Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Chemosphere ; 311(Pt 1): 137039, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36342026

ABSTRACT

Limited information is available on the links between heavy metals' exposure and coronary heart disease (CHD). We aim to establish an efficient and explainable machine learning (ML) model that associates heavy metals' exposure with CHD identification. Our datasets for investigating the associations between heavy metals and CHD were sourced from the US National Health and Nutrition Examination Survey (US NHANES, 2003-2018). Five ML models were established to identify CHD by heavy metals' exposure. Further, 11 discrimination characteristics were used to test the strength of the models. The optimally performing model was selected for identification. Finally, the SHapley Additive exPlanations (SHAP) tool was used for interpreting the features to visualize the selected model's decision-making capacity. In total, 12,554 participants were eligible for this study. The best performing random forest classifier (RF) based on 13 heavy metals to identify CHD was chosen (AUC: 0.827; 95%CI: 0.777-0.877; accuracy: 95.9%). SHAP values indicated that cesium (1.62), thallium (1.17), antimony (1.63), dimethylarsonic acid (0.91), barium (0.76), arsenous acid (0.79), total arsenic (0.01) in urine, and lead (3.58) and cadmium (4.66) in blood positively contributed to the model, while cobalt (-0.15), cadmium (-2.93), and uranium (-0.13) in urine negatively contributed to the model. The RF model was efficient, accurate, and robust in identifying an association between heavy metals' exposure and CHD among US NHANES 2003-2018 participants. Cesium, thallium, antimony, dimethylarsonic acid, barium, arsenous acid, and total arsenic in urine, and lead and cadmium in blood show positive relationships with CHD, while cobalt, cadmium, and uranium in urine show negative relationships with CHD.


Subject(s)
Arsenic , Coronary Disease , Environmental Pollutants , Metals, Heavy , Uranium , Adult , Humans , Nutrition Surveys , Cadmium/urine , Antimony , Environmental Exposure/analysis , Barium , Thallium , Cobalt/urine , Cesium , Coronary Disease/epidemiology , Machine Learning
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121818, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36087405

ABSTRACT

Determination of cesium ion in soybean oil is of high importance since the increasing risk from releasing of main component of nuclear waste cesium 137. The complex composition and high viscosity of soybean oil make it necessary to convert it into water phase by nitration before detection, so developing a simple, accurate and sensitive method for on-site sensing of Cs+ in soybean oil is still a big challenge. In this work, we report a traffic light-type ratiometric fluorescence strategy for the visual sensing of Cs+ in soybean oil based on dimensional regulation of two dimensional (PEA)2PbI4 perovskite nanosheets (NSs). The PEA+ in (PEA)2PbI4 NSs exchanged with Cs+ and lead to dimension of partial (PEA)2PbI4 NSs progressively increase from 2D to 3D CsPbI3 NCs. Resultantly, the fluorescence of (PEA)2PbI4 NSs decreases with a concomitant fluorescence enhancement of CsPbI3 NCs upon increasing the concentrations of Cs+, and the emission accordingly change from green, yellow to red with a high fluorescence colorimetric resolution up to 5.0 µM, make it successful to achieve on-site sensing of Cs+ in soybean oil just with naked eye in 5 min without any nitration, demonstrating a bright application future for determination of Cs+ in the soybean oil.


Subject(s)
Radioactive Waste , Soybean Oil , Calcium Compounds , Cesium , Oxides , Titanium , Water
3.
Chemosphere ; 313: 137336, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36427574

ABSTRACT

Heated aluminum oxide particles impregnated with Prussian blue (HAOPs-PB) are synthesized for the first time using different molar ratios of aluminum sulfate and PB to improve the adsorption of cesium (133Cs+) and natural organic matter (NOM) from an aqueous solution. The Cs+ adsorption from various aqueous solutions, including surface, tap and deionized water by synthesized HAOPs-PB, is investigated. The influencing factors such as HAOPs-PB mixing ratio, pH and dosage are studied. In addition, pseudo 1st and 2nd order is tested for adsorption kinetics study. A machine learning model is developed using gene expression programming (GEP) to evaluate and optimize the adsorption process for Cs+ and NOM removal. Synthesized adsorbent showed maximum adsorption at a 1:1 M ratio of aluminum sulfate and PB in DI, tap, and surface water. The pseudo 2nd order kinetics model described the Cs + adsorption by HAOPs-PB more accurately that indicating physiochemical adsorption. Adsorption of Cs+ showed an increasing trend with higher HAOPs-PB concentration, while high pH also favored the adsorption. Maximum NOM adsorption is found at a higher HAOPs-PB dosage and a neutral pH value. Furthermore, the proposed GEP model shows outstanding performance for Cs+ adsorption modeling, whereas a modified-GEP model presents promising results for NOM adsorption prediction for testing dataset by learning the relationship between inputs and output with R2 values of 0.9348 and 0.889, respectively.


Subject(s)
Water Pollutants, Chemical , Water Purification , Aluminum Oxide , Adsorption , Water Purification/methods , Cesium , Water , Kinetics , Hydrogen-Ion Concentration
4.
Front Public Health ; 10: 985127, 2022.
Article in English | MEDLINE | ID: mdl-36148349

ABSTRACT

Background: Epidemiological evidence on Urine metals and cognitive impairment in older individuals is sparse and limited. The goal of this study was to analyze if there was a link between urinary metal levels and cognitive performance in U.S. people aged 60 and up. Methods: The National Health and Nutrition Examination Survey (NHANES) data from 2011 to 2014 were utilized in this cross-sectional analysis. Memory function was quantified using the following methods: Established Consortium for Word Learning in Alzheimer's Disease (CERAD-WL) (immediate learning and recall and delayed recall), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). An inductively coupled plasma mass spectrometry (ICP-MS) was used to estimate urine metal concentrations. The connection of Urine metals level with cognitive function was investigated employing binary logistic regression and restricted cubic spline models. Results: A total of 840 participants aged 60 years and over were enrolled in this study. After controlling for confounders, the association between cadmium, barium, cobalt, cesium, manganese, and thallium and poor cognitive performance showed significance in multiple logistic regression compared to the lowest quartile of metals. In the DSST test, the weighted multivariate adjusted ORs (95% CI) for cadmium in the highest quartile, barium and cesium in the third quartile were 2.444 (1.310-4.560), 0.412 (0.180-0.942) and 0.440 (0.198-0.979), respectively. There were L-shaped associations between urine cesium, barium, or manganese and low cognitive performance in DSST. Urine lead, molybdenum and uranium did not show any significant relationships with cognitive impairment, respectively, compared to the respective lowest quartile concentrations. Conclusion: The levels of barium (Ba), cobalt (Co), cesium (Cs), manganese (Mn), and thallium (Tl) in urine were found to be negatively related to the prevalence of impaired cognitive performance in our cross-sectional investigation. Higher cadmium (Cd) levels were associated with cognitive impairment.


Subject(s)
Cadmium , Uranium , Barium , Cadmium/urine , Cesium , Cobalt , Cognition , Cross-Sectional Studies , Humans , Manganese , Molybdenum , Nutrition Surveys , Thallium
5.
Environ Res ; 215(Pt 3): 114435, 2022 12.
Article in English | MEDLINE | ID: mdl-36174761

ABSTRACT

BACKGROUND: It is well-documented that heavy metals are associated with cardiovascular disease (CVD). However, there is few studies exploring effect of metal mixture on CVD. Therefore, the primary objective of present study was to investigate the joint effect of heavy metals on CVD and to identify the most influential metals in the mixture. METHODS: Original data for study subjects were obtained from the National Health and Nutrition Examination Survey. In this study, adults with complete data on 12 kinds of urinary metals (antimony, arsenic, barium, cadmium, cobalt, cesium, molybdenum, mercury, lead, thallium, tungsten, and uranium), cardiovascular disease, and core covariates were enrolled. We applied five different statistical strategies to examine the CVD risk with metal exposure, including multivariate logistic regression, adaptive elastic net combined with Environmental Risk Score, Quantile g-computation, Weighted Quantile Sum regression, and Bayesian kernel machine regression. RESULTS: Higher levels of cadmium, tungsten, cobalt, and antimony were significantly associated with Increased risk of CVD when covariates were adjusted for multivariate logistic regression. The results from multi-pollutant strategies all indicated that metal mixture was positively associated with the risk of CVD. Based on the results of multiple statistical strategies, it was determined that cadmium, tungsten, cobalt, and antimony exhibited the strongest positive correlations, whereas barium, lead, molybdenum, and thallium were most associated with negative correlations. CONCLUSION: Overall, our study demonstrates that exposure to heavy metal mixture is linked to a higher risk of CVD. Meanwhile, this association may be driven primarily by cadmium, tungsten, cobalt, and antimony. Further prospective studies are warranted to validate or refute our primary findings as well as to identify other important heavy metals linked with CVD.


Subject(s)
Arsenic , Cardiovascular Diseases , Environmental Pollutants , Mercury , Uranium , Adult , Antimony/toxicity , Barium , Bayes Theorem , Cadmium , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Cesium , Cobalt , Environmental Exposure/analysis , Environmental Pollutants/toxicity , Humans , Models, Statistical , Molybdenum , Nutrition Surveys , Thallium , Tungsten
6.
J Phys Chem Lett ; 13(26): 6130-6137, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35759533

ABSTRACT

We illustrate the critical importance of the energetics of cation-solvent versus cation-iodoplumbate interactions in determining the stability of ABX3 perovskite precursors in a dimethylformamide (DMF) solvent medium. We have shown, through a complementary suite of nuclear magnetic resonance (NMR) and computational studies, that Cs+ exhibits significantly different solvent vs iodoplumbate interactions compared to organic A+-site cations such as CH3NH3+ (MA+). Two NMR studies were conducted: 133Cs NMR analysis shows that Cs+ and MA+ compete for coordination with PbI3- in DMF. 207Pb NMR studies of PbI2 with cationic iodides show that perovskite-forming Cs+ (and, somewhat, Rb+) do not comport with the 207Pb chemical shift trend found for Li+, Na+, and K+. Three independent computational approaches (density functional theory (DFT), ab initio Molecular Dynamics (AIMD), and a polarizable force field within Molecular Dynamics) yielded strikingly similar results: Cs+ interacts more strongly with the PbI3- iodoplumbate than does MA+ in a polar solvent environment like DMF. The stronger energy preference for PbI3- coordination of Cs+ vs MA+ in DMF demonstrates that Cs+ is not simply a postcrystallization cation "fit" for the perovskite A+-site. Instead, it may facilitate preorganization of the framework precursor that eventually transforms into the crystalline perovskite structure.


Subject(s)
Ink , Lead , Calcium Compounds , Cations , Cesium/chemistry , Crystallization , Oxides , Solvents , Titanium
7.
Environ Sci Pollut Res Int ; 29(48): 73480-73491, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35624372

ABSTRACT

Metals, arsenic, and polycyclic aromatic hydrocarbons (PAHs) have all been linked to respiratory diseases. Chronic bronchitis, which is a form of chronic obstructive pulmonary disease (COPD), is a major public health concern and source of morbidity and mortality in the US. The purpose of this study was to analyze the correlation of 14 urinary metals (antimony, barium, cadmium, cesium, cobalt, lead, manganese, mercury, molybdenum, strontium, thallium, tin, tungsten, uranium), seven species of arsenic, and seven forms of polycyclic aromatic hydrocarbon (PAH) concentrations and chronic bronchitis in the US population. A cross-sectional analysis using three datasets from the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2016 in adults, aged 20 years and older. Chronic bronchitis was determined using a self-questionnaire from the NHANES dataset. A specialized weighted complex survey design analysis package was used to analyze NHANES data. Multivariate logistic regression models were used to determine the correlation between urinary metals, arsenic, PAHs, and chronic bronchitis. Models were adjusted for lifestyle and demographic factors. A total of 4186 participants were analyzed; 49.8% were female and 40.5% were non-Hispanic White. All seven types of PAHs showed a positive association with chronic bronchitis (1-hydroxynaphthalene odds ratio (OR): 1.559, 95% confidence interval (CI): 1.271-1.912; 2-hydroxynaphthalene OR: 2.498, 95% CI: 1.524-4.095; 3-hydroxyfluorene OR: 2.752, 95% CI: 2.100-3.608; 2-hydroxyfluorene OR: 3.461, 95% CI: 2.438-4.914; 1-hydroxyphenanthrene OR: 2.442, 95% CI: 1.515-3.937; 1-hydroxypyrene OR: 2.828, 95% CI: 1.728-4.629; 2 & 3-hydroxyphenanthrene OR: 3.690, 95% CI: 2.309-5.896). Of the metals, only urinary cadmium showed a statistically significant positive association (OR: 2.435, 95% CI: 1.401-4.235) with chronic bronchitis. No other metals or arsenic were correlated with chronic bronchitis. Seven forms of urinary PAHs, cadmium, and several demographic factors were associated with chronic bronchitis.


Subject(s)
Arsenic , Bronchitis, Chronic , Mercury , Polycyclic Aromatic Hydrocarbons , Uranium , Adult , Antimony , Barium , Biomarkers , Bronchitis, Chronic/chemically induced , Bronchitis, Chronic/epidemiology , Cadmium , Cesium , Cobalt , Cross-Sectional Studies , Female , Humans , Male , Manganese , Molybdenum , Nutrition Surveys , Polycyclic Aromatic Hydrocarbons/analysis , Strontium , Thallium , Tin , Tungsten , Uranium/analysis
8.
Environ Sci Pollut Res Int ; 29(40): 60269-60277, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35419687

ABSTRACT

Human beings are exposed to heavy metals through various ways in daily life. However, the effect of heavy metal mixtures on muscle strength in children and adolescents remains unclear. We aimed to investigate the relationship of exposure to heavy metal mixtures (barium, cadmium, cobalt, manganese, molybdenum, lead, antimony, strontium, tin, thallium, tungsten, uranium, and cesium) with muscle strength in children and adolescents. A total of 1357 (boys, 50.8%) participants aged between 8 and 17 were extracted from the National Health and Nutrition Examination Surveys 2011-2014. Urine metals were measured by inductively coupled plasma-mass spectrometry. Muscle strength was measured through a grip test using a handgrip dynamometer. Weighted quantile sum regression was performed to estimate the mixture effect of urinary metals on muscle strength. After adjusting for potential confounders, comparing participants in the highest versus lowest quartiles of cobalt, molybdenum, lead, antimony, strontium, thallium, and cesium, the handgrip strength decreased by - 4.48 kg (95% CI: - 6.93, - 2.03), - 6.13 kg (- 8.76, - 3.51), - 2.26 kg (- 4.22, - 0.30), - 2.38 kg (- 4.68, - 0.08), - 2.29 kg (- 4.45, - 0.13), - 4.78 kg (- 7.13, - 2.44), and - 5.68 kg (- 9.20, - 2.17), respectively. Furthermore, exposure to a mixture of metals were also significantly associated with decreased muscle strength (ß: - 2.62 kg; 95% CI: - 3.71, - 1.54). Findings from the present study suggest that higher heavy metal exposure and the exposure levels of a mixture of metals in urine are inversely related to handgrip strength, implying that children's grip strength is not entirely explained by energy intake or lack of exercise, but may be related to environmental pollutants.


Subject(s)
Metals, Heavy , Uranium , Adolescent , Antimony/analysis , Cesium/analysis , Child , Cobalt/analysis , Environmental Exposure/analysis , Hand Strength , Humans , Male , Metals, Heavy/analysis , Molybdenum/analysis , Strontium/analysis , Thallium/analysis , Uranium/analysis
9.
Nutrients ; 13(8)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34444705

ABSTRACT

Exposure of individuals to radioactive material as a result of ingestion of contaminated food and water is an increasing public health concern. Unfortunately, there are limited treatment modalities for dealing with these types of potentially toxic exposures. Recent research suggests that many plant-based nutraceuticals may possess metal-binding properties. This preliminary study investigated the ability of genistein, curcumin, quercetin, and lentinan to bind metals considered internal contamination risks, namely cesium, uranium, cobalt, and strontium, in a variety of matrices. The efficacy of these nutraceuticals in protecting cultured cells from metal-induced toxicity was also explored. Results showed that none of the compounds bound cesium or strontium. However, genistein, curcumin, and quercetin could bind uranium. Curcumin and quercetin also bound cobalt and could also protect cultured cells from metal-induced cytotoxicity. Lentinan did not bind any of the metals tested. Metal binding was also pH dependent, with no binding observed at lower pH values. This project showed that nutraceuticals could function as chelators for metals considered internal radionuclide contamination hazards. Further investigations are required in order to determine whether these compounds will become a new nontoxic arsenal of pharmaceutical compounds with which to treat radionuclide contamination.


Subject(s)
Chelating Agents/pharmacology , Dietary Exposure/prevention & control , Dietary Supplements/analysis , Elements, Radioactive/toxicity , Plant Extracts/pharmacology , Cell Culture Techniques , Cesium/toxicity , Cobalt/toxicity , Curcumin/pharmacology , Dietary Exposure/adverse effects , Food Contamination, Radioactive/analysis , Food Contamination, Radioactive/prevention & control , Genistein/pharmacology , Humans , Lentinan/pharmacology , Quercetin/pharmacology , Strontium/toxicity , Uranium/toxicity
10.
Anal Sci ; 37(12): 1789-1794, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34305053

ABSTRACT

We present a resin-packed microchannel that can reduce the radiation exposure risk and secondary radioactive wastes during uranium (U) separation by downscaling the separation using a microchip. Two types of microchips were designed to densely pack the microchannels with resins. The microchannels had almost the same cross-sectional area, but different outer circumferences. A satisfactory separation performance could be obtained by arranging more than ca. 10 resins along the depth and width of the microchannels. A resin-packed microchannel is an effective separation technique for determining the U concentration via inductively coupled plasma mass spectrometry owing to its ability to avoid the contamination of equipment by cesium, and to reduce the matrix effect. The size of the separation site was scaled down to <1/5000 compared to commonly used counterparts. The radiation exposure risk and secondary radioactive wastes can be reduced by 10- and 800-fold, respectively, using a resin-packed microchannel.


Subject(s)
Uranium , Anion Exchange Resins , Cesium , Seawater , Uranium/analysis
11.
J Environ Radioact ; 235-236: 106655, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34034207

ABSTRACT

To estimate the uptake of radiocesium (137Cs) by tea plant roots, 1-year-old rooted tea cuttings (Camellia sinensis L. cv. Yabukita) at the time of bud opening were cultivated hydroponically for 27 days in pots containing nutrient solutions with or without 137CsCl (600 Bq mL-1). Total 137Cs radioactivity of whole tea plants were 6.1 kBq g-1 dry weight. The plant/solution 137Cs transfer factors of different tissues were in the range of 2.6 (in mature leaves) to 28.2 mL g-1 dry weight (in roots), which were lower than those reported in wheat and spinach. In total, 69% of 137Cs remained in roots and 31% was transported from roots to shoots. The results indicated that 137Cs was preferentially translocated to new shoots, which are used for manufacturing tea, over mature leaves.


Subject(s)
Camellia sinensis , Fukushima Nuclear Accident , Radiation Monitoring , Cesium , Cesium Radioisotopes/analysis , Plant Leaves/chemistry , Plant Roots/chemistry , Tea
12.
Chemosphere ; 273: 128971, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33243570

ABSTRACT

The spatial distribution and seasonal variations of atmospheric iodine (I), selenium (Se) and caesium (Cs) depositions remain unclear and this precludes adequate inputs for biogeochemical models. We quantified total concentrations and fluxes of these elements in rainfalls from 27 monitoring sites in France with contrasted climatic conditions; monthly measurements were taken over one year (starting in 2016/09). Since speciation of I and Se can impact their behaviour in the environment, analysis of their inorganic compounds was also conducted. Our results showed that annual I concentrations in rainfall were much higher than those of Se and Cs (annual means = 1.56, 0.044 and 0.005 µg L-1, respectively). The annual iodine concentrations were highly positively correlated with those of marine elements (i.e. Na, Cl and Mg), involving higher I concentrations under oceanic climate than for transition, continental and mountainous ones. Furthermore, common patterns were found between Se concentrations and both marine and terrestrial components consistent with the various sources of Se in atmosphere. The association of Cs with two anthropogenic components (i.e. NH4+ and NO3-) used in agriculture supports the hypothesis of its terrestrial origin (i.e. from atmospheric dusts) in rainfall. We found higher rainfall concentrations of I during the warmest months for all climates. However, no specific seasonal trend occurred for Se and Cs. On annual average, rainfall contained mostly unidentified selenium compounds (inorganic Se proportions = 25-54%) and equal proportions of inorganic and unidentified I compounds. Concentrations of iodate were higher under oceanic climate consistent with an iodine marine-origin.


Subject(s)
Iodine , Selenium , Cesium , Environmental Monitoring , France , Oceans and Seas , Seasons
13.
Chemosphere ; 273: 128952, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33228989

ABSTRACT

Estimation of the canopy influence on atmospheric inputs of iodine (I), selenium (Se) and caesium (Cs) in terrestrial ecosystems is an essential condition for appropriate biogeochemical models. However, the processes involved in rain composition modifications after its passage through forest canopy have been barely studied for these elements. We monitored I, Se and Cs concentrations in both rainfall and throughfall of fourteen French forested sites throughout one year, and estimated dry deposition and canopy exchange fluxes for these elements, as well as speciation of I and Se. Comparison of rainfall and throughfall elemental composition highlighted an important impact of forest canopy on both (i) concentrations and fluxes of I, Se and Cs, and (ii) I and Se species. For the three elements, most of their throughfall concentrations were higher than corresponding rainfall. The increase of throughfall elemental fluxes was mostly due to dry deposition for I and Se although the canopy exchange model revealed some sorption within the canopy in most cases; for Cs, foliage leaching was most influencing. Regarding speciation, iodine species in rainfall were highly modified by forest canopy with an important increase of unidentified I proportion in throughfall (on average 49 and 82% in rainfall and throughfall, respectively), possibly due to washoff of dry deposition and/or to transformation into organic forms. Similarly, while rainfall was composed of 26-54% of inorganic Se, inorganic species were undetectable in throughfall. This dataset represents key information to improve modelling of I, Se and Cs cycling within forest ecosystems.


Subject(s)
Iodine , Selenium , Cesium , Ecosystem , Environmental Monitoring , Forests , France , Trees
14.
Sci Rep ; 10(1): 16055, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994421

ABSTRACT

Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, morphological abnormalities in lepidopteran insects, such as shrinkage and/or aberration of wings, have been reported. Butterflies experimentally exposed to radiocesium also show such abnormalities. However, because of a lack of data on absorbed dose and dose-effect relationship, it is unclear whether these abnormalities are caused directly by radiation. We conducted a low dose-rate exposure experiment in silkworms reared from egg to fully developed larvae on a 137CsCl-supplemented artificial diet and estimated the absorbed dose to evaluate morphological abnormalities in pupal wings. We used 137CsCl at 1.3 × 103 Bq/g fresh weight to simulate 137Cs contamination around the FDNPP. Absorbed doses were estimated using a glass rod dosimeter and Monte Carlo particle transport simulation code PHITS. Average external absorbed doses were approximately 0.24 (on diet) and 0.016 mGy/day (near diet); the average internal absorbed dose was approximately 0.82 mGy/day. Pupal wing structure is sensitive to radiation exposure. However, no significant differences were observed in the wing-to-whole body ratio of pupae between the 137CsCl-exposure and control groups. These results suggest that silkworms are insensitive to low dose-rate exposure due to chronic ingestion of high 137Cs at a high concentration.


Subject(s)
Bombyx/metabolism , Cesium Radioisotopes/adverse effects , Radiation Exposure/adverse effects , Animals , Butterflies , Cesium/metabolism , Cesium Radioisotopes/metabolism , Chlorides/metabolism , Diet , Dietary Supplements , Fukushima Nuclear Accident , Insecta , Japan , Nuclear Power Plants , Pupa/metabolism , Radiation Monitoring/methods , Soil Pollutants, Radioactive/analysis
15.
J Fluoresc ; 30(5): 1121-1129, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32648172

ABSTRACT

Specific monovalent cation effects on the domain-domain interaction of heterogeneous dimeric protein were investigated using green fluorescent protein (GFP)-glutathione-s-transferase (GST) fusion protein as a model protein. Conjugating N-terminal of GST domain with a fluorescence probe Cyanine3, complementary increase and decrease of fluorescence intensities of Cyanine3 and GFP were recognized on the exclusive excitation of GFP and further the fluorescence decay of GFP was remarkably accelerated to show that an excellent Förster type of resonance excitation energy transfer (FRET) pair was constructed between GFP- and GST-domain. The spectral overlap integral and critical distance of the FRET pair were estimated to be 5.96×1013 M-1cm3 and 62.5 Å, respectively. The FRET rate and efficiency evaluated by fluorescence lifetime of the energy donor, GFP, were influenced by the monovalent cations included in the buffer solution to suggest that the domain-domain interactions of GFP-GST fusion protein would be susceptible to cation species and their concentrations. The order affecting the domain-domain interaction was estimated to be Li+>NH4+ >Na+>K+>Cs+, almost corresponding to the reverse Hofmeister series.


Subject(s)
Carbocyanines/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Glutathione Transferase/chemistry , Green Fluorescent Proteins/chemistry , Ammonium Chloride/chemistry , Cations/chemistry , Cesium/chemistry , Glutathione Transferase/metabolism , Lithium/chemistry , Potassium/chemistry , Protein Multimerization , Sodium/chemistry
16.
Environ Sci Pollut Res Int ; 27(28): 35580-35590, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32594435

ABSTRACT

The desorption of radioactive cesium (Cs) in soil is influenced by the clay mineral type, adsorption site, and concentration of Cs. In this study, experiments to detect desorption of non-radioactive and radioactive Cs from illite using oxalic acid were performed for 2 days at 70 °C in hydrothermal conditions. The results showed that the 133Cs removal efficiency by oxalic acid and inorganic acid treatment was similar at high concentration (22.86 mmol/kg) of non-radioactive 133Cs. In the radioactive 137Cs experiment, the removal efficiency by oxalic acid was higher than that by inorganic acid at low concentration (0.79 × 10-6 mmol/kg) of radioactive 137Cs. Based on the illite hypothetical frayed edge site (FES) concentration of 0.612 mmol/kg, the results suggested that 137Cs was preferentially adsorbed to FES on illite. The 137Cs at low concentration was difficult to remove because it was irreversible adsorption to FES, while the non-radioactive Cs at high concentration was mainly adsorbed to planar sites, and so was easy to desorb by ion exchange. Based on the results of NMR, FTIR, and XPS analyses, we concluded that the higher efficiency of 137Cs removal at low concentration by oxalic acid treatment than by treatment with inorganic acid was because of chelation effects associated with the complexation of oxalic acid (ligands) and metal ions in irreversible site (FES).


Subject(s)
Oxalic Acid , Water Pollutants, Radioactive/analysis , Adsorption , Cesium , Minerals
17.
Water Res ; 177: 115804, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32302807

ABSTRACT

The adsorption and desorption of cesium (Cs) on clays of contaminated soil in a rhizosphere zone can be greatly affected by various biogeochemical processes, the timespans of which are usually months to years. Herein, we present several representative scenarios of the binding of Cs on diverse sites of vermiculitized biotite by controlled Cs adsorption to particles of different sizes. We investigated whether and how the fixed Cs in the different scenarios is desorbed by ambient and hydrothermal treatments with several low-molecular-weight organic acids (LMWOAs). The results showed that the sorbed Cs was discriminatively retained in the un-collapsed, partially collapsed, and thoroughly collapsed structures of vermiculites. The desorption of the sorbed Cs by hydrothermal LMWOAs extractions was easily realized in the un-collapsed structure, but was limited or minimal in the partially collapsed and thoroughly collapsed structures. The Cs desorption varied in accord with the LMWOA species applied and increased with the acid concentration, temperature, and number of treating cycles. The analysis of Cs-desorbed specimens confirmed their partial destruction and interlayer expansion, suggesting that the underlying mechanism of Cs removal by LMWOAs involves not only acid dissolution and complexation but also the accelerated weathering of clays within a short time under hydrothermal conditions. Our findings contribute novel insights into the mobility, bioavailability, and fate of Cs in contaminated soils and its removal from these soils for environmental restorations.


Subject(s)
Clay , Soil , Adsorption , Cesium , Cesium Radioisotopes , Decontamination , Minerals
18.
Environ Sci Pollut Res Int ; 26(14): 14521-14533, 2019 May.
Article in English | MEDLINE | ID: mdl-30877528

ABSTRACT

Muscle, liver and kidney of 21 Barbary sheep (Ammotragus lervia) from Mosor Mountain, Croatia, were sampled to quantify the activity of caesium and potassium radionuclides and five toxic and ten essential stabile elements in order to establish reference values for this species and to evaluate the potential of Barbary sheep tissues to reflect environmental pollution. We also assessed seasonal diet (botanical composition and dry matter content) of Barbary sheep based on analyses of a rumen content of culled animals. None of the 19 plant species (mostly grasses) identified as part of the Barbary sheep diet is known as a stabile element or radionuclide hyperaccumulator. Measured levels reflected low environmental pollution with arsenic, cadmium, mercury and lead, with levels generally less than those reported for wild herbivorous ungulates. Methodological differences (detection limit of elements in muscle) were shown to hamper interpretation and comparison of the Toxic Contamination Index (TCI) values with those published for other species. There was no homeostasis disturbance of trace elements in Barbary sheep, either due to inadequate intake via food or as an adverse effect due to a high toxic metal(loid) burden. Consumption of the muscle and liver of wild Barbary sheep can be considered safe for the health of adult consumers regarding toxic metal(loid)s and radioactive caesium, though the liver should be avoided as a food item in vulnerable population groups due to the possible adverse effects of cadmium and lead. Otherwise, muscle and liver are a rich source of copper, iron, selenium and zinc for consumers and, as such, can benefit the overall dietary intake of essential elements.


Subject(s)
Environmental Exposure/analysis , Environmental Pollutants/metabolism , Radioactive Pollutants/metabolism , Radioisotopes/metabolism , Animals , Arsenic/analysis , Biomarkers/metabolism , Cadmium/analysis , Cesium/analysis , Cesium/metabolism , Cesium Radioisotopes/metabolism , Copper/analysis , Croatia , Diet , Environmental Biomarkers , Environmental Exposure/statistics & numerical data , Food Contamination/analysis , Food Contamination/statistics & numerical data , Hazardous Substances/metabolism , Iron/analysis , Mercury/analysis , Potassium/analysis , Potassium/metabolism , Potassium Radioisotopes/metabolism , Radiation Exposure/statistics & numerical data , Radioisotopes/analysis , Ruminants , Selenium/analysis , Sheep , Trace Elements/analysis , Trace Elements/metabolism , Zinc/analysis
19.
Int J Med Mushrooms ; 21(1): 71-77, 2019.
Article in English | MEDLINE | ID: mdl-30806257

ABSTRACT

In recent decades, the estimation of radionuclide and heavy metal levels in culinary-medicinal mushrooms has been of interest because some of them have proven to be hyperaccumulators of toxic elements. This article presents results on radiocesium (137Cs) activity in fruit bodies of medicinal-culinary mushrooms-Agaricus sylvaticus Schaeff., Chlorophyllum rhacodes (Vitt.) Vellinga, Coprinellus micaceus (Bull.) Vilgalys, Hopple & Jacq. Johnson, Coprinopsis atramentaria (Bull.) Redhead, Vilgalys & Moncalvo, Coprinus comatus (O.F. Mull.) Pers., Fistulina hepatica (Schaeff.) With., Laetiporus sulphureus (Bull.) Murrill, Leccinum scabrum (Bull.) Gray, Macrolepiota procera (Scop.) Singer, Melanoleuca brevipes (Bull.) Pat., Pleurotus ostreatus (Jacq.) P. Kumm., Xerocomellus chrysenteron (Bull.) Sutara, nonedible Echinoderma asperum (Pers.) Bon, and toxic species Agaricus xanthodermus Genev.-collected in 2015, as well as magnesium, manganese, iron, copper, zinc, chromium, nickel, molybdenum, cadmium, selenium, lead, and mercury content in medicinal-culinary species-Armillaria mellea (Vahl) P. Kumm., Ch. rhacodes, C. comatus, Grifola frondosa (Dicks.) Gray, Gyroporus cyanescens (Bull.) Quel., L. scabrum, M. procera, P. ostreatus, and X. chrysenteron-collected during 2016-2017 on the southern outskirts of Kyiv, the capital of Ukraine. The data obtained suggest safe levels of radiocesium and some essential and toxic elements in mushroom fruit bodies. All the investigated species are collective sorbents of magnesium, manganese, copper, and zinc; thus, they represent the source of the intake of these elements in the human body. The species-specific manner of mineral element accumulation was observed. In addition to medicinal values, some species (in particular, M. procera and Ch. rhacodes) are of interest as potential informative bioindicators of heavy metal contamination of the environment.


Subject(s)
Agaricales/chemistry , Cesium/chemistry , Food Contamination, Radioactive , Minerals/chemistry , Cesium Radioisotopes/chemistry , Humans , Ukraine
20.
Plant Signal Behav ; 14(1): 1554468, 2019.
Article in English | MEDLINE | ID: mdl-30540522

ABSTRACT

Cesium has no known beneficial effects on plants and while plants have the ability to absorb it through the root system, plant growth is retarded at high concentrations. Recently, we have shown that potassium influx through a potassium channel complex AKT1-KC1 is inhibited by cesium in Arabidopsis thaliana and the resultant reduction in potassium accumulation in the plant is the primary cause of retarded growth. By contrast, a major potassium transporter, HAK5 whose function is crucial under potassium deficiency, was found to be either not affected or complementary under cesium stress in the low affinity potassium range. Here we show the effects of insertional mutation on other members of KUP/HAK/KT gene family in response to cesium stress. Potassium and cesium concentrations in each mutant line demonstrated that disruption of a single KUP/HAK/KT gene was not sufficient to significantly reduce potassium/cesium accumulation, suggesting a complementary effect among these KUP (K+ UPTAKE PERMEASE) transporters.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cation Transport Proteins/metabolism , Cesium/metabolism , Potassium/metabolism , Arabidopsis Proteins/genetics , Cation Transport Proteins/genetics , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL