Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Bioengineered ; 15(1): 2314888, 2024 12.
Article in English | MEDLINE | ID: mdl-38375815

ABSTRACT

Cadmium (Cd) has become a severe issue in relatively low concentration and attracts expert attention due to its toxicity, accumulation, and biomagnification in living organisms. Cd does not have a biological role and causes serious health issues. Therefore, Cd pollutants should be reduced and removed from the environment. Microalgae have great potential for Cd absorption for waste treatment since they are more environmentally friendly than existing treatment methods and have strong metal sorption selectivity. This study evaluated the tolerance and ability of the microalga Tetratostichococcus sp. P1 to remove Cd ions under acidic conditions and reveal mechanisms based on transcriptomics analysis. The results showed that Tetratostichococcus sp. P1 had a high Cd tolerance that survived under the presence of Cd up to 100 µM, and IC50, the half-maximal inhibitory concentration value, was 57.0 µM, calculated from the change in growth rate based on the chlorophyll content. Long-term Cd exposure affected the algal morphology and photosynthetic pigments of the alga. Tetratostichococcus sp. P1 removed Cd with a maximum uptake of 1.55 mg g-1 dry weight. Transcriptomic analysis revealed the upregulation of the expression of genes related to metal binding, such as metallothionein. Group A, Group B transporters and glutathione, were also found upregulated. While the downregulation of the genes were related to photosynthesis, mitochondria electron transport, ABC-2 transporter, polysaccharide metabolic process, and cell division. This research is the first study on heavy metal bioremediation using Tetratostichococcus sp. P1 and provides a new potential microalga strain for heavy metal removal in wastewater.[Figure: see text]Abbreviations:BP: Biological process; bZIP: Basic Leucine Zipper; CC: Cellular component; ccc1: Ca (II)-sensitive cross complementary 1; Cd: Cadmium; CDF: Cation diffusion facilitator; Chl: Chlorophyll; CTR: Cu TRansporter families; DAGs: Directed acyclic graphs; DEGs: Differentially expressed genes; DVR: Divinyl chlorophyllide, an 8-vinyl-reductase; FPN: FerroportinN; FTIR: Fourier transform infrared; FTR: Fe TRansporter; GO: Gene Ontology; IC50: Growth half maximal inhibitory concentration; ICP: Inductively coupled plasma; MF: molecular function; NRAMPs: Natural resistance-associated aacrophage proteins; OD: Optical density; RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped; VIT1: Vacuolar iron transporter 1 families; ZIPs: Zrt-, Irt-like proteins.


Subject(s)
Chlorophyta , Metals, Heavy , Cadmium/toxicity , Bioaccumulation , Gene Expression Profiling , Plants/metabolism , Chlorophyta/genetics , Chlorophyta/metabolism , Chlorophyll
2.
Methods Enzymol ; 674: 53-84, 2022.
Article in English | MEDLINE | ID: mdl-36008020

ABSTRACT

Carotenes and xanthophylls act as photoreceptors in the photosystems of plants and algae by absorbing light energy which drives photosynthetic electron transport. Moreover, these carotenoid pigments protect chloroplasts from excess light and from reactive species generated during oxygenic photosynthesis. These pigments share similar spectral properties, a feature which contrasts with the extreme level of conservation of their relative composition and abundance in leaves across taxa. Such a conservation through evolution suggested each carotenoid species had a peculiar role, which indeed has been investigated by different approaches. These studies included the purification of individual carotenoid-binding proteins and their characterization in vitro. In a complementary approach, plant and algal mutants devoid of selected carotenoid species have been produced. The physiological characterization of these mutants revealed that the integrated contributions of all carotenoid species provide the most efficient response to photooxidative stress. In this chapter, we provide step-by-step guides for characterizing the in vivo antioxidant activity of carotenoids in plants and green algae, and methods for quantifying the effect of photooxidative stress in genotypes with altered carotenoid composition or impaired defense mechanisms.


Subject(s)
Carotenoids , Chlorophyta , Carotenoids/metabolism , Chlorophyta/genetics , Light , Photosynthesis/physiology , Xanthophylls/metabolism
3.
Curr Biol ; 31(7): 1393-1402.e5, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33548192

ABSTRACT

The green alga Ostreobium is an important coral holobiont member, playing key roles in skeletal decalcification and providing photosynthate to bleached corals that have lost their dinoflagellate endosymbionts. Ostreobium lives in the coral's skeleton, a low-light environment with variable pH and O2 availability. We present the Ostreobium nuclear genome and a metatranscriptomic analysis of healthy and bleached corals to improve our understanding of Ostreobium's adaptations to its extreme environment and its roles as a coral holobiont member. The Ostreobium genome has 10,663 predicted protein-coding genes and shows adaptations for life in low and variable light conditions and other stressors in the endolithic environment. This alga presents a rich repertoire of light-harvesting complex proteins but lacks many genes for photoprotection and photoreceptors. It also has a large arsenal of genes for oxidative stress response. An expansion of extracellular peptidases suggests that Ostreobium may supplement its energy needs by feeding on the organic skeletal matrix, and a diverse set of fermentation pathways allows it to live in the anoxic skeleton at night. Ostreobium depends on other holobiont members for vitamin B12, and our metatranscriptomes identify potential bacterial sources. Metatranscriptomes showed Ostreobium becoming a dominant agent of photosynthesis in bleached corals and provided evidence for variable responses among coral samples and different Ostreobium genotypes. Our work provides a comprehensive understanding of the adaptations of Ostreobium to its extreme environment and an important genomic resource to improve our comprehension of coral holobiont resilience, bleaching, and recovery.


Subject(s)
Adaptation, Biological/genetics , Anthozoa , Chlorophyta/genetics , Genomics , Symbiosis , Animals
4.
BMC Genomics ; 21(1): 671, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32993496

ABSTRACT

BACKGROUND: Symbiosis is central to ecosystems and has been an important driving force of the diversity of life. Close and long-term interactions are known to develop cooperative molecular mechanisms between the symbiotic partners and have often given them new functions as symbiotic entities. In lichen symbiosis, mutualistic relationships between lichen-forming fungi and algae and/or cyanobacteria produce unique features that make lichens adaptive to a wide range of environments. Although the morphological, physiological, and ecological uniqueness of lichens has been described for more than a century, the genetic mechanisms underlying this symbiosis are still poorly known. RESULTS: This study investigated the fungal-algal interaction specific to the lichen symbiosis using Usnea hakonensis as a model system. The whole genome of U. hakonensis, the fungal partner, was sequenced by using a culture isolated from a natural lichen thallus. Isolated cultures of the fungal and the algal partners were co-cultured in vitro for 3 months, and thalli were successfully resynthesized as visible protrusions. Transcriptomes of resynthesized and natural thalli (symbiotic states) were compared to that of isolated cultures (non-symbiotic state). Sets of fungal and algal genes up-regulated in both symbiotic states were identified as symbiosis-related genes. CONCLUSION: From predicted functions of these genes, we identified genetic association with two key features fundamental to the symbiotic lifestyle in lichens. The first is establishment of a fungal symbiotic interface: (a) modification of cell walls at fungal-algal contact sites; and (b) production of a hydrophobic layer that ensheaths fungal and algal cells;. The second is symbiosis-specific nutrient flow: (a) the algal supply of photosynthetic product to the fungus; and (b) the fungal supply of phosphorous and nitrogen compounds to the alga. Since both features are widespread among lichens, our result may indicate important facets of the genetic basis of the lichen symbiosis.


Subject(s)
Chlorophyta/genetics , Parmeliaceae/genetics , Symbiosis/genetics , Cell Wall/metabolism , Chlorophyta/metabolism , Genes, Fungal , Genes, Plant , Microbiological Techniques , Nitrogen/metabolism , Parmeliaceae/metabolism , Phosphorus/metabolism , Photosynthesis , Transcriptome
5.
Plant J ; 102(4): 856-871, 2020 05.
Article in English | MEDLINE | ID: mdl-31991039

ABSTRACT

Microalgal oils in the form of triacylglycerols (TAGs) are broadly used as nutritional supplements and biofuels. Diacylglycerol acyltransferase (DGAT) catalyzes the final step of acyl-CoA-dependent biosynthesis of TAG, and is considered a key target for manipulating oil production. Although a growing number of DGAT1s have been identified and over-expressed in some algal species, the detailed structure-function relationship, as well as the improvement of DGAT1 performance via protein engineering, remain largely untapped. Here, we explored the structure-function features of the hydrophilic N-terminal domain of DGAT1 from the green microalga Chromochloris zofingiensis (CzDGAT1). The results indicated that the N-terminal domain of CzDGAT1 was less disordered than those of the higher eukaryotic enzymes and its partial truncation or complete removal could substantially decrease enzyme activity, suggesting its possible role in maintaining enzyme performance. Although the N-terminal domains of animal and plant DGAT1s were previously found to bind acyl-CoAs, replacement of CzDGAT1 N-terminus by an acyl-CoA binding protein (ACBP) could not restore enzyme activity. Interestingly, the fusion of ACBP to the N-terminus of the full-length CzDGAT1 could enhance the enzyme affinity for acyl-CoAs and augment protein accumulation levels, which ultimately drove oil accumulation in yeast cells and tobacco leaves to higher levels than the full-length CzDGAT1. Overall, our findings unravel the distinct features of the N-terminus of algal DGAT1 and provide a strategy to engineer enhanced performance in DGAT1 via protein fusion, which may open a vista in generating improved membrane-bound acyl-CoA-dependent enzymes and boosting oil biosynthesis in plants and oleaginous microorganisms.


Subject(s)
Chlorophyta/enzymology , Diacylglycerol O-Acyltransferase/metabolism , Diazepam Binding Inhibitor/metabolism , Microalgae/enzymology , Triglycerides/metabolism , Acyl Coenzyme A/metabolism , Algal Proteins/genetics , Algal Proteins/metabolism , Biofuels , Chlorophyta/genetics , Diacylglycerol O-Acyltransferase/genetics , Diazepam Binding Inhibitor/genetics , Kinetics , Microalgae/genetics , Phylogeny , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Domains , Nicotiana/enzymology , Nicotiana/genetics
6.
Sci Rep ; 9(1): 10482, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324835

ABSTRACT

Hidden Markov models representing 167 protein sequence families were used to infer the presence or absence of homologs within the transcriptomes of 183 algal species/strains. Statistical analyses of the distribution of HMM hits across major clades of algae, or at branch points on the phylogenetic tree of 98 chlorophytes, confirmed and extended known cases of metabolic loss and gain, most notably the loss of the mevalonate pathway for terpenoid synthesis in green algae but not, as we show here, in the streptophyte algae. Evidence for novel events was found as well, most remarkably in the recurrent and coordinated gain or loss of enzymes for the glyoxylate shunt. We find, as well, a curious pattern of retention (or re-gain) of HMG-CoA synthase in chlorophytes that have otherwise lost the mevalonate pathway, suggesting a novel, co-opted function for this enzyme in select lineages. Finally, we find striking, phylogenetically linked distributions of coding sequences for three pathways that synthesize the major membrane lipid phosphatidylcholine, and a complementary phylogenetic distribution pattern for the non-phospholipid DGTS (diacyl-glyceryl-trimethylhomoserine). Mass spectrometric analysis of lipids from 25 species was used to validate the inference of DGTS synthesis from sequence data.


Subject(s)
Chlorophyta/genetics , Streptophyta/genetics , Butadienes/metabolism , Chlorophyta/metabolism , Gene Expression Profiling , Glyoxylates/metabolism , Hemiterpenes/metabolism , Metabolic Networks and Pathways/genetics , Mevalonic Acid/metabolism , Phosphatidylcholines/metabolism , Phylogeny , Streptophyta/metabolism , Terpenes/metabolism
7.
Gene ; 697: 123-130, 2019 May 20.
Article in English | MEDLINE | ID: mdl-30794916

ABSTRACT

Haematococcus pluvialis is an economic microalga to produce astaxathin. To study the nitrogen metabolic process of H. pluvialis, the transcription level and enzyme content of nitrite reductase at different nitrate and phosphorus concentrations were studied. In this research, nitrite reductase gene (nir) was first cloned from H. pluvialis, which consists of 5592 nucleotides and includes 12 introns. The cDNA ORF is 1776 bp, encoding a 592 amino acid protein with two conserved domains. Phylogenetic analysis showed that the nir gene in H. pluvialis had the highest affinity with other freshwater green algae. Nitrogen and phosphorus play an important role in the growth of H. pluvialis. The single factor experiments of nitrogen on growth conditions showed that the group with 0.2 g/L NaNO3 had a relative high biomass. The single factor experiments of phosphorus on growth conditions showed that the group with 0.06 g/L K2HPO4 had a relative high biomass. The transcription level and enzymatic activity of nitrite reductase were detected at different nitrate and phosphorus concentrations. In the absence of nitrogen and phosphorus in the medium, nitrite reductase activity is the highest. This research provides theoretical guidance for optimization of culture medium for H. pluvialis and also provides an experimental basis for understanding of nitrogen metabolism pathway in H. pluvialis.


Subject(s)
Chlorophyceae/genetics , Nitrite Reductases/genetics , Chlorophyta/genetics , Nitrites/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Phylogeny
8.
Int J Mol Sci ; 19(7)2018 Jun 23.
Article in English | MEDLINE | ID: mdl-29937487

ABSTRACT

Glycoside Hydrolase 3 (GH3) is a phytohormone-responsive family of proteins found in many plant species. These proteins contribute to the biological activity of indolacetic acid (IAA), jasmonic acid (JA), and salicylic acid (SA). They also affect plant growth and developmental processes as well as some types of stress. In this study, GH3 genes were identified in 48 plant species, including algae, mosses, ferns, gymnosperms, and angiosperms. No GH3 representative protein was found in algae, but we identified 4 genes in mosses, 19 in ferns, 7 in gymnosperms, and several in angiosperms. The results showed that GH3 proteins are mainly present in seed plants. Phylogenetic analysis of all GH3 proteins showed three separate clades. Group I was related to JA adenylation, group II was related to IAA adenylation, and group III was separated from group II, but its function was not clear. The structure of the GH3 proteins indicated highly conserved sequences in the plant kingdom. The analysis of JA adenylation in relation to gene expression of GH3 in potato (Solanum tuberosum) showed that StGH3.12 greatly responded to methyl jasmonate (MeJA) treatment. The expression levels of StGH3.1, StGH3.11, and StGH3.12 were higher in the potato flowers, and StGH3.11 expression was also higher in the stolon. Our research revealed the evolution of the GH3 family, which is useful for studying the precise function of GH3 proteins related to JA adenylation in S. tuberosum when the plants are developing and under biotic stress.


Subject(s)
Cyclopentanes/metabolism , Genome, Plant , Glycoside Hydrolases/genetics , Oxylipins/metabolism , Phylogeny , Plant Proteins/genetics , Solanum tuberosum/genetics , Amino Acid Sequence , Bryophyta/enzymology , Bryophyta/genetics , Chlorophyta/enzymology , Chlorophyta/genetics , Conserved Sequence , Cycadopsida/enzymology , Cycadopsida/genetics , Evolution, Molecular , Ferns/enzymology , Ferns/genetics , Gene Expression , Gene Ontology , Glycoside Hydrolases/metabolism , Indoleacetic Acids/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Magnoliopsida/enzymology , Magnoliopsida/genetics , Molecular Sequence Annotation , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Salicylic Acid/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Solanum tuberosum/classification , Solanum tuberosum/enzymology , Solanum tuberosum/growth & development
9.
Microb Cell Fact ; 17(1): 7, 2018 Jan 13.
Article in English | MEDLINE | ID: mdl-29331150

ABSTRACT

Dunaliella salina is a unicellular green alga with a high α-linolenic acid (ALA) level, but a low eicosapentaenoic acid (EPA) level. In a previous analysis of the catalytic activity of delta 6 fatty acid desaturase (FADS6) from various species, FADS6 from Thalassiosira pseudonana (TpFADS6), a marine diatom, showed the highest catalytic activity for ALA. In this study, to enhance EPA production in D. salina, FADS6 from D. salina (DsFADS6) was identified, and substrate specificities for DsFADS6 and TpFADS6 were characterized. Furthermore, a plasmid harboring the TpFADS6 gene was constructed and overexpressed in D. salina. Our results revealed that EPA production reached 21.3 ± 1.5 mg/L in D. salina transformants. To further increase EPA production, myoinositol (MI) was used as a growth-promoting agent; it increased the dry cell weight of D. salina transformants, and EPA production reached 91.3 ± 11.6 mg/L. The combination of 12% CO2 aeration with glucose/KNO3 in the medium improved EPA production to 192.9 ± 25.7 mg/L in the Ds-TpFADS6 transformant. We confirmed that the increase in ALA was optimal at 8 °C; the EPA percentage reached 41.12 ± 4.78%. The EPA yield was further increased to 554.3 ± 95.6 mg/L by supplementation with 4 g/L perilla seed meal (PeSM), 500 mg/L MI, and 12% CO2 aeration with glucose/KNO3 at varying temperatures. EPA production and the percentage of EPA in D. salina were 343.8-fold and 25-fold higher than those in wild-type D. salina, respectively. IMPORTANCE: FADS6 from Thalassiosira pseudonana, which demonstrates high catalytic activity toward α-linolenic acid, was used to enhance EPA production by Dunaliella salina. Transformation of FADS6 from Thalassiosira pseudonana into Dunaliella salina with myoinositol, CO2, low temperatures, and perilla seed meal supplementation substantially increased EPA production in Dunaliella salina to 554.3 ± 95.6 mg/L. Accordingly, D. salina could be a potential alternative source of EPA and is suitable for its large-scale production.


Subject(s)
Chlorophyta/enzymology , Chlorophyta/metabolism , Eicosapentaenoic Acid/biosynthesis , Linoleoyl-CoA Desaturase/metabolism , alpha-Linolenic Acid/metabolism , Carbon Dioxide/pharmacology , Chlorophyta/drug effects , Chlorophyta/genetics , Diatoms/genetics , Diatoms/metabolism , Eicosapentaenoic Acid/analysis , Eicosapentaenoic Acid/genetics , Eicosapentaenoic Acid/metabolism , Glucose/pharmacology , Inositol/pharmacology , Perilla/chemistry , Plasmids , Substrate Specificity , Temperature , alpha-Linolenic Acid/analysis
10.
Bioengineered ; 9(1): 48-54, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28892417

ABSTRACT

Most commercial production of recombinant pharmaceutical proteins involves the use of mammalian cell lines, E. coli or yeast as the expression host. However, recent work has demonstrated the potential of eukaryotic microalgae as platforms for light-driven synthesis of such proteins. Expression in the algal chloroplast is particularly attractive since this organelle contains a minimal genome suitable for rapid engineering using synthetic biology approaches; with transgenes precisely targeted to specific genomic loci and amenable to high-level, regulated and stable expression. Furthermore, proteins can be tightly contained and bio-encapsulated in the chloroplast allowing accumulation of proteins otherwise toxic to the host, and opening up possibilities for low-cost, oral delivery of biologics. In this commentary we illustrate the technology with recent examples of hormones, protein antibiotics and immunotoxins successfully produced in the algal chloroplast, and highlight possible future applications.


Subject(s)
Biological Products/metabolism , Chlorophyta/genetics , Chloroplasts/genetics , Dietary Supplements/supply & distribution , Genome, Chloroplast , Microalgae/genetics , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Biological Products/chemistry , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Chlorophyta/metabolism , Chloroplasts/metabolism , Gene Expression , Genetic Engineering/methods , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Human Growth Hormone/biosynthesis , Human Growth Hormone/genetics , Immunotoxins/genetics , Immunotoxins/metabolism , Microalgae/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Synthetic Biology/methods , Transformation, Genetic , Transgenes
11.
J Biosci Bioeng ; 125(1): 30-37, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28818427

ABSTRACT

The green microalga Botryococcus braunii of the B race accumulates various lipophilic compounds containing a 10,11-oxidosqualene epoxide moiety in addition to large amounts of triterpene hydrocarbons. While 2,3-squalene epoxidases have already been isolated and characterized from the alga, the enzyme that catalyzes the 10,11-epoxidation of squalene has remained elusive. In order to obtain a molecular tool to explore a 10,11-squalene epoxidase, cDNA cloning of an NADPH-dependent cytochrome P450 reductase (CPR) that is required by both squalene epoxidases and cytochrome P450 enzymes was carried out. The isolated cDNA contained an open reading frame (1998 bp) that encoded for a protein with 665 amino acid residues with a predicted molecular weight of 71.46 kDa and a theoretical pI of 5.49. Analysis of the deduced amino acid sequence revealed the presence of conserved motifs, including FMN, FAD, and NADPH binding domains, which are typical of other CPRs and necessary for enzyme activity. By truncation of the N-terminal transmembrane anchor and addition of a 6× His-tag, BbCPR was heterologously produced in Escherichia coli and purified by Ni-NTA affinity chromatography. The purified recombinant enzyme showed optimal reducing activity of cytochrome c at around a neutral pH at a temperature range of 30-37°C. For steady state kinetic parameters, the recombinant enzyme had a km for cytochrome c and NADPH of 11.7±1.6 and 9.4±1.4 µM, and a kcat for cytochrome c and NADPH of 2.78±0.09 and 3.66±0.11 µmol/min/mg protein, respectively. This is the first study to perform the functional characterization of a CPR from eukaryotic microalgae.


Subject(s)
Chlorophyta/enzymology , Microalgae/enzymology , NADPH-Ferrihemoprotein Reductase/metabolism , Amino Acid Sequence , Chlorophyta/genetics , Chromatography, Affinity , Cloning, Molecular , Cytochromes c/metabolism , DNA, Complementary/genetics , Escherichia coli/genetics , Flavin Mononucleotide/metabolism , Flavin-Adenine Dinucleotide/metabolism , Hydrogen-Ion Concentration , Microalgae/genetics , NADP/metabolism , NADPH-Ferrihemoprotein Reductase/genetics , Open Reading Frames/genetics , Temperature
12.
New Phytol ; 217(2): 599-612, 2018 01.
Article in English | MEDLINE | ID: mdl-29034959

ABSTRACT

The unicellular green alga Lobomonas rostrata requires an external supply of vitamin B12 (cobalamin) for growth, which it can obtain in stable laboratory cultures from the soil bacterium Mesorhizobium loti in exchange for photosynthate. We investigated changes in protein expression in the alga that allow it to engage in this mutualism. We used quantitative isobaric tagging (iTRAQ) proteomics to determine the L. rostrata proteome grown axenically with B12 supplementation or in coculture with M. loti. Data are available via ProteomeXchange (PXD005046). Using the related Chlamydomonas reinhardtii as a reference genome, 588 algal proteins could be identified. Enzymes of amino acid biosynthesis were higher in coculture than in axenic culture, and this was reflected in increased amounts of total cellular protein and several free amino acids. A number of heat shock proteins were also elevated. Conversely, photosynthetic proteins and those of chloroplast protein synthesis were significantly lower in L. rostrata cells in coculture. These observations were confirmed by measurement of electron transfer rates in cells grown under the two conditions. The results indicate that, despite the stability of the mutualism, L. rostrata experiences stress in coculture with M. loti, and must adjust its metabolism accordingly.


Subject(s)
Chlorophyta/growth & development , Chlorophyta/metabolism , Mesorhizobium/growth & development , Proteomics , Symbiosis/drug effects , Vitamin B 12/pharmacology , Algal Proteins/metabolism , Amino Acids/metabolism , Chlorophyta/drug effects , Chlorophyta/genetics , Coculture Techniques , Computational Biology , Electron Transport/drug effects , Gene Expression Regulation, Plant/drug effects , Mesorhizobium/drug effects , Photosynthesis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
13.
Microbiome ; 5(1): 82, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724401

ABSTRACT

BACKGROUND: Recent evidence of specific bacterial communities extended the traditional concept of fungal-algal lichen symbioses by a further organismal kingdom. Although functional roles were already assigned to dominant members of the highly diversified microbiota, a substantial fraction of the ubiquitous colonizers remained unexplored. We employed a multi-omics approach to further characterize functional guilds in an unconventional model system. RESULTS: The general community structure of the lichen-associated microbiota was shown to be highly similar irrespective of the employed omics approach. Five highly abundant bacterial orders-Sphingomonadales, Rhodospirillales, Myxococcales, Chthoniobacterales, and Sphingobacteriales-harbor functions that are of substantial importance for the holobiome. Identified functions range from the provision of vitamins and cofactors to the degradation of phenolic compounds like phenylpropanoid, xylenols, and cresols. CONCLUSIONS: Functions that facilitate the persistence of Lobaria pulmonaria under unfavorable conditions were present in previously overlooked fractions of the microbiota. So far, unrecognized groups like Chthoniobacterales (Verrucomicrobia) emerged as functional protectors in the lichen microbiome. By combining multi-omics and imaging techniques, we highlight previously overlooked participants in the complex microenvironment of the lichens.


Subject(s)
Lichens/microbiology , Metagenomics , Microbiota , Proteomics , Symbiosis , Alphaproteobacteria/genetics , Ascomycota/genetics , Bacteria/classification , Bacteria/genetics , Chlorophyta/genetics , Gene Expression Profiling , Lichens/genetics , Lichens/metabolism , Microbial Consortia/genetics , Microbial Consortia/physiology , Phylogeny
14.
J Agric Food Chem ; 65(15): 3190-3197, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28368591

ABSTRACT

Dunaliella tertiolecta, a halotolerant alga, can accumulate large amounts of neutral lipid, which makes it a potential biodiesel feedstock. In this study, neutral lipids of D. tertiolecta induced by different salinities or N or P starvation were analyzed by thin-layer chromatography (TLC), flow cytometry (FCM), and confocal laser scanning microscopy (CLSM). High salinities or N or P starvation resulted in a decrease in cell growth and chlorophyll contents of D. tertiolecta. Neutral lipid contents increased markedly after 3-7 days of N starvation or at low NaCl concentrations (0.5-2.0 M). N starvation had a more dramatic effect on the neutral lipid contents of D. tertiolecta than P starvation. Four putative ME isozymes in different conditions can be detected by using isozyme electrophoresis. Two alternative acetyl-CoA producers, ACL and ACS genes, were up-regulated under low salinities and N starvation. It was suggested that low salinities and N starvation are considered efficient ways to stimulate lipid accumulation in D. tertiolecta.


Subject(s)
Chlorophyta/metabolism , Lipids/chemistry , Microalgae/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Sodium Chloride/metabolism , Chlorophyll/metabolism , Chlorophyta/chemistry , Chlorophyta/genetics , Chlorophyta/growth & development , Microalgae/chemistry , Microalgae/genetics , Microalgae/growth & development , Sodium Chloride/analysis
15.
Biotechnol Lett ; 39(4): 589-597, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28054184

ABSTRACT

OBJECTIVES: To optimize the cultivation media for the growth rate of Haematococcus pluvialis and to study the transcription regulation of the algal nitrate reductase (NR), a key enzyme for nitrogen metabolism. RESULTS: The NR gene from H. pluvialis hd7 consists of 5636 nucleotides, including 14 introns. The cDNA ORF is 2718 bp, encoding a 905 aa protein with three conserved domains. The NR amino acids of H. pluvialis hd7 are hydrophilic and have similarity of 72% compared to that of Dunaliella. NR transcription increased with an increase of nitrate concentration from 0.4 to 1 g/l. A deficiency of nitrogen increased NR transcription significantly. The transcription level of NR increased at phosphorus concentrations from 0.08 to 0.2 g/l, with a maximum at 0.08 g/l. The optimum parameters of medium component for transcription of NR and growth of H. pluvialis were 0.3 g NaNO3/l, 0.045 g KH2PO4/l and 1.08 g sodium acetate/l. CONCLUSIONS: This study provides a better understanding of nitrate regulation in H. pluvialis.


Subject(s)
Algal Proteins/genetics , Chlorophyta/enzymology , Gene Expression , Nitrate Reductase/genetics , Nitrates/metabolism , Acetic Acid/metabolism , Amino Acid Sequence , Cell Culture Techniques , Chlorophyta/genetics , DNA, Algal/genetics , Nitrogen/metabolism , Phosphorus/metabolism , Transcription, Genetic
16.
Bioresour Technol ; 216: 340-4, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27259189

ABSTRACT

In order to increase biomass yield and reduce culture cost of Haematococcus pluvialis with flue gas from coal-fired power plants, a screened mutant by nuclear irradiation was gradually domesticated with 15% CO2 to promote biomass dry weight and astaxanthin yield. The biomass yield of mutant after 10 generations of 15% CO2 domestication increased to 1.3 times as that with air. With the optimization of nitrogen and phosphorus concentration, the biomass dry weight was further increased by 62%. The astaxanthin yield induced with 15% CO2 and high light of 135 µmol photons m(-2) s(-1) increased to 87.4mg/L, which was 6 times higher than that induced with high light in air.


Subject(s)
Carbon Dioxide/metabolism , Chlorophyta/growth & development , Chlorophyta/metabolism , Air , Biomass , Biotechnology/methods , Chlorophyta/genetics , Domestication , Light , Mutation , Nitrogen/metabolism , Phosphorus/metabolism , Xanthophylls/biosynthesis
17.
PLoS One ; 11(5): e0155158, 2016.
Article in English | MEDLINE | ID: mdl-27167623

ABSTRACT

The surface waters of oligotrophic oceans have chronically low phosphate (Pi) concentrations, which renders dissolved organic phosphorus (DOP) an important nutrient source. In the subtropical North Atlantic, cyanobacteria are often numerically dominant, but picoeukaryotes can dominate autotrophic biomass and productivity making them important contributors to the ocean carbon cycle. Despite their importance, little is known regarding the metabolic response of picoeukaryotes to changes in phosphorus (P) source and availability. To understand the molecular mechanisms that regulate P utilization in oligotrophic environments, we evaluated transcriptomes of the picoeukaryote Micromonas pusilla grown under Pi-replete and -deficient conditions, with an additional investigation of growth on DOP in replete conditions. Genes that function in sulfolipid substitution and Pi uptake increased in expression with Pi-deficiency, suggesting cells were reallocating cellular P and increasing P acquisition capabilities. Pi-deficient M. pusilla cells also increased alkaline phosphatase activity and reduced their cellular P content. Cells grown with DOP were able to maintain relatively high growth rates, however the transcriptomic response was more similar to the Pi-deficient response than that seen in cells grown under Pi-replete conditions. The results demonstrate that not all P sources are the same for growth; while M. pusilla, a model picoeukaryote, may grow well on DOP, the metabolic demand is greater than growth on Pi. These findings provide insight into the cellular strategies which may be used to support growth in a stratified future ocean predicted to favor picoeukaryotes.


Subject(s)
Adenosine Triphosphate/pharmacology , Chlorophyta/drug effects , Phosphorus/pharmacology , Seawater/chemistry , Stress, Physiological/drug effects , Transcriptome , Adenosine Triphosphate/metabolism , Algal Proteins/genetics , Algal Proteins/metabolism , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Atlantic Ocean , Autotrophic Processes/drug effects , Biomass , Carbon Cycle/physiology , Chlorophyta/genetics , Chlorophyta/growth & development , Chlorophyta/metabolism , Gene Expression Profiling , Gene Expression Regulation , Lipids/chemistry , Phosphorus/metabolism , Stress, Physiological/genetics
18.
Sci Rep ; 6: 23445, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-27025661

ABSTRACT

AMP-forming acetyl-CoA synthetase (ACS) catalyzes the formation of acetyl-CoA. Here, a cDNA of ACS from Dunaliella tertiolecta (DtACS) was isolated using RACEs. The full-length DtACS cDNA (GenBank: KT692941) is 2,464 bp with a putative ORF of 2,184 bp, which encodes 727 amino acids with a predicted molecular weight of 79.72 kDa. DtACS has a close relationship with Chlamydomonas reinhardtii and Volvox carteri f. nagariensis. ACSs existing in Bacteria, Archaea and Eukaryota share ten conserved motifs (A1-A10) and three signature motifs (I-III) of the acyl-adenylate/thioester forming enzyme superfamily. DtACS was expressed in E. coli BL21 as Trx-His-tagged fusion protein (~100 kDa) and the enzymatic activity was detected. The recombinant DtACS was purified by HisTrap(TM) HP affinity chromatography to obtain a specific activity of 52.873 U/mg with a yield of 56.26%, which approached the specific activity of ACS isolated from other eukaryotes. Kinetic analysis indicated that the Km of DtACS was 3.59 mM for potassium acetate, and the purified DtACS exhibited a temperature optimum of 37 °C and a pH optimum of 8.0. In addition, the expression levels of DtACS were increased after nitrogen starvation cultivation, indicating that ACS activity may be related to the lipid accumulation under nitrogen deficient condition.


Subject(s)
Acetate-CoA Ligase/metabolism , Adenosine Monophosphate/metabolism , Algal Proteins/metabolism , Chlorophyta/metabolism , Nitrogen/metabolism , Acetate-CoA Ligase/classification , Acetate-CoA Ligase/genetics , Algal Proteins/genetics , Amino Acid Sequence , Blotting, Western , Chlorophyta/enzymology , Chlorophyta/genetics , DNA, Complementary/chemistry , DNA, Complementary/genetics , Escherichia coli/genetics , Gene Expression Regulation, Enzymologic , Hydrogen-Ion Concentration , Kinetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Temperature
19.
Mol Biosyst ; 12(4): 1299-312, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26886879

ABSTRACT

In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short precursors now gives us easy access to these extended molecules.


Subject(s)
Bacteria/metabolism , Chlorophyta/metabolism , Cyanobacteria/metabolism , Diatoms/metabolism , Fatty Acids/metabolism , Metabolomics , Bacteria/genetics , Chlorophyta/genetics , Cyanobacteria/genetics , Diatoms/genetics , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acid Synthases/genetics , Metabolic Networks and Pathways , Metabolomics/methods , Phylogeny , Substrate Specificity
20.
BMC Genomics ; 16: 580, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26238519

ABSTRACT

BACKGROUND: Lobosphaera incisa, formerly known as Myrmecia incisa and then Parietochloris incisa, is an oleaginous unicellular green alga belonging to the class Trebouxiophyceae (Chlorophyta). It is the richest known plant source of arachidonic acid, an ω-6 poly-unsaturated fatty acid valued by the pharmaceutical and baby-food industries. It is therefore an organism of high biotechnological interest, and we recently reported the sequence of its chloroplast genome. RESULTS: We now report the complete sequence of the mitochondrial genome of L. incisa from high-throughput Illumina short-read sequencing. The circular chromosome of 69,997 bp is predicted to encode a total of 64 genes, some harboring specific self-splicing group I and group II introns. Overall, the gene content is highly similar to that of the mitochondrial genomes of other Trebouxiophyceae, with 34 protein-coding, 3 rRNA, and 27 tRNA genes. Genes are distributed in two clusters located on different DNA strands, a bipartite arrangement that suggests expression from two divergent promoters yielding polycistronic primary transcripts. The L. incisa mitochondrial genome contains families of intergenic dispersed DNA repeat sequences that are not shared with other known mitochondrial genomes of Trebouxiophyceae. The most peculiar feature of the genome is a repetitive palindromic repeat, the LIMP (L. Incisa Mitochondrial Palindrome), found 19 times in the genome. It is formed by repetitions of an AACCA pentanucleotide, followed by an invariant 7-nt loop and a complementary repeat of the TGGTT motif. Analysis of the genome sequencing reads indicates that the LIMP can be a substrate for large-scale genomic rearrangements. We speculate that LIMPs can act as origins of replication. Deep sequencing of the L. incisa transcriptome also suggests that the LIMPs with long stems are sites of transcript processing. The genome also contains five copies of a related palindromic repeat, the HyLIMP, with a 10-nt motif related to that of the LIMP. CONCLUSIONS: The mitochondrial genome of L. incisa encodes a unique type of repetitive palindromic repeat sequence, the LIMP, which can mediate genome rearrangements and play a role in mitochondrial gene expression. Experimental studies are needed to confirm and further characterize the functional role(s) of the LIMP.


Subject(s)
Chlorophyta/genetics , Genome, Mitochondrial , Inverted Repeat Sequences , Base Sequence , Cluster Analysis , Gene Order , Gene Rearrangement , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Nucleic Acid Conformation , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL