Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Biomed Pharmacother ; 144: 112284, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34626932

ABSTRACT

Hepatic fibrosis is a wound-healing process caused by prolonged liver damage and often occurs due to hepatic stellate cell activation in response to reactive oxygen species (ROS). Red raspberry has been found to attenuate oxidative stress, mainly because it is rich in bioactive components. In the current study, we investigated the inhibitory effects and associated molecular mechanisms of red raspberry extract (RBE) upon activated hepatic stellate cell (aHSC) in cellular and rat models. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased in the dimethylnitrosamine (DMN)-applied samples, whereas treatment of RBE significantly suppressed the activities of these enzymes. In addition, a histopathological analysis demonstrated that RBE could substantially diminish the hepatic collagen content and alpha-smooth muscle actin (α-SMA) expression induced by DMN. Administration of 250 µg/mL RBE could also arrest the growth and enhance the apoptosis of activated HSC-T6 cells, which was accompanied with elevated levels of activated caspases and poly (ADP-ribose) polymerase (PARP) cleavage. Particularly, RBE application remarkably abolished oxidative damage within the cells and reduced the carbonylation of proteins, which was attributed to the upregulation of catalase, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Moreover, the knockdown of Nrf2 together with the RBE treatment synergistically abrogated the expression of α-SMA and promoted the level of peroxisome proliferator-activated receptor gamma (PPAR-γ), suggesting that RBE could mitigate the transdifferentiation of HSC in a Nrf2-independent manner. These findings implied that the application of RBE could effectively remove oxidative stress and relieve the activation of HSC via modulating the caspase/PARP, Nrf2/HO-1 and PPAR-γ pathways, which may allow the development of novel therapeutic strategies against chemical-caused liver fibrogenesis.


Subject(s)
Antifibrotic Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Transdifferentiation/drug effects , Chemical and Drug Induced Liver Injury/prevention & control , Hepatic Stellate Cells/drug effects , Liver Cirrhosis/prevention & control , Liver/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Rubus , Animals , Antifibrotic Agents/isolation & purification , Antioxidants/isolation & purification , Apoptosis Regulatory Proteins/metabolism , Cell Line , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Fruit , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , PPAR gamma/metabolism , Plant Extracts/isolation & purification , Protein Carbonylation/drug effects , Rats, Wistar , Reactive Oxygen Species/metabolism , Rubus/chemistry , Signal Transduction
2.
PLoS One ; 16(9): e0249438, 2021.
Article in English | MEDLINE | ID: mdl-34473703

ABSTRACT

Muscle derived stem cells (MDSCs) and myoblast play an important role in myotube regeneration when muscle tissue is injured. However, these cells can be induced to differentiate into adipocytes once exposed to PPARγ activator like EPA and DHA that are highly suggested during pregnancy. The objective of this study aims at determining the identity of trans-differentiated cells by exploring the effect of EPA and DHA on C2C12 undergoing differentiation into brown and white adipocytes. DHA but not EPA committed C2C12 cells reprograming into white like adipocyte phenotype. Also, DHA promoted the expression of lipolysis regulating genes but had no effect on genes regulating ß-oxidation referring to its implication in lipid re-esterification. Furthermore, DHA impaired C2C12 cells differentiation into brown adipocytes through reducing the thermogenic capacity and mitochondrial biogenesis of derived cells independent of UCP1. Accordingly, DHA treated groups showed an increased accumulation of lipid droplets and suppressed mitochondrial maximal respiration and spare respiratory capacity. EPA, on the other hand, reduced myogenesis regulating genes, but no significant differences were observed in the expression of adipogenesis key genes. Likewise, EPA suppressed the expression of WAT signature genes indicating that EPA and DHA have an independent role on white adipogensis. Unlike DHA treatment, EPA supplementation had no effect on the differential of C2C12 cells into brown adipocytes. In conclusion, DHA is a potent adipogenic and lipogenic factor that can change the metabolic profile of muscle cells by increasing myocellular fat.


Subject(s)
Adipocytes, White/drug effects , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Adipocytes, Brown/drug effects , Adipocytes, White/cytology , Adipogenesis/drug effects , Adipogenesis/genetics , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/drug effects , Animals , Cell Line , Cell Transdifferentiation/drug effects , Cell Transdifferentiation/genetics , DNA, Mitochondrial , Gene Expression Regulation/drug effects , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Lipolysis/drug effects , Mice , Myoblasts/cytology , Myoblasts/drug effects
3.
Aging (Albany NY) ; 13(12): 16749-16762, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34170851

ABSTRACT

Our previous study showed that bone marrow mesenchymal stem cell derived exosomes (BMSC-Exos) suppress high phosphorus (Pi)-induced calcification of vascular smooth muscle cells (VSMCs). However, the mechanism had remained unclear. This study aimed to investigate the mechanism by which BMSC-Exos inhibit vascular calcification (VC). We found that BMSC-Exos reduced high Pi-induced Runx2, osteocalcin and BMP2 expression and inhibited the calcium deposition. Gene expression of human VSMCs stimulated by Pi or Pi plus BMSC-Exos (Pi + Exo) was systematically examined by microarray technology. NONHSAT 084969.2 and transcription factor p65 expression was significantly lower in the Pi + Exo group compared with the Pi group. This finding indicated that NONHSAT 084969.2 and the nuclear factor-κB pathway might play an important role in VC inhibition by BMSC-Exos. By silencing NONHSAT 084969.2 with small interfering RNA, Runx2, BMP2, and osteocalcin expression was decreased significantly. The calcified nodule content and alkaline phosphatase activity were reduced after NONHSAT 084969.2 inhibition and p65, p50, and IκB kinase-α expression was decreased significantly. These results indicated that BMSC-Exos inhibited Pi-induced transdifferentiation and calcification of VSMCs by regulating the NONHSAT 084969.2/nuclear factor-κB axis.


Subject(s)
Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , NF-kappa B/metabolism , Phosphorus/toxicity , RNA, Long Noncoding/metabolism , Vascular Calcification/genetics , Cell Line , Cell Transdifferentiation/drug effects , Cluster Analysis , Down-Regulation/drug effects , Down-Regulation/genetics , Exosomes/ultrastructure , Gene Expression Profiling , Humans , Minerals/metabolism , Myocytes, Smooth Muscle/drug effects , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Vascular Calcification/pathology
4.
J Cardiovasc Pharmacol ; 78(2): 308-318, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34091481

ABSTRACT

ABSTRACT: Vascular smooth muscle cells (VSMCs) are becoming a hot spot and target of atherosclerosis research. This study aimed to observe the specific effects of curcumin (CUR)-mediated photodynamic therapy (CUR-PDT) on oxidized low-density lipoprotein (ox-LDL)-treated VSMCs and confirm whether these effects are mediated by autophagy. In this study, the mouse aortic smooth muscle cell line and A7r5 cell lines were used for parallel experiments. VSMC viability was evaluated by Cell Counting Kit-8 assay. VSMCs were treated with ox-LDL to establish a model of atherosclerosis in vitro. The autophagy level and the expression of proteins related to phenotypic transformation were detected by western blotting. The migration ability of the cells was detected by using transwell assay. The presence of intracellular lipid droplets was detected by Oil Red O staining. The results showed that VSMCs transformed from the contraction phenotype to the synthetic phenotype when stimulated by ox-LDL, during which autophagy was inhibited. However, CUR-PDT treatment significantly promoted the level of autophagy and inhibited the process of phenotypic transformation induced by ox-LDL. In addition, ox-LDL significantly promoted VSMC migration and increased the number of lipid droplets, whereas CUR-PDT treatment significantly reduced the ox-LDL-induced increase in the migration ability of, and lipid droplet numbers in, VSMCs. When the VSMCs were pretreated with the autophagy inhibitor 3-methyladenine for 24 hours, the effects of CUR-PDT were reversed. Therefore, our study indicated that CUR-PDT can inhibit the phenotypic transformation, migration, and foaming of ox-LDL-treated VSMCs by inducing autophagy.


Subject(s)
Atherosclerosis , Autophagy/drug effects , Cell Plasticity/drug effects , Curcumin/pharmacology , Myocytes, Smooth Muscle/metabolism , Photochemotherapy/methods , Animals , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Cell Line , Cell Movement/drug effects , Cell Transdifferentiation/drug effects , Foam Cells/metabolism , Lipoproteins, LDL/metabolism , Mice , Muscle, Smooth, Vascular , Photosensitizing Agents/pharmacology , Rats , Treatment Outcome
5.
J Ethnopharmacol ; 275: 114061, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33892065

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The abnormal proliferation and differentiation of cardiac fibroblasts (CFs) are universally regarded as the key process for the progressive development of cardiac fibrosis following various cardiovascular diseases. Huoxin Pill (Concentrated pill, HXP) is a Chinese herbal formula for treating coronary heart disease. However, the cellular and molecular mechanisms of HXP in the treatment of myocardial fibrosis are still unclear. AIM OF THE STUDY: To investigate the effects of HXP on CFs transdifferentiation and collagen synthesis under isoproterenol (ISO) conditions, as well as the potential mechanism of action. MATERIALS AND METHODS: In vivo, we established a rat model of cardiac fibrosis induced by ISO, and administered with low or high dose of HXP (10 mg/kg/day or 30 mg/kg/day). The level of α-SMA was detected by immunohistochemistry examination, and combined with RNA-sequencing analysis to determine the protective effect of HXP on myocardial fibrosis rats. In vitro, by culturing primary rat CFs, we examined the effects of HXP on the proliferation and transdifferentiation of CFs using CCK8, scratch wound healing and immunofluorescence assays. Western blot was used to determine protein expression. RESULTS: The findings revealed that HXP protects against ISO-induced cardiac fibrosis and CFs transdifferentiation in rats. RNA-sequencing and pathway analyses demonstrated 238 or 295 differentially expressed genes (DEGs) and multiple enriched signal pathways, including transforming growth factor-beta (TGF-ß) receptor signaling activates Smads, downregulation of TGF-ß receptor signaling, signaling by TGF-ß receptor complex, and collagen formation under treatment with low or high-dose of HXP. Moreover, HXP also markedly inhibited ISO-induced primary rat CFs proliferation, transdifferentiation, collagen synthesis and the upregulation of TGF-ß1 and phosphorylated Smad2/3 protein expression. CONCLUSION: HXP suppresses ISO-induced CFs transdifferentiation and collagen synthesis, and it may exert these effects in part by inhibiting the activation of the TGF-ß/Smads pathway. This may be a new therapeutic tool for cardiac fibrosis.


Subject(s)
Cardiotonic Agents/pharmacology , Cell Transdifferentiation/drug effects , Collagen/metabolism , Drugs, Chinese Herbal/pharmacology , Fibroblasts/drug effects , Smad Proteins/antagonists & inhibitors , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Cardiotonic Agents/chemistry , Cardiotonic Agents/therapeutic use , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Fibroblasts/cytology , Fibroblasts/metabolism , Fibrosis/drug therapy , Fibrosis/metabolism , Heart/drug effects , Isoproterenol/toxicity , Male , Myofibroblasts/drug effects , Primary Cell Culture , Rats, Wistar , Signal Transduction/drug effects , Smad Proteins/metabolism , Tablets , Transcriptome/drug effects , Transforming Growth Factor beta/metabolism
6.
Lab Invest ; 101(6): 680-689, 2021 06.
Article in English | MEDLINE | ID: mdl-33637945

ABSTRACT

Corneal stromal wound healing is a well-balanced process promoted by overlapping phases including keratocyte proliferation, inflammatory-related events, and tissue remodeling. L-carnitine as a natural antioxidant has shown potential to reduce stromal fibrosis, yet the underlying pathway is still unknown. Since transient receptor potential vanilloid 1 (TRPV1) is a potential drug target for improving the outcome of inflammatory/fibrogenic wound healing, we investigated if L-carnitine can mediate inhibition of the fibrotic response through suppression of TRPV1 activation in human corneal keratocytes (HCK). We determined TRPV1-induced intracellular calcium transients using fluorescence calcium imaging, channel currents by planar patch-clamping, and cell migration by scratch assay for wound healing. The potential L-carnitine effect on TRPV1-induced myofibroblast transdifferentiation was evaluated by immunocytochemical detection of alpha smooth muscle actin. RT-PCR analysis confirmed TRPV1 mRNA expression in HCK. L-carnitine (1 mmol/l) inhibited either capsaicin (CAP) (10 µmol/l), hypertonic stress (450 mOsmol/l), or thermal increase (>43 °C) induced Ca2+ transients and corresponding increases in TRPV1-induced inward and outward whole-cell currents. This was accompanied by suppression of injury-induced increases in myofibroblast transdifferentiation and cell migration. In conclusion, L-carnitine contributes to inhibit stromal scarring through suppressing an injury-induced intrinsic TRPV1 activity that is linked with induction of myofibroblast transdifferentiation in HCK cells.


Subject(s)
Carnitine/therapeutic use , Cell Transdifferentiation/drug effects , Corneal Keratocytes/drug effects , Corneal Stroma/drug effects , TRPV Cation Channels/metabolism , Carnitine/pharmacology , Cells, Cultured , Corneal Stroma/cytology , Drug Evaluation, Preclinical , Humans , Myofibroblasts , TRPV Cation Channels/drug effects
7.
J Ethnopharmacol ; 257: 112873, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32298753

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Litsea cubeba (Lour.) Pers. has been traditionally used as a folk prescription for treating rheumatic diseases in China. AIM OF THE STUDY: This study aimed to investigate the effects and underlying mechanism of LCA, a new type of dibenzyl butane lignin compound extracted from L. cubeba, on macrophage colony stimulating factor (M-CSF) plus receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation in mouse-derived bone marrow macrophages (BMMs). MATERIAL AND METHODS: TRAP staining, TRAP enzyme activity assay and actin ring staining were applied to identify the effects of LCA on osteoclast differentiation. Protein expression of NFATc1, c-Fos and MMP-9, and phosphorylation of p65, Akt, JNK, ERK and p38 in RANKL-induced osteoclasts was determined using western blotting to investigate the underlying mechanism. RESULTS: LCA significantly suppressed RANKL-induced osteoclast differentiation by inhibiting TRAP activity, decreasing the number of TRAP+ multinuclear osteoclasts and reducing the formation of F-actin ring without obvious cytotoxicity in BMMs. Moreover, LCA treatment strongly reduced protein expression of NFATc1, c-Fos and MMP-9, and attenuated the phosphorylation of p65, Akt, JNK, ERK and p38 in RANKL-stimulated BMMs. CONCLUSIONS: LCA ameliorated RANKL-induced osteoclast differentiation via inhibition of Akt and MAPK signalings in BMMs, and may serve as a potential pro-drug for bone destruction prevention.


Subject(s)
Cell Transdifferentiation/drug effects , Lignin/pharmacology , Litsea , Macrophages/drug effects , Mitogen-Activated Protein Kinases/metabolism , Osteoclasts/drug effects , Osteogenesis/drug effects , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , RANK Ligand/pharmacology , Animals , Cells, Cultured , Femur/cytology , Lignin/isolation & purification , Litsea/chemistry , Macrophages/enzymology , Male , Mice, Inbred C57BL , Osteoclasts/enzymology , Plant Extracts/isolation & purification , Signal Transduction , Tibia/cytology
8.
Mol Cell Endocrinol ; 507: 110772, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32114022

ABSTRACT

Previous research suggests that omega-3 fatty acids from animal origin may promote the browning of subcutaneous white adipose tissue. We evaluated if supplementation with a plant oil (chia, Salvia hispanica L.) rich in alpha-linolenic fatty acid (C18:3; ω-3) would promote browning and improve glucose metabolism in animals subjected to an obesogenic diet. Swiss male mice (n = 28) were divided into 4 groups: C: control diet; H: high-fat diet; HC: animals in the H group supplemented with chia oil after reaching obesity; HCW: animals fed since weaning on a high-fat diet supplemented with chia oil. Glucose tolerance, inflammatory markers, and expression of genes and proteins involved in the browning process were examined. When supplemented since weaning, chia oil improved glucose metabolism and promoted the browning process and a healthier phenotype. Results of this study suggested that chia oil has potential to protect against the development of obesity-related diseases.


Subject(s)
Adipose Tissue, White/drug effects , Cell Transdifferentiation/drug effects , Diet, High-Fat , Obesity/physiopathology , Plant Oils/pharmacology , Salvia/chemistry , Adipocytes, White/drug effects , Adipocytes, White/physiology , Adipogenesis/drug effects , Adipogenesis/genetics , Adipose Tissue, White/physiology , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Dietary Supplements , Leptin/blood , Linolenic Acids/pharmacology , Male , Mice , Mice, Obese , Obesity/diet therapy , Obesity/etiology , Obesity/metabolism , Plant Oils/isolation & purification
9.
Chin J Integr Med ; 26(3): 188-196, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31111424

ABSTRACT

OBJECTIVE: To observe the imbalance of anatomical and functional innervation factors of sympathetic nerves, nerve growth factor (NGF) and leukemia inhibitory factor (LIF), in salt-sensitive hypertensive heart failure rats and to explore the effects of treatment with Guizhi Decoction () on sympathetic remodeling by inhibiting cholinergic transdifferentiation. METHODS: SS-13BN and Dahl salt-sensitive (DS) rats were divided into 3 groups: SS-13BN group (control group, n=9), DS group (model group, n=9) and GS group (Guizhi Decoction, n=9). After 10 weeks of a high-salt diet, the GS group rats were given Guizhi Decoction and other two groups were given saline at an equal volume as a vehicle. After 4 weeks' intragastric administration, rats were executed to detect the relevant indicators. Echocardiography and plasma n-terminal pro-B type natriuretic peptide (NT-proBNP) levels were used to assess cardiac function. Noradrenaline (NA) levels in the plasma and myocardium were detected to evaluate the sympathetic function. NGF and LIF expression were detected in the myocardium by Western blot or quantitative real-time PCR. Double immunofluorescence or Western blot was used to detect tyrosine hydroxylase (TH), choline acetyltransferase (CHAT) and growth associated protein 43 (GAP43) in order to reflect anatomical and functional changes of sympathetic nerves. RESULTS: DS group had anatomical and functional deterioration of sympathetic nerves in the decompensation period of heart failure compared with SS-13BN group. Compared with the DS group, Guizhi Decoction significantly decreased the expression of LIF mRNA/protein (P<0.01), increased the expression of NGF (P<0.05 or P<0.01), enhanced the levels of TH+/GAP43+ and TH+/CHAT+ positive nerve fibers (P<0.01), and improved the protein expression of TH and GAP43 in left ventricle, but had no effect on CHAT (P>0.05). Guizhi Decoction inhibited inflammatory infiltration and collagen deposition of myocardial injury, increased the content of myocardial NA (P<0.05), reduced the plasma NA level (P<0.01), improved cardiac function (P<0.01), and improved weight and blood pressure to some extent (P<0.05), compared with DS group. CONCLUSIONS: Guizhi Decoction could inhibit cholinergic transdifferentiation of sympathetic nerves, improve the anatomical and functional denervation of sympathetic nerves, and delay the progression of decompensated heart failure. The mechanism may be associated with the correction of the imbalance of NGF and LIF.


Subject(s)
Cell Transdifferentiation/drug effects , Drugs, Chinese Herbal/pharmacology , Heart Failure/drug therapy , Leukemia Inhibitory Factor/metabolism , Nerve Growth Factor/metabolism , Animals , Heart/drug effects , Rats , Rats, Inbred Dahl
10.
BMC Complement Altern Med ; 19(1): 222, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31438947

ABSTRACT

BACKGROUND: Chronic hepatic diseases are serious problems worldwide, which may lead to the development of fibrosis and eventually cirrhosis. Despite the significant number of people affected by hepatic fibrosis, no effective treatment is available. In the liver, hepatic stellate cells are the major fibrogenic cell type that play a relevant function in chronic liver diseases. Thus, the characterization of components that control the fibrogenesis in the hepatic stellate cells is relevant in supporting the development of innovative therapies to treat and/or control liver fibrosis. The present study investigated the effects of Baccharis dracunculifolia D.C. and Plectranthus barbatus Andrews medicinal plant extracts in LX-2 transdifferentiation. METHODS: LX-2 is a human immortalized hepatic stellate cell that can transdifferentiate in vitro from a quiescent-like phenotype to a more proliferative and activated behavior, and it provides a useful platform to assess antifibrotic drugs. Then, the antifibrotic effects of hydroalcoholic extracts of Baccharis dracunculifolia and Plectranthus barbatus medicinal plants on LX-2 were evaluated. RESULTS: The results in our cellular analyses, under the investigated concentrations of the plant extracts, indicate no deleterious effects on LX-2 metabolism, such as toxicity, genotoxicity, or apoptosis. Moreover, the extracts induced changes in actin filament distribution of activated LX-2, despite not affecting the cellular markers of transdifferentiation. Consistent effects in cellular retinoid metabolism were observed, supporting the presumed activity of the plant extracts in hepatic lipids metabolism, which corroborated the traditional knowledge about their uses for liver dysfunction. CONCLUSION: The combined results suggested a potential hepatoprotective effect of the investigated plant extracts reinforcing their safe use as coadjuvants in treating imbalanced liver lipid metabolism.


Subject(s)
Baccharis , Hepatic Stellate Cells , Plant Extracts/pharmacology , Plectranthus , Protective Agents/pharmacology , Retinoids/metabolism , Cell Line , Cell Survival , Cell Transdifferentiation/drug effects , Hepatic Stellate Cells/chemistry , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Lipid Metabolism/drug effects , Plants, Medicinal , Retinoids/analysis
11.
Phytother Res ; 33(11): 3008-3015, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31435973

ABSTRACT

Airway remodeling is one important feature of childhood asthma, which is one of the most common chronic childhood diseases. Phenotype switching of airway smooth muscle cells (ASMCs), defined as a reversible switching between contractile and proliferative phenotypes, plays an important role in the process of airway remodeling. Esculetin has shown antiinflammatory action in animal models of asthma; however, the effects of esculetin on ASMC phenotype switching have not been investigated. In the present study, platelet-derived growth factor (PDGF) was used to induce the phenotype modulation of ASMCs. The results demonstrated that esculetin pretreatment mitigated the PDGF-caused inhibitory effects on expressions of contractile phenotype protein markers, including calponin and SM22α. Esculetin also inhibited PDGF-induced migration and proliferation of ASMCs. Besides, the PDGF-induced expressions of extracellular matrix components, collagen I and fibronectin, were attenuated by esculetin pretreatment. Furthermore, PDGF-caused activation of PI3K/Akt pathway in ASMCs was inhibited by esculetin. These findings suggest that esculetin might exert its inhibitory effect on PDGF-induced ASMC phenotype switching through inhibition of PI3K/Akt pathway.


Subject(s)
Airway Remodeling/drug effects , Cell Transdifferentiation/drug effects , Myocytes, Smooth Muscle/drug effects , Umbelliferones/pharmacology , Airway Remodeling/physiology , Asthma/metabolism , Asthma/physiopathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Child , Collagen Type I/metabolism , Humans , Muscle Contraction/drug effects , Myocytes, Smooth Muscle/physiology , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Platelet-Derived Growth Factor/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/physiology
12.
Development ; 146(14)2019 07 24.
Article in English | MEDLINE | ID: mdl-31142539

ABSTRACT

An early step in pancreas development is marked by the expression of the transcription factor Pdx1 within the pancreatic endoderm, where it is required for the specification of all endocrine cell types. Subsequently, Pdx1 expression becomes restricted to the ß-cell lineage, where it plays a central role in ß-cell function. This pivotal role of Pdx1 at various stages of pancreas development makes it an attractive target to enhance pancreatic ß-cell differentiation and increase ß-cell function. In this study, we used a newly generated zebrafish reporter to screen over 8000 small molecules for modulators of pdx1 expression. We found four hit compounds and validated their efficacy at different stages of pancreas development. Notably, valproic acid treatment increased pancreatic endoderm formation, while inhibition of TGFß signaling led to α-cell to ß-cell transdifferentiation. HC toxin, another HDAC inhibitor, enhances ß-cell function in primary mouse and human islets. Thus, using a whole organism screening strategy, this study identified new pdx1 expression modulators that can be used to influence different steps in pancreas and ß-cell development.


Subject(s)
Drug Evaluation, Preclinical/methods , Islets of Langerhans/embryology , Models, Animal , Organogenesis/drug effects , Small Molecule Libraries/analysis , Zebrafish , Animals , Animals, Genetically Modified , COS Cells , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Transdifferentiation/drug effects , Cell Transdifferentiation/genetics , Cells, Cultured , Chlorocebus aethiops , Embryo, Nonmammalian , Gene Expression Regulation, Developmental/drug effects , Histone Deacetylase Inhibitors/isolation & purification , Histone Deacetylase Inhibitors/pharmacology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/physiology , Islets of Langerhans/drug effects , Islets of Langerhans/growth & development , Islets of Langerhans/metabolism , Mice , Mice, Inbred C57BL , Organogenesis/genetics , Small Molecule Libraries/isolation & purification , Trans-Activators/genetics , Trans-Activators/metabolism , Valproic Acid/isolation & purification , Valproic Acid/pharmacology , Zebrafish/embryology , Zebrafish/genetics
13.
J Cell Physiol ; 234(11): 19761-19773, 2019 11.
Article in English | MEDLINE | ID: mdl-30937905

ABSTRACT

Vascular calcification (VC) is an active and cell-mediated process that shares many common features with osteogenesis. Knowledge demonstrates that in the presence of risk factors, such as hypertension, vascular smooth muscle cells (vSMCs) lose their contractile phenotype and transdifferentiate into osteoblastic-like cells, contributing to VC development. Recently, menaquinones (MKs), also known as Vitamin K2 family, has been revealed to play an important role in cardiovascular health by decreasing VC. However, the MKs' effects and mechanisms potentially involved in vSMCs osteoblastic transdifferentiation are still unknown. The aim of this study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of MKs family, in the modulation of the vSMCs phenotype. To achieve this, vascular cells from spontaneously hypertensive rats (SHR) were used as an in vitro model of cell vascular dysfunction. vSMCs from Wistar Kyoto normotensive rats were used as control condition. The results showed that MK-4 preserves the contractile phenotype both in control and SHR-vSMCs through a γ-glutamyl carboxylase-dependent pathway, highlighting its capability to inhibit one of the mechanisms underlying VC process. Therefore, MK-4 may have an important role in the prevention of vascular dysfunction and atherosclerosis, encouraging further in-depth studies to confirm its use as a natural food supplement.


Subject(s)
Atherosclerosis/drug therapy , Hypertension/drug therapy , Osteogenesis/drug effects , Vitamin K 2/analogs & derivatives , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Blood Pressure/genetics , Carbon-Carbon Ligases/genetics , Cell Proliferation , Cell Transdifferentiation/drug effects , Disease Models, Animal , Humans , Hypertension/genetics , Hypertension/pathology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Rats , Rats, Inbred SHR , Signal Transduction/drug effects , Vitamin K 2/pharmacology
14.
PLoS One ; 13(7): e0200210, 2018.
Article in English | MEDLINE | ID: mdl-29979748

ABSTRACT

Hearing loss is the most common sensorineural disorder, affecting over 5% of the population worldwide. Its most frequent cause is the loss of hair cells (HCs), the mechanosensory receptors of the cochlea. HCs transduce incoming sounds into electrical signals that activate auditory neurons, which in turn send this information to the brain. Although some spontaneous HC regeneration has been observed in neonatal mammals, the very small pool of putative progenitor cells that have been identified in the adult mammalian cochlea is not able to replace the damaged HCs, making any hearing impairment permanent. To date, guided differentiation of human cells to HC-like cells has only been achieved using either embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). However, use of such cell types suffers from a number of important disadvantages, such as the risk of tumourigenicity if transplanted into the host´s tissue. We have obtained cells expressing hair cell markers from cultures of human fibroblasts by overexpression of GFI1, Pou4f3 and ATOH1 (GPA), three genes that are known to play a critical role in the development of HCs. Immunocytochemical, qPCR and RNAseq analyses demonstrate the expression of genes typically expressed by HCs in the transdifferentiated cells. Our protocol represents a much faster approach than the methods applied to ESCs and iPSCs and validates the combination of GPA as a set of genes whose activation leads to the direct conversion of human somatic cells towards the hair cell lineage. Our observations are expected to contribute to the development of future therapies aimed at the regeneration of the auditory organ and the restoration of hearing.


Subject(s)
Cell Transdifferentiation/physiology , Hair Cells, Auditory/cytology , Hair Cells, Auditory/metabolism , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers/metabolism , Cell Lineage/drug effects , Cell Lineage/genetics , Cell Lineage/physiology , Cell Transdifferentiation/drug effects , Cell Transdifferentiation/genetics , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epidermal Growth Factor/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression/drug effects , Hair Cells, Auditory/drug effects , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Myosin VIIa , Myosins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factor Brn-3C/genetics , Transcription Factor Brn-3C/metabolism , Transcription Factors/genetics , Tretinoin/pharmacology
15.
Inflammation ; 41(5): 1825-1834, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29911275

ABSTRACT

In our previous work, we showed that during inflammation-induced epithelial-to-mesenchymal transition (EMT), mesenteric mesothelial cells express ED1 (pan-macrophage marker), indicating that they are transformed into macrophage-like cells. In this paper, we provide additional evidences about this transition by following the phagocytic activity and the TNFα production of mesenteric mesothelial cells during inflammation. Upon injection of India ink particles or fluorescent-labeled bioparticles (pHrodo) into the peritoneal cavity of rats pretreated with Freund's adjuvant, we found that mesothelial cells efficiently engulfed these particles. A similar increase of internalization could be observed by mesothelial cells in GM-CSF pretreated primary mesenteric culture. Since macrophages are the major producers of tumor necrosis factor, TNFα, we investigated expression level of TNFα during inflammation-induced EMT and found that TNFα was indeed expressed in these cells, reaching the highest level at the 5th day of inflammation. Since TNFα is one of the target genes of early growth response (EGR1) transcription factor, playing important role in monocyte-macrophage differentiation, expression of EGR1 in mesothelial cells was also investigated by Western blot and immunocytochemistry. While mesothelial cells did not express EGR1, a marked increase was observed in mesothelial cells by the time of inflammation. Parallel to this, nuclear translocation of EGR1 was shown by immunocytochemistry at the day 5 of inflammation. Caveolin-1 level was high and ERK1/2 became phosphorylated as the inflammation proceeded showing a slight decrease when the regeneration started. Our present data support the idea that under special stimuli, mesenteric mesothelial cells are able to transdifferentiate into macrophages, and this transition is regulated by the caveolin-1/ERK1/2/EGR1 signaling pathway.


Subject(s)
Cell Transdifferentiation/drug effects , Epithelial-Mesenchymal Transition , Inflammation/complications , Macrophages/cytology , Mesentery/cytology , Animals , Caveolin 1/metabolism , Early Growth Response Protein 1/metabolism , Epithelial Cells/cytology , Epithelial Cells/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor , MAP Kinase Signaling System , Rats , Signal Transduction , Tumor Necrosis Factor-alpha/analysis
16.
Biotechnol Adv ; 36(6): 1622-1632, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29656090

ABSTRACT

Differentiation of cancer cells entails the reversion of phenotype from malignant to the original. The conversion to cell type characteristic for another tissue is named transdifferentiation. Differentiation/transdifferentiation of malignant cells in high grade tumor mass could serve as a nonaggressive approach that potentially limits tumor progression and augments chemosensitivity. While this therapeutic strategy is already being used for treatment of hematological cancers, its feasibility for solid malignancies is still debated. We will presently discuss the natural compounds that show these properties, with focus on anthraquinones from Aloe vera, Senna, Rheum sp. and hop derived prenylflavonoids.


Subject(s)
Biological Products , Cell Differentiation/drug effects , Cell Transdifferentiation/drug effects , Neoplasms/drug therapy , Animals , Anthraquinones , Humans , Mice
17.
Cell Physiol Biochem ; 46(4): 1305-1316, 2018.
Article in English | MEDLINE | ID: mdl-29689558

ABSTRACT

BACKGROUND/AIMS: Fibulin-3, an extracellular matrix glycoprotein, inhibits vascular oxidative stress and remodeling in hypertension. Oxidative stress is prevalent in chronic kidney disease (CKD) patients and is an important mediator of osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells (VSMCs) during hyperphosphatemia. Therefore, the present study explored the effects of Fibulin-3 on phosphate-induced vascular calcification. METHODS: Experiments were performed in primary human aortic smooth muscle cells (HAoSMCs) treated with control or with phosphate without or with additional treatment with recombinant human Fibulin-3 protein or with hydrogen peroxide as an exogenous source of oxidative stress. RESULTS: Treatment with calcification medium significantly increased calcium deposition in HAoSMCs, an effect significantly blunted by additional treatment with Fibulin-3. Moreover, phosphate-induced alkaline phosphatase activity and mRNA expression of osteogenic and chondrogenic markers MSX2, CBFA1, SOX9 and ALPL were all significantly reduced by addition of Fibulin-3. These effects were paralleled by similar regulation of oxidative stress in HAoSMCs. Phosphate treatment significantly up-regulated mRNA expression of the oxidative stress markers NOX4 and CYBA, down-regulated total antioxidant capacity and increased the expression of downstream effectors of oxidative stress PAI-1, MMP2 and MMP9 as well as BAX/BLC2 ratio in HAoSMCs, all effects blocked by additional treatment with Fibulin-3. Furthermore, the protective effects of Fibulin-3 on phosphate-induced osteogenic and chondrogenic markers expression in HAoSMCs were reversed by additional treatment with hydrogen peroxide. CONCLUSIONS: Fibulin-3 attenuates phosphate-induced osteo-/ chondrogenic transdifferentiation and calcification of VSMCs, effects involving inhibition of oxidative stress. Up-regulation or supplementation of Fibulin-3 may be beneficial in reducing the progression of vascular calcification during hyperphosphatemic conditions such as CKD.


Subject(s)
Calcification, Physiologic/drug effects , Extracellular Matrix Proteins/pharmacology , Glycerophosphates/pharmacology , Oxidative Stress/drug effects , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Cell Line , Cell Transdifferentiation/drug effects , Chondrogenesis/drug effects , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Hydrogen Peroxide/toxicity , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Osteogenesis/drug effects , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism
18.
Biomed Pharmacother ; 93: 674-680, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28692939

ABSTRACT

In current study, we aimed to reveal the potential antifibrotic effects of oligomeric proanthocyanidin (OPC) from grape seeds on lipopolysaccharide (LPS)-activated, HSC-T6, a rat hepatic stellate cell line. HSC-T6 cells were treated with OPC 1h prior to LPS, and then incubated for indicated time. OPC inhibited cells viability of HSC-T6 cells and decrease protein expression of collagen I, α-smooth muscle actin (α-SMA), tissue inhibitors of metalloproteinases I (TIMP-1) on LPS-induced HSC-T6 cells. OPC also significantly inhibited phosphorylation of LPS-stimulated phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). Furthermore, OPC pretreatment blocked LPS-triggered nuclear factor-kappa B (NF-κB) translocation from cytosol to nuclear. OPC, as well as specific inhibitors of NF-κB, PI3K and JNK could effectively inhibited α-SMA and collagen I expression. In conclusion, we demonstrated that the anti-fibrotic mechanism of OPC might be involved the inhibition of HSC activation and transdifferentiation by suppressing NF-κB activation through JNK/ERK MAPK and PI3K/Akt phosphorylation. Thus, OPC possesses the potential inhibitory property of HSC activation through NF-κB modulation involving MAPK-PI3K/AKT pathways.


Subject(s)
Hepatic Stellate Cells/drug effects , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Proanthocyanidins/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Seeds/chemistry , Vitis/chemistry , Animals , Cell Line , Cell Survival/drug effects , Cell Transdifferentiation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Hepatic Stellate Cells/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Phosphorylation/drug effects , Plant Extracts/pharmacology , Rats , Signal Transduction/drug effects
19.
Curr Protein Pept Sci ; 18(2): 155-166, 2017.
Article in English | MEDLINE | ID: mdl-27001065

ABSTRACT

Utilizing both primary myometrial cells and a myometrial cell line, we show here that myometrial cells undergo transition to a myofibroblast-like phenotype after a biological insult of 72 hours serum starvation and serum add-back (SB: 1% to 10% FBS). We also found that thrombospondin-1 was increased and that the transforming growth factor-beta (TGFB)-SMAD3/4 pathway was activated. This pathway is a key mediator of fibrosis and extracellular matrix (ECM) deposition. Applying the same insult supplemented with TGFB3 (1-10ng/ml) and ascorbic acid (100µg/ml) in the serum add-back treatment, we further demonstrated that cells migrated into nodules containing collagen and fibronectin. The number of cellnodules was inversely related to the percentage serum add-back. Using transmission electron microscopy we demonstrated myofibroblast-like cells and fibril-like structures in the extracellular spaces of the nodules. This study is the first direct evidence of induction of myofibroblast transdifferentiation in cultured myometrial cells which is related to the increase of thrombospondin-1 (THBS1) and the activation of TGFBSMAD 3 / 4 pathways. Combined, these observations provide biochemical and direct morphological evidence that fibrotic responses can occur in cultured myometrial cells. The findings are the first to demonstrate uterine healing mechanisms at a molecular level. Our data support the concept that fibrosis may be an initial event in formation of fibroid which exhibits signaling pathways and molecular features of fibrosis and grow by both cellular proliferation and altered extracellular matrix accumulation. Our data assists in further understanding of myometrium tissue remodeling during gestation and postpartum.


Subject(s)
Cell Proliferation/drug effects , Collagen/genetics , Fibronectins/genetics , Fibrosis/genetics , Myometrium/metabolism , Ascorbic Acid/pharmacology , Cell Line , Cell Proliferation/genetics , Cell Transdifferentiation/drug effects , Cell Transdifferentiation/genetics , Female , Fibrosis/pathology , Humans , Metabolic Networks and Pathways/drug effects , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myometrium/drug effects , Myometrium/pathology , Postpartum Period/genetics , Postpartum Period/metabolism , Pregnancy , Primary Cell Culture , Smad3 Protein/metabolism , Thrombospondin 1/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta3/pharmacology
20.
BMC Complement Altern Med ; 16: 222, 2016 Jul 16.
Article in English | MEDLINE | ID: mdl-27422712

ABSTRACT

BACKGROUND: Astragalus injection is used by practitioners of traditional Chinese medicine to treat diabetic nephropathy (DN). The current study was conducted to determine the effect of astragalus on tubular epithelial transdifferentiation during the progression of DN in KKAy mice, as well as to investigate the molecular mechanism underlying this effect. METHODS: Diabetic, 14-week-old, male KKAy mice were randomly divided into a model group and an astragalus treatment group, while age-matched male C57BL/6 J mice were selected as controls. The treatment group received daily intraperitoneal injections of astragalus (0.03 mL/10 g per day), while the model group received injections of an equal volume of saline. Mice were euthanized after 24 weeks. Serum samples were obtained from the animals in each group for blood glucose measurement. Kidney tissue samples were used for morphometric studies. The mRNA and protein expression levels of transforming growth factor beta 1 (TGF-ß1), transforming growth factor beta receptor 1 (TGFß-R1), alpha smooth muscle actin (α-SMA), and E-cadherin were evaluated using real-time polymerase chain reaction (PCR) and western blotting. RESULTS: Astragalus significantly reduced blood glucose levels; inhibited morphological changes in the kidneys of KKAy mice; reduced mRNA and protein expression levels of TGF-ß1, TGFß-R1, and α-SMA; and increased E-cadherin expression. CONCLUSIONS: Tubular epithelial transdifferentiation plays an important role in the development of DN in diabetic mice. Administration of astragalus likely prevents or mitigates DN by suppressing tubular epithelial transdifferentiation, protecting KKAy mice from renal damage.


Subject(s)
Astragalus Plant/chemistry , Cell Transdifferentiation/drug effects , Diabetes Mellitus, Experimental/metabolism , Kidney Tubules/drug effects , Plant Extracts/pharmacology , Actins/blood , Actins/metabolism , Animals , Blood Glucose/drug effects , Gene Expression/drug effects , Injections, Intraperitoneal , Kidney Tubules/cytology , Male , Mice , Mice, Inbred C57BL , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Transforming Growth Factor beta1/blood , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL