Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Hematol ; 96(6): 764-72, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23179902

ABSTRACT

The chemotactic movement of T lymphocytes mediated by chemokines and their receptors plays an important role in the pathogenesis of graft-versus-host disease (GVHD) post-allogeneic hematopoietic stem cell transplantation (allo-HSCT). CCR7 and CXCR3 are two receptors associated with the development of GVHD. Bortezomib, a proteasome inhibitor, was recently found to prevent GVHD in a mouse model and to decrease the production of Th1 cytokines. Here, we report that bortezomib differentially regulates the expression of CXCR3 and CCR7 on T cells; it significantly decreases CXCR3 expression on T cells as well as its CD4(+)/CD8(+) subsets in a dose-dependent manner, while it does not significantly affect CCR7 expression on T cells and subsets. Moreover, the secretion of CXCL9 by activated T cells is also increasingly downregulated with increasing concentrations of bortezomib. Meanwhile, bortezomib inhibits T-cell chemotactic movements toward CXCL9 in a dose-dependent manner, but has no effect on CCL19-induced T-cell chemotaxis. Additionally, it was found that bortezomib treatment also prompts T-lymphocyte apoptosis through activation of caspase-3 and its downstream PARP cleavage in a dose- and time-dependent manner. These results suggest that bortezomib may act as a suppressor of GVHD by downregulating T-cell chemotatic movement toward GVHD target organs, as well as by inducing apoptosis.


Subject(s)
Apoptosis/drug effects , Boronic Acids/pharmacology , Chemokine CXCL9/metabolism , Chemotaxis/drug effects , Protease Inhibitors/pharmacology , Pyrazines/pharmacology , Receptors, CXCR3/biosynthesis , T-Lymphocyte Subsets/drug effects , Adult , Bortezomib , Cells, Cultured , Chemokine CCL19/physiology , Depression, Chemical , Down-Regulation , Drug Evaluation, Preclinical , Graft vs Host Disease/drug therapy , Humans , Lymphocyte Activation/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Phosphorylation , Protein Processing, Post-Translational , Receptors, CCR7/biosynthesis , Receptors, CCR7/genetics , Receptors, CXCR3/genetics , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL