearing mice were irradiated with BL, VIS, or NIR at a fluence of 30 J/cm2. Both the proliferation and angiogenesis potential of the CT26 cells and tumors were evaluated using the MTT assay, western blot, and immunohistochemistry (IHC) staining analyses. Although cell viability was not statistically significant, BL significantly induced p-ERK upregulation in the CT26 cells, indicating that PBM with BL can stimulate proliferation. In vivo tests showed that the NIR group exhibited the maximum relative tumor volume, and BL yielded a slight increase compared to the control. In the IHC staining and western blot analyses, both BL and NIR increased the expression of EGFR, VEGF, MMP-9, and HIF-1α, which are related to the proliferation and angiogenesis-related factors. Further investigations will be pursued to clarify the molecular pathways that depend on the cancer cell types and laser wavelengths for the establishment of safety guidelines in clinical environments.


Subject(s)
Colonic Neoplasms , Low-Level Light Therapy , Animals , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Colonic Neoplasms/radiotherapy , Light , Mice
5.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682607

ABSTRACT

The photothermal effect refers to a phenomenon in which light energy is converted into heat energy, and in the medical field, therapeutics based on this phenomenon are used for anticancer treatment. A new treatment technique called photothermal therapy kills tumor tissue through a temperature increase and has the advantages of no bleeding and fast recovery. In this study, the results of photothermal therapy for squamous cell carcinoma in the skin layer were analyzed numerically for different laser profiles, intensities, and radii and various concentrations of gold nanoparticles (AuNPs). According to the heat-transfer theory, the temperature distribution in the tissue was calculated for the conditions under which photothermal therapy was performed, and the therapeutic effect was quantitatively confirmed through three apoptotic variables. In addition, the laser intensity and the volume fraction of AuNPs were optimized, and the results provide useful criteria for optimizing the treatment effects in photothermal therapy.


Subject(s)
Gold , Metal Nanoparticles , Cell Line, Tumor , Cell Survival/radiation effects , Metal Nanoparticles/therapeutic use , Phototherapy/methods , Photothermal Therapy , Temperature
6.
Chin J Dent Res ; 25(1): 57-65, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35293711

ABSTRACT

OBJECTIVE: To determine the effect of different energy densities of near infrared diode lasers with wavelengths of 810 or 940 nm on the proliferation and survival of periodontal ligament derived stem cells (PDLSCs). METHODS: After isolation and characterisation, PDLSCs were cultured in clear 96-well plates. Each well was irradiated by either 810 nm (L1) or 940 nm (L2) lasers, with energy densities of 0.5, 1.5 and 2.5 J/cm2 and an output power of 100 mW. A non-irradiated well was used as a control. Cellular viability was measured 24 hours after irradiation using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and proliferation was measured 24, 48 and 72 hours after irradiation using trypan blue staining and counting. Propidium iodide (PI) staining was used to identify any pyknotic nuclei or nuclear fragmentation 72 hours after irradiation. RESULTS: An increase in viability was observed only in the group with the 940 nm laser irradiation at energy density of 2.5 J/cm2 (P < 0.001). The proliferation of cells was significantly increased in the group with 940 nm laser irradiation at energy density of 2.5 J/cm2 at all the time points examined in comparison to other groups (P < 0.001). PI staining showed no change in cell nuclei in any of the groups. CONCLUSION: Irradiation of PDLSCs with a 940 nm laser at an energy density of 2.5 J/cm2 could promote efficient cell proliferation.


Subject(s)
Low-Level Light Therapy , Periodontal Ligament , Cell Survival/radiation effects , Lasers, Semiconductor/therapeutic use , Stem Cells/radiation effects
7.
Int J Mol Sci ; 23(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35163548

ABSTRACT

Owing to their good stability and high photothermal conversion efficiency, the development of carbon-based nanoparticles has been intensively investigated, while the limitation of unsatisfactory cellular internalization impedes their further clinical application. Herein, we report a novel strategy for fabrication of Fe3O4 yolk-shell mesoporous carbon nanocarriers (Fe3O4@hmC) with monodispersity and uniform size, which presented significantly higher cell membrane adsorption and cellular uptake properties in comparison with common solid silica-supported mesoporous carbon nanoparticles with core-shell structure. Moreover, the MRI performance of this novel Fe-based nanoparticle could facilitate precise tumor diagnosis. More importantly, after DOX loading (Fe3O4@hmC-DOX), owing to synergistic effect of chemo-phototherapy, this therapeutic agent exhibited predominant tumor cell ablation capability under 808 nm NIR laser irradiation, both in vitro and in vivo. Our work has laid a solid foundation for therapeutics with hollowed carbon shell for solid tumor diagnosis and therapy in clinical trials.


Subject(s)
Breast Neoplasms/therapy , Carbon/chemistry , Doxorubicin/administration & dosage , Magnetic Iron Oxide Nanoparticles/chemistry , Animals , Breast Neoplasms/diagnostic imaging , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Combined Modality Therapy , Doxorubicin/chemistry , Female , Mice , Nanostructures , Particle Size , Photothermal Therapy , Treatment Outcome , Xenograft Model Antitumor Assays
8.
Molecules ; 27(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35056753

ABSTRACT

The extract from Entada phaseoloides was employed as active ingredients of natural origin into cosmetic products, while the components analysis was barely reported. Using LC-DAD-MS/qTOF analysis, eleven compounds (1-11) were proposed or identified from acetone extract of E. phaseoloides leaves (AE). Among them, six phenolic compounds, protocatechuic acid (2), 4-hydroxybenzoic acid (3), luteolin-7-O-ß-d-glucoside (5), cirsimaritin (6), dihydrokaempferol (9), and apigenin (10), were isolated by various chromatographic techniques. Protocatechuic acid (2), epicatechin (4), and kaempferol (11) at a concentration 100 µM increased the HaCaT cells viability of the UVB-irradiated cell without any cytotoxicity effect and reduced the expression of COX-2 and iNOS inflammation gene. Moreover, compounds 2 and 4 could have potent effects on cell migration during wound closure. These results suggest that compounds 2, 4, and 11 from AE have anti-photoaging properties and could be employed in pharmaceutical and cosmeceutical products.


Subject(s)
Fabaceae/chemistry , Keratinocytes/drug effects , Phenols/pharmacology , Plant Extracts/chemistry , Radiation-Protective Agents/pharmacology , Acetone/chemistry , Cell Line , Cell Movement/drug effects , Cell Movement/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Cyclooxygenase 2/genetics , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/radiation effects , Keratinocytes/radiation effects , Nitric Oxide Synthase Type II/genetics , Phenols/chemistry , Radiation-Protective Agents/chemistry , Skin/cytology , Ultraviolet Rays
9.
Photochem Photobiol ; 98(4): 969-973, 2022 07.
Article in English | MEDLINE | ID: mdl-34932837

ABSTRACT

Photobiomodulation is recognized as an effective method for adjunct therapy in periodontal treatments. Our purpose in this study was to investigate the effects of different energy densities of 915 nm diode laser on the viability and viability capacity of human gingival fibroblast cells. Cell samples were examined in five groups, including four irradiation groups with low-level diode laser 915 nm, 1, 2, 3, 4 J cm-2 and a control group (no Laser irradiation). Cell viability and viability were measured 1, 3 and 5 days after irradiation by MTT and DAPI assay. Statistical differences between groups at any time were analyzed by one-way ANOVA and a post hoc Turkey's test. The cell viability and viability capacity increased on the third day at an energy density of 3 J cm-2 ; (P-value = 0.007) and the fifth day at energy densities of 2, 3 and 4 J cm-2 was recorded compared with the control group (P-value = 0.000). Also, a significant decrease in the viability and viability of irradiated cells with an energy density of 1 J cm-2 was found (P-value = 0.033). According to our results, Photobiomodulation with 915 nm diode laser has a positive stimulating effect on the viability and viability capacity of human gingival fibroblast cells.


Subject(s)
Low-Level Light Therapy , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Fibroblasts/radiation effects , Gingiva , Humans , Lasers, Semiconductor , Low-Level Light Therapy/methods
10.
Bioengineered ; 13(1): 917-929, 2022 01.
Article in English | MEDLINE | ID: mdl-34968160

ABSTRACT

Radiation therapy (RT) is widely applied in cancer treatment. The sensitivity of tumor cells to RT is the key to the treatment. This study probes the role and mechanism of miR-20b-5p in Pembrolizumab's affecting the radiosensitivity of tumor cells. After Pembrolizumab treatment or cell transfection (miR-20b-5p mimics and miR-20b-5p inhibitors), tumor cells (NCI-H460 and ZR-75-30) were exposed to RT. The sensitivity of NCI-H460 and ZR-75-30 to RT was evaluated by monitoring cell proliferation and apoptosis. The dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were adopted to evaluate the binding relationship between miR-20b-5p and CD274 (PD-L1). The xenograft model was established in nude mice to examine the mechanism of action of Pembrolizumab in vivo. Our outcomes exhibited that either Pembrolizumab treatment or miR-20b-5p overexpression potentiated radiosensitivity of tumor cells. Overexpressing miR-20b-5p enhanced radiosensitization of Pembrolizumab in vivo and in vitro by targeting PD-L1 and inactivating PD-L1/PD1. Overall, miR-20b-5p overexpression combined with Pembrolizumab potentiated cancer cells' sensitivity to RT by repressing PD-L1/PD1.Abbreviations Akt: serine/threonine kinase 1; cDNA: complementary DNA; CO2: carbon dioxide; EDTA: Ethylene Diamine Tetraacetic Acid; ENCORI: The Encyclopedia of RNA Interactomes; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IGF2BP2: insulin like growth factor 2 mRNA binding protein 2; IHC: Immunohistochemistry; LncRNA MALAT1: Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1; miRNAs: MicroRNAs; Mt: Mutant type; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; NC: negative control; NR2F2: nuclear receptor subfamily 2 group F member 2; NSCLC: non-small cell lung cancer; OD: optical density; PBS: phosphate-buffered saline; PD-L1: Programmed death-ligand 1; PD-1: programmed death 1; PI3K: phosphatidylinositol 3-kinase; qRT-PCR: Quantitative reverse transcription-polymerase chain reaction; RIP: RNA immunoprecipitation; RIPA: Radio Immunoprecipitation Assay; RRM2: ribonucleotide reductase regulatory subunit M2; RT: Radiation therapy; U6: U6 small nuclear RNA; V: volume; WB: Western blot; Wt: wild type; x ± sd: mean ± standard deviation.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , B7-H1 Antigen/genetics , Breast Neoplasms/therapy , Carcinoma, Non-Small-Cell Lung/therapy , Down-Regulation , Lung Neoplasms/therapy , MicroRNAs/genetics , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Breast Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Chemoradiotherapy , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Lung Neoplasms/genetics , Mice , Mice, Nude , Transfection , Xenograft Model Antitumor Assays
11.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769035

ABSTRACT

Background: The invention of non-ionizing emission devices revolutionized science, medicine, industry, and the military. Currently, different laser systems are commonly used, generating the potential threat of excessive radiation exposure, which can lead to adverse health effects. Skin is the organ most exposed to laser irradiation; therefore, this study aims to evaluate the effects of 445 nm, 520 nm, and 638 nm non-ionizing irradiation on keratinocytes and fibroblasts. Methods: Keratinocytes and fibroblasts were exposed to a different fluency of 445 nm, 520 nm, and 638 nm laser irradiation. In addition, viability, type of cell death, cell cycle distribution, and proliferation rates were investigated. Results: The 445 nm irradiation was cytotoxic to BJ-5ta (≥58.7 J/cm2) but not to Ker-CT cells. Exposure influenced the cell cycle distribution of Ker-CT (≥61.2 J/cm2) and BJ-5ta (≥27.6 J/cm2) cells, as well as the Bj-5ta proliferation rate (≥50.5 J/cm2). The 520 nm irradiation was cytotoxic to BJ-5ta (≥468.4 J/cm2) and Ker-CT (≥385.7 J/cm2) cells. Cell cycle distribution (≥27.6 J/cm2) of Ker-CT cells was also affected. The 638 nm irradiation was cytotoxic to BJ-5ta and Ker-CT cells (≥151.5 J/cm2). The proliferation rate and cell cycle distribution of BJ-5ta (≥192.9 J/cm2) and Ker-CT (13.8 and 41.3 J/cm2) cells were also affected. Conclusions: At high fluences, 455 nm, 520 nm, and 638 nm irradiation, representing blue, green, and red light spectra, are hazardous to keratinocytes and fibroblasts. However, laser irradiation may benefit the cells at low fluences by modulating the cell cycle and proliferation rate.


Subject(s)
Fibroblasts/radiation effects , Skin/radiation effects , Cell Cycle/radiation effects , Cell Death/radiation effects , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Cells, Cultured , Humans , Lasers , Light , Low-Level Light Therapy/methods
12.
Biochem Biophys Res Commun ; 580: 41-47, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34619551

ABSTRACT

Luffa cylindrica stem sap (LuCS) has been traditionally used as a facial cosmetic supplement to enhance the skin condition of Asians. However, LuCS has yet to be described and there is no solid scientific evidence regarding the use of LuCS as an anti-wrinkle agent. In the present study, we have evaluated the functional effect of LuCS and its underlying mechanisms based on scientific evidence. Treatment with LuCS stimulated the growth and migration of human skin fibroblasts. LuCS treatment activated EGFR signaling via the enhanced expression of EGFR and down-regulation of PPARγ in human skin fibroblasts. Exposure to LuCS induced the synthesis of cellular type I procollagen and elastin in consort with the down-regulation of various proteinases including MMP-1, -2 and -9 in human skin fibroblasts. LuCS treatment also reversed the skin damage induced by UV-A irradiation in human skin fibroblasts. 3-bromo-3-methylisoxazol-5-amine was identified as the functional component using UPLC-MS-MS analysis and increased production of cellular type I procollagen. Collectively, these results suggest the efficacy of LuCS supplementation in improving the skin condition via anti-wrinkle effect.


Subject(s)
Fibroblasts/drug effects , Luffa , Plant Extracts/pharmacology , Protective Agents/pharmacology , Skin Aging/drug effects , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Fibroblasts/cytology , Fibroblasts/radiation effects , Humans , Luffa/chemistry , Plant Extracts/chemistry , Plant Stems/chemistry , Protective Agents/chemistry
13.
Sci Rep ; 11(1): 19539, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599207

ABSTRACT

For the first time, inspired by magnetic resonance imaging-guidance high intensity focused ultrasound (MR-HIFU) technology, i.e., medication therapy and thermal ablation in one session, in a preclinical setting based on a developed mathematical model, the performance of doxorubicin (Dox) and its encapsulation have been investigated in this study. Five different treatment methods, that combine medication therapy with mild hyperthermia by MRI contrast ([Formula: see text]) and thermal ablation via HIFU, are investigated in detail. A comparison between classical chemotherapy and thermochemistry shows that temperature can improve the therapeutic outcome by stimulating biological properties. On the other hand, the intravascular release of ThermoDox increases the concentration of free drug by 2.6 times compared to classical chemotherapy. The transport of drug in interstitium relies mainly on the diffusion mechanism to be able to penetrate deeper and reach the cancer cells in the inner regions of the tumor. Due to the low drug penetration into the tumor center, thermal ablation has been used for necrosis of the central areas before thermochemotherapy and ThermoDox therapy. Perfusion of the region around the necrotic zone is found to be damaged, while cells in the region are alive and not affected by medication therapy; so, there is a risk of tumor recurrence. Therefore, it is recommended that ablation be performed after the medication therapy. Our model describes a comprehensive assessment of MR-HIFU technology, taking into account many effective details, which can be a reliable guide towards the optimal use of drug delivery systems.


Subject(s)
Drug Delivery Systems , Hyperthermia, Induced/methods , Magnetic Fields , Models, Theoretical , Neoplasms/therapy , Ultrasonic Waves , Antineoplastic Agents/administration & dosage , Cell Survival/drug effects , Cell Survival/radiation effects , Combined Modality Therapy , Drug Delivery Systems/methods , High-Intensity Focused Ultrasound Ablation/methods , Humans , Neoplasms/diagnosis , Neoplasms/mortality , Prognosis , Reproducibility of Results , Treatment Outcome , Tumor Microenvironment/drug effects
14.
Molecules ; 26(18)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34577080

ABSTRACT

The selective disruption of nutritional supplements and the metabolic routes of cancer cells offer a promising opportunity for more efficient cancer therapeutics. Herein, a biomimetic cascade polymer nanoreactor (GOx/CAT-NC) was fabricated by encapsulating glucose oxidase (GOx) and catalase (CAT) in a porphyrin polymer nanocapsule for combined starvation and photodynamic anticancer therapy. Internalized by cancer cells, the GOx/CAT-NCs facilitate microenvironmental oxidation by catalyzing endogenous H2O2 to form O2, thereby accelerating intracellular glucose catabolism and enhancing cytotoxic singlet oxygen (1O2) production with infrared irradiation. The GOx/CAT-NCs have demonstrated synergistic advantages in long-term starvation therapy and powerful photodynamic therapy (PDT) in cancer treatment, which inhibits tumor cells at more than twice the rate of starvation therapy alone. The biomimetic polymer nanoreactor will further contribute to the advancement of complementary modes of spatiotemporal control of cancer therapy.


Subject(s)
Nanoparticles/chemistry , Neoplasms/therapy , Photochemotherapy/methods , Polymers/chemistry , Animals , Biomimetics , Catalase/chemistry , Catalase/pharmacology , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Glucose Oxidase/chemistry , Glucose Oxidase/pharmacology , Humans , Hydrogen Peroxide/metabolism , Infrared Rays , Mice , Polymers/chemical synthesis , Porphyrins/chemical synthesis , Porphyrins/chemistry , Singlet Oxygen/metabolism , Singlet Oxygen/pharmacology
15.
Photochem Photobiol Sci ; 20(8): 1087-1098, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34398442

ABSTRACT

In this study, C-doped TiO2 nanoparticles (C-TiO2) were prepared and tested as a photosensitizer for visible-light-driven photodynamic therapy against cervical cancer cells (HeLa). X-ray diffraction and Transmission Electron Microscopy confirmed the anatase form of nanoparticles, spherical shape, and size distribution from 5 to 15 nm. Ultraviolet-visible light spectroscopy showed that C doping of TiO2 enhances the optical absorption in the visible light range caused by a bandgap narrowing. The photo-cytotoxic activity of C-TiO2 was investigated in vitro against HeLa cells. The lack of dark cytotoxicity indicates good biocompatibility of C-TiO2. In contrast, a combination with blue light significantly reduced the survival of HeLa cells: illumination only decreased cell viability by 30% (15 min of illumination, 120 µW power), and 60% when HeLa cells were preincubated with C-TiO2. We have also confirmed blue light-induced C-TiO2-catalyzed generation of reactive oxygen species in vitro and intracellularly. Oxidative stress triggered by C-TiO2/blue light was the leading cause of HeLa cell death. Fluorescent labeling of treated HeLa cells showed distinct morphological changes after the C-TiO2/blue light treatment. Unlike blue light illumination, which caused the appearance of large necrotic cells with deformed nuclei, cytoplasm swelling, and membrane blebbing, a combination of C-TiO2/blue light leads to controlled cell death, thus providing a better outcome of local anticancer therapy.


Subject(s)
Carbon/chemistry , Nanoparticles , Phototherapy , Titanium/chemistry , Titanium/pharmacology , Uterine Cervical Neoplasms/pathology , Cell Survival/drug effects , Cell Survival/radiation effects , Combined Modality Therapy , Female , HeLa Cells , Humans
16.
Molecules ; 26(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34361743

ABSTRACT

While investigating the possible synergistic effect of the conventional anticancer therapies, which, taken individually, are often ineffective against critical tumors, such as central nervous system (CNS) ones, the design of a theranostic nanovector able to carry and deliver chemotherapy drugs and magnetic hyperthermic agents to the target radiosensitizers (oxygen) was pursued. Alongside the original formulation of polymeric biodegradable oxygen-loaded nanostructures, their properties were fine-tuned to optimize their ability to conjugate therapeutic doses of drugs (doxorubicin) or antitumoral natural substances (curcumin). Oxygen-loaded nanostructures (diameter = 251 ± 13 nm, ζ potential = -29 ± 5 mV) were finally decorated with superparamagnetic iron oxide nanoparticles (SPIONs, diameter = 18 ± 3 nm, ζ potential = 14 ± 4 mV), producing stable, effective and non-agglomerating magnetic nanovectors (diameter = 279 ± 17 nm, ζ potential = -18 ± 7 mV), which could potentially target the tumoral tissues under magnetic driving and are monitorable either by US or MRI imaging.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Chitosan/chemistry , Hyperthermia, Induced/methods , Magnetite Nanoparticles/chemistry , Radiation-Sensitizing Agents/pharmacology , Theranostic Nanomedicine/methods , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Contrast Media/chemical synthesis , Contrast Media/pharmacology , Curcumin/chemistry , Curcumin/pharmacology , Dextran Sulfate/chemistry , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Compounding/methods , Humans , Kinetics , Magnetite Nanoparticles/ultrastructure , Oxygen/chemistry , Oxygen/pharmacology , Radiation-Sensitizing Agents/chemical synthesis
17.
Adv Mater ; 33(32): e2100795, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34219286

ABSTRACT

A critical issue in photodynamic therapy (PDT) is inadequate reactive oxygen species (ROS) generation in tumors, causing inevitable survival of tumor cells that usually results in tumor recurrence and metastasis. Existing photosensitizers frequently suffer from relatively low light-to-ROS conversion efficiency with far-red/near-infrared (NIR) light excitation due to low-lying excited states that lead to rapid non-radiative decays. Here, a neutral Ir(III) complex bearing distyryl boron dipyrromethene (BODIPY-Ir) is reported to efficiently produce both ROS and hyperthermia upon far-red light activation for potentiating in vivo tumor suppression through micellization of BODIPY-Ir to form "Micelle-Ir". BODIPY-Ir absorbs strongly at 550-750 nm with a band maximum at 685 nm, and possesses a long-lived triplet excited state with sufficient non-radiative decays. Upon micellization, BODIPY-Ir forms J-type aggregates within Micelle-Ir, which boosts both singlet oxygen generation and the photothermal effect through the high molar extinction coefficient and amplification of light-to-ROS/heat conversion, causing severe cell apoptosis. Bifunctional Micelle-Ir that accumulates in tumors completely destroys orthotopic 4T1 breast tumors via synergistic PDT/photothermal therapy (PTT) damage under light irradiation, and enables remarkable suppression of metastatic nodules in the lungs, together without significant dark cytotoxicity. The present study offers an emerging approach to develop far-red/NIR photosensitizers toward potent cancer therapy.


Subject(s)
Coordination Complexes/chemistry , Infrared Rays , Iridium/chemistry , Micelles , Photochemotherapy/methods , Photothermal Therapy/methods , Animals , Boron Compounds/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Humans , Mice , Neoplasms/drug therapy , Neoplasms/therapy , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism
18.
J Photochem Photobiol B ; 222: 112256, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34330080

ABSTRACT

Photobiomodulation (PBM) is a promising medical treatment modality in the area of photodynamic therapy (PDT). In this study, we investigated the effect of combined therapy in a 3D microenvironment using aluminum chloride phthalocyanines (AlClPc) as the photosensitizing agent. Normal human fibroblast-containing collagen biomatrix was prepared and treated with an oil-in-water (o/a) AlClPc-loaded nanoemulsion (from 0.5 to 3.0 µM) and irradiated at a range of fluences (from 0.1 to 3.0 J/cm2) using a continuous-wave light-emitting diode (LED) irradiation system (660 nm). PBM at 1.2 J/cm2 and AlClPc/NE at 0.5 µM modified the fibroblast signaling response under 3D conditions, promoting collagen synthesis, ROS production, MMP-9 secretion, proliferation of the actin network, and facile myofibroblastic differentiation. PBM alone (at 1.2 J/cm2 and 0.3 J/cm2) had no significant effect on any of these parameters. The combined therapy affected myofibroblastic differentiation, inflammatory response, and extracellular matrix pliability, and should thus be examined further in subsequent studies considering that no side effects of PBM have been reported. Even though significant progress has been made in the field of phototherapy in recent years, it is necessary to further elucidate the detailed mechanisms underlying its effects already shown in 2D conditions to increase the acceptance of this beneficial and non-invasive therapeutic approach.


Subject(s)
Aluminum Chloride/pharmacology , Fibroblasts/drug effects , Indoles/pharmacology , Light , Organometallic Compounds/pharmacology , Photosensitizing Agents/pharmacology , Aluminum Chloride/chemistry , Cell Culture Techniques , Cell Survival/drug effects , Cell Survival/radiation effects , Cells, Cultured , Collagen/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Indoles/chemistry , Matrix Metalloproteinase 9/metabolism , Organometallic Compounds/chemistry , Photosensitizing Agents/chemistry , Reactive Oxygen Species/metabolism
19.
Int J Mol Sci ; 22(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34299204

ABSTRACT

BACKGROUND: bone tissue regeneration remains a current challenge. A growing body of evidence shows that mitochondrial dysfunction impairs osteogenesis and that this organelle may be the target for new therapeutic options. Current literature illustrates that red and near-infrared light can affect the key cellular pathways of all life forms through interactions with photoacceptors within the cells' mitochondria. The current study aims to provide an understanding of the mechanisms by which photobiomodulation (PBM) by 900-nm wavelengths can induce in vitro molecular changes in pre-osteoblasts. METHODS: The PubMed, Scopus, Cochrane, and Scholar databases were used. The manuscripts included in the narrative review were selected according to inclusion and exclusion criteria. The new experimental set-up was based on irradiation with a 980-nm laser and a hand-piece with a standard Gaussian and flat-top beam profile. MC3T3-E1 pre-osteoblasts were irradiated at 0.75, 0.45, and 0.20 W in continuous-wave emission mode for 60 s (spot-size 1 cm2) and allowed to generate a power density of 0.75, 0.45, and 0.20 W/cm2 and a fluence of 45, 27, and 12 J/cm2, respectively. The frequency of irradiation was once, three times (alternate days), or five times (every day) per week for two consecutive weeks. Differentiation, proliferation, and cell viability and their markers were investigated by immunoblotting, immunolabelling, fluorescein-FragELTM-DNA, Hoechst staining, and metabolic activity assays. RESULTS AND CONCLUSIONS: The 980-nm wavelength can photobiomodulate the pre-osteoblasts, regulating their metabolic schedule. The cellular signal activated by 45 J/cm2, 0.75 W and 0.75 W/cm2 consist of the PI3K/Akt/Bcl-2 pathway; differentiation markers were not affected, nor do other parameters seem to stimulate the cells. Our previous and present data consistently support the window effect of 980 nm, which has also been described in extracted mitochondria, through activation of signalling PI3K/Akt/Bcl-2 and cyclin family, while the Wnt and Smads 2/3-ß-catenin pathway was induced by 55 J/cm2, 0.9 W and 0.9 W/cm2.


Subject(s)
Osteoblasts/cytology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Skull/cytology , Animals , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Lasers , Low-Level Light Therapy/methods , Mice , Osteoblasts/metabolism , Osteoblasts/radiation effects , Osteogenesis , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Signal Transduction , Skull/metabolism , Skull/radiation effects
20.
J Photochem Photobiol B ; 221: 112247, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34175580

ABSTRACT

A need exists for further research elucidating the benefits of environmentally safe photoprotective agents against ultraviolet (UV) exposure, and plant extracts represent a human-friendly alternative formulation. This study was designed to evaluate the potential use of Bellis perennis extract (BPE), from the Asteraceae family, known as the common daisy or the English daisy, in cosmeceuticals as a photoprotective factor, using an in vitro model of UVA-induced keratinocyte damage. Human skin keratinocytes (HaCaT cell line) were incubated with BPE at 0.01, 0.1, or 1% in Dulbecco's Modified Eagle Medium (DMEM), and after 15 min they were submitted to UVA radiation at 5, 10, and 15 J/cm2 doses, respectively. For comparative purposes, Polypodium leucotomos extract (PLE), known as the fern, was used as a positive control in assessing the photoprotective effect. After 24 h of UVA exposure, cell viability (MTT and LDH assays), levels of cleaved caspase-3, cyclooxygenase-2, IL-6, reactive oxygen species (ROS) and antioxidant enzyme (catalase, SOD, and glutathione peroxidase) activity were determined. UVA radiation at 5, 10, and 15 J/cm2 doses reduced cell viability to 63%, 43%, and 23%, respectively; we selected 10 J/cm2 for our purposes. After 24 h of UVA exposure, treatment with 1% BPE and 1% PLE significantly recovered cell viability (p < 0.05). Furthermore, treatment was associated with lower cleaved caspase-3 and ROS levels, higher catalase activity, and lower IL-6 levels in the treated UVA keratinocytes compared with the untreated UVA group (p < 0.01). Our results demonstrate photoprotective and immunomodulatory effects of BPE in skin keratinocytes and support its use as a bioactive agent in cosmetic formulations to prevent skin damage caused by exposure to the UV light.


Subject(s)
Asteraceae/chemistry , Immunomodulation/drug effects , Plant Extracts/pharmacology , Radiation-Protective Agents/pharmacology , Ultraviolet Rays , Asteraceae/metabolism , Caspase 3/metabolism , Catalase/metabolism , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Humans , Immunomodulation/radiation effects , Keratinocytes/cytology , Keratinocytes/metabolism , Plant Extracts/chemistry , Radiation-Protective Agents/chemistry , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL