Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 421
Filter
Add more filters

Publication year range
1.
J Complement Integr Med ; 21(2): 230-238, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38591965

ABSTRACT

OBJECTIVES: This study aims to evaluate the neuroprotective effect of caffeic acid (CAF) against cadmium chloride (CdCl2) in rats via its effect on memory index as well as on altered enzymatic activity in the brain of CdCl2-induced neurotoxicity. METHODS: The experimental rats were divided into seven groups (n=6 rats per group) of healthy rats (group 1), CdCl2 -induced (CD) (3 mg/kg BW) rats (group 2), CD rats + Vitamin C (group 3), CD rats + CAF (10 and 20 mg/kg BW respectively) (group 4 & 5), and healthy rat + CAF (10 and 20 mg/kg BW respectively) (group 6 & 7). Thereafter, CdCl2 and CAF were administered orally to the experimental rats in group 2 to group 5 on daily basis for 14 days. Then, the Y-maze test was performed on the experimental rats to ascertain their memory index. RESULTS: CdCl2 administration significantly altered cognitive function, the activity of cholinesterase, monoamine oxidase, arginase, purinergic enzymes, nitric oxide (NOx), and antioxidant status of Cd rats (untreated) when compared with healthy rats. Thereafter, CD rats treated with vitamin C and CAF (10 and 20 mg/kg BW) respectively exhibited an improved cognitive function, and the observed altered activity of cholinesterase, monoamine oxidase, arginase, purinergic were restored when compared with untreated CD rats. Also, the level of brain NOx and antioxidant status were significantly (p<0.05) enhanced when compared with untreated CD rats. In the same vein, CAF administration offers neuro-protective effect in healthy rats vis-à-vis improved cognitive function, reduction in the activity of some enzymes linked to the progression of cognitive dysfunction, and improved antioxidant status when compared to healthy rats devoid of CAF. CONCLUSIONS: This study demonstrated the neuroprotective effect of CAF against CdCl2 exposure and in healthy rats.


Subject(s)
Brain , Cadmium Chloride , Caffeic Acids , Memory Disorders , Neuroprotective Agents , Rats, Wistar , Animals , Rats , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Brain/drug effects , Brain/metabolism , Caffeic Acids/pharmacology , Male , Neuroprotective Agents/pharmacology , Maze Learning/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Monoamine Oxidase/metabolism , Memory/drug effects , Cholinesterases/metabolism , Nitric Oxide/metabolism , Arginase/metabolism
2.
Can Respir J ; 2024: 6038771, 2024.
Article in English | MEDLINE | ID: mdl-38505803

ABSTRACT

Introduction: Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) contributes to a poor prognosis. Reliable biomarkers to predict adverse outcomes during hospitalization are important. Aim: To investigate the relationship between the serum cholinesterase (ChE) level and adverse clinical outcomes, including hypoxemia severity, hypercapnia, duration of hospital stay (DoHS), and noninvasive ventilation (NIV) requirement, in patients with AECOPD. Methods: Patients hospitalized with AECOPD in the Wuhu Hospital of Traditional Chinese Medicine between January 2017 and December 2021 were included. Results: A total of 429 patients were enrolled. The serum ChE level was significantly lower in patients with hypercapnia, who required NIV during hospitalization and who had a DoHS of >10 days, with an oxygenation index < 300. The ChE level was correlated negatively with the C-reactive protein level and neutrophil-to-lymphocyte ratio and correlated positively with the serum albumin level. Multivariate logistic regression analysis indicated that a serum ChE level of ≤4116 U/L (OR = 2.857, 95% CI = 1.46-5.58, p = 0.002) was associated significantly with NIV requirement. Conclusions: The serum ChE level was correlated significantly with complicating severe hypoxemia, hypercapnia, prolonged DoHS, and the need for NIV in patients hospitalized with AECOPD. The serum ChE level is a clinically important risk-stratification biomarker in patients hospitalized with AECOPD.


Subject(s)
Hypercapnia , Pulmonary Disease, Chronic Obstructive , Humans , Prognosis , Hypercapnia/complications , Cholinesterases , Pulmonary Disease, Chronic Obstructive/complications , Hypoxia/complications , Disease Progression , Retrospective Studies
3.
Small ; 20(24): e2309481, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38358018

ABSTRACT

Enzymes play a pivotal role in regulating numerous bodily functions. Thus, there is a growing need for developing sensors enabling real-time monitoring of enzymatic activity and inhibition. The activity and inhibition of cholinesterase (CHE) enzymes in blood plasma are fluorometrically monitored using near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) as probes, strategically functionalized with myristoylcholine (MC)- the substrate of CHE. A significant decrease in the fluorescence intensity of MC-suspended SWCNTs upon interaction with CHE is observed, attributed to the hydrolysis of the MC corona phase of the SWCNTs by CHE. Complementary measurements for quantifying choline, the product of MC hydrolysis, reveal a correlation between the fluorescence intensity decrease and the amount of released choline, rendering the SWCNTs optical sensors with real-time feedback in the NIR biologically transparent spectral range. Moreover, when synthetic and naturally abundant inhibitors inhibit the CHE enzymes present in blood plasma, no significant modulations of the MC-SWCNT fluorescence are observed, allowing effective detection of CHE inhibition. The rationally designed SWCNT sensors platform for monitoring of enzymatic activity and inhibition in clinically relevant samples is envisioned to not only advance the field of clinical diagnostics but also deepen further understanding of enzyme-related processes in complex biological fluids.


Subject(s)
Cholinesterase Inhibitors , Cholinesterases , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterases/metabolism , Cholinesterases/blood , Humans
4.
Molecules ; 28(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38067533

ABSTRACT

The flower of Syringa pubescens Turcz. is used in Chinese folk medicine and also as a flower tea for healthcare. The effects of five drying methods on the active compound contents, the antioxidant abilities, anti-inflammatory properties and enzyme inhibitory activities were evaluated. The plant materials were treated using shade-drying, microwave-drying, sun-drying, infrared-drying and oven-drying. The seven active compounds were simultaneously determined using an HPLC method. Furthermore, the chemical profile was assessed using scanning electron microscopy, ultraviolet spectroscopy and infrared spectroscopy. The antioxidant capacities and protective effects on L02 cells induced with hydrogen peroxide were measured. The anti-inflammatory effects on lipopolysaccharide-induced RAW264.7 cells were investigated. The enzyme inhibitory activities were determined against α-amylase, α-glucosidase cholinesterases and tyrosinase. The results indicated that drying methods had significant influences on the active compound contents and biological properties. Compared with other samples, the OD samples possessed low IC50 values with 0.118 ± 0.004 mg/mL for DPPH radical, 1.538 ± 0.0972 for hydroxyl radical and 0.886 ± 0.199 mg/mL for superoxide radical, while the SHD samples had stronger reducing power compared with other samples. The SHD samples could be effective against H2O2-induced injury on L02 cells by the promoting of T-AOC, GSH-PX, SOD and CAT activities and the reducing of MDA content compared with other samples. Furthermore, SPF samples, especially the SHD sample, could evidently ameliorate inflammation through the inhibition of IL-6, IL-1ß and TNF-α expression. All the studied SPF samples exhibited evidently inhibitory effects on the four enzymes. The IC50 values of inhibitory activity on α-glucosidase and α-amylase from SHD sample were 2.516 ± 0.024 and 0.734 ± 0.034 mg/mL, respectively. SD samples had potential inhibitory effects on cholinesterases and tyrosinase with IC50 values of 3.443 ± 0.060 and 1.732 ± 0.058 mg/mL. In consideration of active compound contents and biological activities, it was recommended that SHD and SD be applied for drying SPF at an industrial scale.


Subject(s)
Antioxidants , Syringa , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Monophenol Monooxygenase , alpha-Glucosidases , Hydrogen Peroxide , Anti-Inflammatory Agents/pharmacology , Flowers , alpha-Amylases , Cholinesterases
5.
Biomolecules ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37892156

ABSTRACT

We evaluated the therapeutic potentials of Khudari fruit pulp, a functional food and cultivar of Phoenix dactylifera, against neurological disorders. Our results demonstrate a good amount of phytochemicals (total phenolic content: 17.77 ± 8.21 µg GA/mg extract) with a high antioxidant potential of aqueous extract (DPPH assay IC50 = 235.84 ± 11.65 µg/mL) and FRAP value: 331.81 ± 4.56 µmol. Furthermore, the aqueous extract showed the marked inhibition of cell-free acetylcholinesterase (electric eel) with an IC50 value of 48.25 ± 2.04 µg/mL, and an enzyme inhibition kinetics study revealed that it exhibits mixed inhibition. Thereafter, we listed the 18 best-matched phytochemical compounds present in aqueous extract through LC/MS analysis. The computational study revealed that five out of eighteen predicted compounds can cross the BBB and exert considerable aqueous solubility. where 2-{5-[(1E)-3-methylbuta-1,3-dien-1-yl]-1H-indol-3-yl}ethanol (MDIE) indicates an acceptable LD50. value. A molecular docking study exhibited that the compounds occupied the key residues of acetylcholinesterase with ΔG range between -6.91 and -9.49 kcal/mol, where MDIE has ∆G: -8.67 kcal/mol, which was better than that of tacrine, ∆G: -8.25 kcal/mol. Molecular dynamics analyses of 100 ns supported the stability of the protein-ligand complexes analyzed through RMSD, RMSF, Rg, and SASA parameters. TRP_84 and GLY_442 are the most critical hydrophobic contacts for the complex, although GLU_199 is important for H-bonds. Prime/MM-GBSA showed that the protein-ligand complex formed a stable confirmation. These findings suggest that the aqueous extract of Khudari fruit pulp has significant antioxidant and acetylcholinesterase inhibition potentials, and its compound, MDIE, forms stably with confirmation with the target protein, though this fruit of Khudari dates can be a better functional food for the treatment of Alzheimer's disease. Further investigations are needed to fully understand the therapeutic role of this plant-based compound via in vivo study.


Subject(s)
Cholinesterases , Phoeniceae , Antioxidants/pharmacology , Antioxidants/chemistry , Acetylcholinesterase/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phoeniceae/chemistry , Phoeniceae/metabolism , Chromatography, Liquid , Molecular Docking Simulation , Ligands , Tandem Mass Spectrometry , Phytochemicals
6.
Molecules ; 28(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687161

ABSTRACT

Alzheimer's (AD) and Parkinson's diseases (PD) are multifactorial neurogenerative disorders of the Central Nervous System causing severe cognitive and motor deficits in elderly people. Because treatment of AD and PD by synthetic drugs alleviates the symptoms often inducing side effects, many studies have aimed to find neuroprotective properties of diet polyphenols, compounds known to act on different cell signaling pathways. In this article, we analyzed the effect of polyphenols obtained from the agro-food industry waste of Citrus limon peel (LPE) on key enzymes of cholinergic and aminergic neurotransmission, such as butyryl cholinesterase (BuChE) and monoamine oxidases (MAO)-A/B, on Aß1-40 aggregation and on superoxide dismutase (SOD) 1/2 that affect oxidative stress. In our in vitro assays, LPE acts as an enzyme inhibitor on BuChE (IC50 ~ 73 µM), MAO-A/B (IC50 ~ 80 µM), SOD 1/2 (IC50 ~ 10-20 µM) and interferes with Aß1-40 peptide aggregation (IC50 ~ 170 µM). These results demonstrate that LPE behaves as a multitargeting agent against key factors of AD and PD by inhibiting to various extents BuChE, MAOs, and SODs and reducing Aß-fibril aggregation. Therefore, LPE is a promising candidate for the prevention and management of AD and PD symptoms in combination with pharmacological therapies.


Subject(s)
Citrus , Neurodegenerative Diseases , Parkinson Disease , Neurodegenerative Diseases/drug therapy , Superoxide Dismutase , Monoamine Oxidase , Cholinesterases , Superoxide Dismutase-1 , Plant Extracts/pharmacology
7.
Altern Ther Health Med ; 29(8): 798-802, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37708555

ABSTRACT

Objective: Circulating biomarkers can be used as effective prediction tools for AMI diagnosis and prognosis, but their prediction efficiency is limited and still needs to be explored. The study aimed to investigate the changes of myocardial troponin I (cTn I), myoglobin (Mb), and butyryl cholinesterase (BChE) levels in patients with acute myocardial infarction (AMI) and its clinical predictive efficacy. Methods: In this prospective cohort study, fifty patients with AMI who received PCI (AMI group) and 50 healthy subjects who underwent physical examination (reference group) during the same period were included. According to the occurrence of short-term major adverse cardiovascular events (MACE) during 6-month follow-up, they were divided into MACE group and non-MACE group . The difference of Mb, BChE, and cTnI levels was compared, and the ROC curve was drawn to analyze the prediction efficiency. Results: Compared with the reference group or non-MACE group, Mb and cTnI significantly increased and BChE significantly decreased inAMI group and MACE group, respectively (P < .05). The AUC of Mb, cTnI and BChE in diagnosing AMI occurrence and prognosis were all > 0.75, and the sensitivity and specificity were all > 85.00%. cTnI, Mb and BChE have good diagnostic efficacy in disease occurrence and prognosis evaluation of AMI patients. Conclusions: High expression of Mb and cTnI and low expression of BChE can increase the risk of AMI incidence and MACE occurrence and have high diagnostic efficacy, which can be used as sensitive factors in clinical AMI diagnosis and evaluation. Thess provided a theoretical foundation for AMI diagnosis and MACE preventing in AMI patients.


Subject(s)
Myocardial Infarction , Percutaneous Coronary Intervention , Humans , Troponin I , Myoglobin , Prospective Studies , Myocardial Infarction/diagnosis , Prognosis , Biomarkers , Cholinesterases
8.
Pestic Biochem Physiol ; 195: 105545, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37666616

ABSTRACT

The present study assessed the toxicological, biochemical, and mechanism of action of Colocasia esculenta leaf extract (CELE) on Wistar albino rat and on cholinergic, antioxidant, and antiinflammatory enzymes in Sitophilus zeamais. This was with a view to assessing the potential benefits and safety profile of CELE as a natural alternative for insect control. The bioactivity of the fraction was evaluated using insecticidal and repellent activities against colonies of Sitophilus zeamais to obtain a VLC-chromatographed fraction which was spectroscopically characterized and investigated for enzyme inhibition. The results revealed the ethyl acetate fraction (EAF) as the most potent one with LC50 6.198 µg/ml and 6.6 ± 0.5 repellency. The EAF had an LD50 > 5000 mg/kg but repeated dose >800 mg/kgbw po administration caused significant (p < 0.05) increase in liver and kidney function biomarkers accompanied with elevated atherogenic and coronary indices. Also, renal and hepatomorphological lesions increased in a dose-dependent manner. The High-Performance Liquid Chromatography analysis profiled 7 unknown compounds while the GC-qMS revealed 103 compounds in the CC6 fraction allowing for their identification, quantification, and providing insights into the biological activities and its potentials application. The CC6 fraction inhibited glutathione S-transferase (IC50 = 2265.260.60 mg/ml), superoxide dismutase (IC50 = 1485.300.78 mg/ml), catalase (IC50 = 574.471.57 mg/ml), acetyl cholinesterase (IC50 = 838.280.51 mg/ml), butyryl cholinesterase (IC50 = 1641.76 ± 1.14 mg/ml) and upregulated cyclooxygenase-2 (IC50 = 37.89 ± 0.15 mg/ml). Based on the result of the study, it could be inferred that the unidentified compounds present in the EAF exhibit strong insecticidal properties. The study concluded that the acute toxicity of the potent fraction showed no abnormal clinical toxic symptoms while a repeated dose of the extract in sub-acute studies showed a toxic effect that is dose-dependent. The mechanism of action of the purified fraction could be said to be by inhibition of cholinergic and antioxidant enzymes. However, the potent fraction also upregulated the activity of anti-inflammatory enzymes. Hence, regulated amount of CELE at a repeated dose <800 mg/kgbw could be considered for use as an anti-pest agent in Integrated Pest Management of Sitophilus zeamais.


Subject(s)
Antioxidants , Colocasia , Rats , Animals , Antioxidants/pharmacology , Cholinesterases , Plant Extracts/toxicity
9.
Pak J Pharm Sci ; 36(2(Special)): 673-679, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37548208

ABSTRACT

Aqueous methanol extracts of Sarcococca saligna leaves and roots were used in this work to explore its phytochemical contents, antioxidant, enzyme inhibition and antibacterial activities. Total phenolic contents were found to be in higher concentrations then total flavonoids contents in aqueous methanolic extracts of leaves. Antioxidant activity was performed using DPPH radical scavenging assay. In our findings both leaves and roots extracts were found to show substantial antioxidant potential. Aqueous methanolic extracts of both the leaves and roots gave significant inhibition against butyryl cholinesterase whereas against acetyl cholinesterase extracts of roots gave significant inhibition. The results were compared with the standard drug Eserine. The aqueous methanolic extract of leaves, roots and crude saponins isolated from leaf extracts gave moderate to significant antibacterial activity against the tested bacterial strains using agar disc diffusion method. According to the conclusions, S. saligna possesses significant antioxidant, enzyme inhibition, and antibacterial activities. Hence it is assumed that S. saligna has the potential to be used in the discovery and development of new bioactive compounds.


Subject(s)
Antioxidants , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cholinesterases , Anti-Bacterial Agents , Phytochemicals/pharmacology , Flavonoids/chemistry
10.
J Chem Neuroanat ; 128: 102234, 2023 03.
Article in English | MEDLINE | ID: mdl-36640914

ABSTRACT

Alzheimer's disease (AD) is one of the neurodegenerative illnesses that impair individual life & increase the demand for caregivers with no available curative medication right now. Therefore, there is a growing concern about employing herbal medicine to limit AD progression & improve patients' life quality, thus potentiating its add-on therapy. In addition, herbs are cost-effective & accessible with nearly no side effects. In the same vein, our study aimed to investigate the potency of Echinacea purpurea (EP) flower extracts to ameliorate the neurodegenerative effect of Aluminum chloride (AlCl3) in a rat model. Moreover, mechanistic studies, including impact on the cholinesterase activity, redox status, inflammatory mediators, behavior performance, glucose level & histopathology, were carried on. Our results showed that 250 mg/kg of Aqueous (AQ) & Alcoholic (AL) extracts of EP inhibited cholinesterase, restored oxidative balance, down-regulated IL-6 & TNF-α cytokines & improved behavior performance in vivo that was reflected in the brain picture by decreasing neuronal degeneration & amyloid plaques in cerebral cortex & hippocampus. The potency of both extracts was compared to reference drugs & AlCl3 positive control group. The AQ extract showed greater potency against COX-1, COX-2 & α-amylase in vitro, while the AL extract was more potent against cholinesterase in vitro, inflammatory cytokines, behavior & pathological improvement in vivo. Conclusively EP overcame AlCl3-induced neurobehavioral toxicity in the rat model via different pathways, which support its regular administration to postpone progressive neural damage in AD patients.


Subject(s)
Alzheimer Disease , Echinacea , Animals , Rats , Aluminum Chloride , Alzheimer Disease/metabolism , Cholinesterases , Cytokines/metabolism , Echinacea/metabolism , Plant Extracts/pharmacology
11.
J Ethnopharmacol ; 304: 116024, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36549369

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Clerodendrum viscosum is an important medicinal plant in Ayurveda in Bangladesh and its leaves are used as a remedy for various diseases such as anti-inflammatory, antibacterial, hyperglycemic, hepatoprotective effects. AIM OF THE STUDY: The present study aimed to evaluate the protective effect of aqueous extract of C. viscosum leaves against Pb-induced neurobehavioral and biochemical changes in mice. MATERIALS AND METHODS: Swiss albino mice were divided as a) control, b) lead treated (Pb) and c) C. viscosum leaves (Cle) d) Pb plus Cle groups. Pb-acetate (10 mg/kg body weight) was given to Pb and Pb + Cle groups mice, and water extract of leaves (50 mg/kg body weight) was provided as supplementation to Cle and Pb + Cle groups mice for 30 days. Elevated plus maze and Morris water maze tests were used for evaluating anxiety, spatial memory and learning, respectively. Status of cholinesterase, SOD, GSH enzyme activity and neurotoxicity markers such BDNF and Nrf2 levels were analyzed in the brain tissue of experimental mice. RESULTS: Poorer learning, inferior spatial memory, and increased anxiety-like behavior in Pb-exposure mice were noted when compared to control mice in Morris water maze and elevated plus maze test, respectively. In addition, expression of BDNF and Nrf2, cholinesterase activity along with antioxidant activity were significantly reduced compared to control group (p < 0.01). Interestingly, C. viscosum leaves' aqueous extract supplementation in Pb-exposed mice provide a significant improved neurochemical and antioxidant properties through the augmentation of activity of cholinergic enzymes, and upregulation of BDNF and Nrf2 levels in the brain tissue compared to Pb-exposed mice. CONCLUSIONS: This study suggested that C. viscosum leaves restore the cognitive dysfunction and reduce anxiety-like behavior through upregulation of BDNF mediated Akt-Nrf2 pathway in Pb-exposure mice.


Subject(s)
Clerodendrum , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Brain-Derived Neurotrophic Factor/metabolism , NF-E2-Related Factor 2/metabolism , Up-Regulation , Lead/toxicity , Antioxidants/pharmacology , Antioxidants/therapeutic use , Spatial Memory , Cholinesterases , Body Weight , Maze Learning
12.
Pharm Res ; 40(1): 197-213, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36376605

ABSTRACT

PURPOSE: Asiatic acid (AA) is reported for its neuroprotective potential in Alzheimer's disease (AD). This present work aimed to develop AA loaded nanostructured lipid carriers (AAN) for targeting the delivery of AA into the brain and ameliorating the cognitive deficits in AD rats. METHODS: AAN was optimized using the Box-Behnken design, considering 3 factors (soya lecithin, tween 80, and high pressure homogenizer (HPH) pressure) as independent variables while particle size (PS), zeta potential (ZP) and entrapment efficiency (EE) were dependent variables. Cytotoxicity assay and internalization studies of AAN were evaluated in SH-SY5Y cells and further neuroprotective efficiency on intracellular amyloid beta (Aß) aggregation was evaluated in Aß 1-42 treated cells with thioflavin T (ThT). The behavioral acquisition effects were evaluated in Aß 1-42 (5 µg/ 5 µL, intracerebroventricular (ICV), unilateral) induced AD model followed by the histology and quantification of neurotransmitters levels. RESULTS: The optimized AAN revealed desired PS (44.1 ± 12.4 nm), ZP (- 47.1 ± 0.017 mv) and EE (73.41 ± 2.53%) for brain targeting delivery of AA. In-vitro, AAN exhibited better neuroprotective potential than AA suspension (AAS). AA content was 1.28 folds and 2.99 folds heightened in plasma and brain respectively after the i.p. administration of AAN as compared to AAS. The results of pharmacodynamic studies manifested the AAN treatment significantly (p < 0.05) ameliorated the cognitive deficits. CONCLUSIONS: Hence, developed AAN has neuroprotective potential and should be further considered as an unconventional platform in preclinical model for the management of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neuroblastoma , Neuroprotective Agents , Humans , Rats , Animals , Amyloid beta-Peptides/metabolism , Neuroblastoma/drug therapy , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/pathology , Oxidative Stress , Cholinesterases , Neuroprotective Agents/pharmacology
13.
Molecules ; 27(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36144622

ABSTRACT

Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; quantify through HPLC-ESI-MS analysis the plant's biosynthesis; and evaluate the antioxidant, anti-tyrosinase, amylase, glucosidase, cholinesterase, and cytotoxicity potential on normal (NIH 3T3) and human liver and human colon cancer (HepG2 and HT 29) cell lines of this plant species. The aqueous extract contained the highest content of phenolics and phenolic acid, methanol extracted the most flavonoid, and the most flavonol was extracted by ethyl acetate. The one-way ANOVA results demonstrated that all results obtained were statistically significant at p < 0.05. A total of 25 phytoconstituents were identified from the different extracts, with phenolic acids and flavonoids being the main metabolites. The highest antioxidant potential was recorded for the aqueous extract. The best anti-tyrosinase extract was the methanolic extract. The ethyl acetate extract of A. verlotiorum had the highest flavonol content and hence was most active against the cholinesterase enzymes. The ethyl acetate extract was the best α-glucosidase and α-amylase inhibitor. The samples of Artemisia verlotiorum Lamotte in both aqueous and methanolic extracts were found to be non-toxic after 48 h against NIH 3T3 cells. In HepG2 cells, the methanolic extract was nontoxic up to 125 µg/mL, and an IC50 value of 722.39 µg/mL was recorded. The IC50 value exhibited in methanolic extraction of A. verlotiorum was 792.91 µg/mL in HT29 cells. Methanolic extraction is capable of inducing cell cytotoxicity in human hepatocellular carcinoma without damaging normal cells. Hence, A. verlotiorum can be recommended for further evaluation of its phytochemical and medicinal properties.


Subject(s)
Antineoplastic Agents , Artemisia , Acetates , Amylases , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Cholinesterases , Flavonoids/analysis , Flavonoids/pharmacology , Flavonols , Humans , Methanol/chemistry , Mice , Monophenol Monooxygenase , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , alpha-Amylases/chemistry , alpha-Glucosidases/chemistry
14.
Bioorg Chem ; 129: 106137, 2022 12.
Article in English | MEDLINE | ID: mdl-36108590

ABSTRACT

Pomegranate (Punica granatum L.) extract has been reported to inhibit cholinesterase and the ß-site amyloid precursor protein cleaving enzyme 1 (BACE1); however, most of its constituents' potential inhibition of these enzymes remains unknown. Thus, we investigated the anti-Alzheimer's disease (anti-AD) potential of 16 ellagitannin and gallotannin, and nine anthocyanin derivatives' inhibition of BACE1, AChE, and BChE, and gallagic acid inhibited both the best. Further, a kinetic study identified different modes of inhibition, and a molecular docking simulation revealed that active compounds inhibited these three enzymes with low binding energy through hydrophilic and hydrophobic interactions in the active site cavities. Gallagic acid and castalagin decreased Aß peptides secretion from neuroblastoma cells that overexpressed human ß-amyloid precursor protein significantly by 10 µM. Further, treatment with gallagic acid and castalagin reduced BACE1 and APPsß expression levels significantly without affecting amyloid precursor protein (APP) levels in the amyloidogenic pathway. Co-incubation of Aß42 with gallagic acid reduced Aß42-induced intracellular reactive oxygen species (ROS) production significantly. Our results suggest that pomegranate constituents, specifically gallagic acid, may be useful in developing therapeutic treatment modalities for AD.


Subject(s)
Alzheimer Disease , Pomegranate , Humans , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/therapeutic use , Molecular Docking Simulation , Cholinesterases , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism
15.
Toxicology ; 480: 153317, 2022 10.
Article in English | MEDLINE | ID: mdl-36096317

ABSTRACT

At high exposure levels, organophosphorus insecticides (OPs) exert their toxicity in mammals through the inhibition of brain acetylcholinesterase (AChE) leading to the accumulation of acetylcholine in cholinergic synapses and hyperactivity of the nervous system. Currently, there is a concern that low-level exposure to OPs induces negative impacts in developing children and the chemical most linked to these issues is chlorpyrifos (CPF). Our laboratory has observed that a difference in the susceptibility to repeated exposure to CPF exists between juvenile mice and rats with respect to the inhibition of brain AChE. The basis for this difference is unknown but differences in the levels of the detoxification mechanisms could play a role. To investigate this, 10-day old rat and mice pups were exposed daily for 7 days to either corn oil or a range of dosages of CPF via oral gavage. Four hours following the last administration of CPF on day 16, brain, blood, and liver were collected. The inhibition of brain AChE activity was higher in juvenile rats as compared to juvenile mice. The levels of activity of the detoxification enzymes and the impact of CPF exposure on their activity were determined in the two species at this age. In blood and liver, the enzyme paraoxonase-1 (PON1) hydrolyzes the active metabolite of CPF (CPF-oxon), and the enzymes carboxylesterase (CES) and cholinesterase (ChE) act as alternative binding sites for CPF-oxon removing it from circulation and providing protection. Both species had similar levels of PON1 activity in the liver and serum. Mice had higher ChE activity in liver and serum than rats but, following CPF exposure, the percentage inhibition was similar between species at an equivalent dosage. Even though rats had slightly higher liver CES activity than mice, the level of inhibition following exposure was higher in rats. In serum, juvenile mice had an 8-fold higher CES activity than rats, and exposure to a CPF dosage that almost eliminated CES activity in rats only resulted in 22% inhibition in mice suggesting that the high serum CES activity in mice as compared to rats is a key component in this species difference. In addition, there was a species difference in the sensitivity of CES to inhibition by CPF-oxon with rats having a lower IC50 in both liver and serum as compared to mice. This greater enzyme sensitivity suggests that saturation of CES would occur more rapidly in juvenile rats than in mice, resulting in more CPF reaching the brain to inhibit AChE in rats.


Subject(s)
Chlorpyrifos , Insecticides , Acetylcholine , Acetylcholinesterase/metabolism , Animals , Aryldialkylphosphatase , Carboxylesterase/metabolism , Chlorpyrifos/analogs & derivatives , Chlorpyrifos/toxicity , Cholinesterase Inhibitors/toxicity , Cholinesterases/metabolism , Corn Oil , Insecticides/metabolism , Insecticides/toxicity , Mammals/metabolism , Mice , Rats , Rats, Sprague-Dawley
16.
Molecules ; 27(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35889525

ABSTRACT

Oxidative stress is the key factor that strengthens free radical generation which stimulates lung inflammation. The aim was to explore antioxidant, bronchodilatory along with anti-asthmatic potential of folkloric plants and the aqueous methanolic crude extract of Ipomoea nil (In.Cr) seeds which may demonstrate as more potent, economically affordable, having an improved antioxidant profile and providing evidence as exclusive therapeutic agents in respiratory pharmacology. In vitro antioxidant temperament was executed by DPPH, TFC, TPC and HPLC in addition to enzyme inhibition (cholinesterase) analysis; a bronchodilator assay on rabbit's trachea as well as in vivo OVA-induced allergic asthmatic activity was performed on mice. In vitro analysis of 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH) expressed as % inhibition 86.28 ± 0.25 with IC50 17.22 ± 0.56 mol/L, TPC 115.5 ± 1.02 mg GAE/g of dry sample, TFC 50.44 ± 1.06 mg QE/g dry weight of sample, inhibition in cholinesterase levels for acetyl and butyryl with IC50 (0.60 ± 0.67 and 1.5 ± 0.04 mol/L) in comparison with standard 0.06 ± 0.002 and 0.30 ± 0.003, respectively, while HPLC characterization of In.Cr confirmed the existence with identification as well as quantification of various polyphenolics and flavonoids i.e., gallic acid, vanillic acid, chlorogenic acid, quercetin, kaempferol and others. However, oral gavage of In.Cr at different doses in rabbits showed a better brochodilation profile as compared to carbachol and K+-induced bronchospasm. More significant (p < 0.01) reduction in OVA-induced allergic hyper-responses i.e., inflammatory cells grade, antibody IgE as well as altered IFN-α in airways were observed at three different doses of In.Cr. It can be concluded that sound mechanistic basis i.e., the existence of antioxidants: various phenolic and flavonoids, calcium antagonist(s) as well as enzymes' inhibition profile, validates folkloric consumptions of this traditionally used plant to treat ailments of respiration.


Subject(s)
Antioxidants , Ipomoea nil , Animals , Antioxidants/analysis , Cholinesterases , Flavonoids/analysis , Flavonoids/pharmacology , Flavonoids/therapeutic use , Folklore , Mice , Ovalbumin , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rabbits
17.
Mol Neurobiol ; 59(10): 6091-6106, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35864434

ABSTRACT

Nardostachys jatamansi has long been used to prepare Medhya Rasayana in traditional Indian Ayurveda medicine to treat neurological disorders and enhance memory. Jatamansinol from the N. jatamansi against Alzheimer's disease (AD) showed that it could be a multitargeted drug against AD. Drosophila is an ideal model organism for studying a progressive age-related neurodegenerative disease such as AD since its neuronal organizations and functioning are highly similar to that of humans. The current study investigates the neuroprotective properties of jatamansinol against Tau-induced neurotoxicity in the AD Drosophila model. Results indicate jatamansinol is not an antifeedant for larva and adult Drosophila. Lifespan, locomotor activity, learning and memory, Tau protein expression level, eye degeneration, oxidative stress level, and cholinesterase activities were analyzed in 10, 20, and 30-day-old control (wild type), and tauopathy flies reared on jatamansinol supplemented food or regular food without jatamansinol supplementation. Jatamansinol treatment significantly extends the lifespan, improves locomotor activity, enhances learning and memory, and reduces Tau protein levels in tauopathy flies. It boosts the antioxidant enzyme activities, prevents Tau-induced oxidative stress, ameliorates eye degeneration, and inhibits cholinesterase activities in Tau-induced AD model. This study provides the first evidence that jatamansinol protects against Tau's neurotoxic effect in the AD Drosophila model, and it can be a potential therapeutic drug candidate for AD.


Subject(s)
Alzheimer Disease , Nardostachys , Neurodegenerative Diseases , Neurotoxicity Syndromes , Tauopathies , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Antioxidants/therapeutic use , Cholinesterases/therapeutic use , Disease Models, Animal , Drosophila/metabolism , Humans , Nardostachys/metabolism , tau Proteins/metabolism
18.
J Ethnopharmacol ; 290: 115107, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35176467

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease is the most common form of dementia, but its treatment options remain few and ineffective. To find new therapeutic strategies, natural products have gained interest due to their neuroprotective potential, being able to target different pathological hallmarks associated with this disorder. Several plant species are traditionally used due to their empirical neuroprotective effects and it is worth to explore their mechanism of action. AIM OF THE STUDY: This study intended to explore the neuroprotective potential of seven traditional medicinal plants, namely Scutellaria baicalensis, Ginkgo biloba, Hypericum perforatum, Curcuma longa, Lavandula angustifolia, Trigonella foenum-graecum and Rosmarinus officinalis. The safety assessment with reference to pesticides residues was also aimed. MATERIALS AND METHODS: Decoctions prepared from these species were chemically characterized by HPLC-DAD and screened for their ability to scavenge four different free radicals (DPPH•, ABTS•+, O2•‒ and •NO) and to inhibit enzymes related to neurodegeneration (cholinesterases and glycogen synthase kinase-3ß). Cell viability through MTT assay was also evaluated in two different brain cell lines, namely non-tumorigenic D3 human brain endothelial cells (hCMEC/D3) and NSC-34 motor neurons. Furthermore, and using GC, 21 pesticides residues were screened. RESULTS: Regarding chemical composition, chromatographic analysis revealed the presence of several flavonoids, phenolic acids, curcuminoids, phenolic diterpenoids, one alkaloid and one naphthodianthrone in the seven decoctions. All extracts were able to scavenge free radicals and were moderate glycogen synthase kinase-3ß inhibitors; however, they displayed weak to moderate acetylcholinesterase and butyrylcholinesterase inhibition. G. biloba and L. angustifolia decoctions were the less cytotoxic to hCMEC/D3 and NSC-34 cell lines. No pesticides residues were detected. CONCLUSIONS: The results extend the knowledge on the potential use of plant extracts to combat multifactorial disorders, giving new insights into therapeutic avenues for Alzheimer's disease.


Subject(s)
Alzheimer Disease/pathology , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Cell Line , Cell Survival/drug effects , Cholinesterases/drug effects , Dose-Response Relationship, Drug , Free Radical Scavengers/metabolism , Glycogen Synthase/drug effects , Humans , Medicine, Chinese Traditional/methods , Neuroprotective Agents/adverse effects , Pesticide Residues/analysis , Plant Extracts/adverse effects
19.
Curr Mol Med ; 22(4): 349-353, 2022.
Article in English | MEDLINE | ID: mdl-34355683

ABSTRACT

BACKGROUND: The antibacterial mechanism of doxycycline is known, but its effects on the nerve-muscle system are still not unclear. OBJECTIVE: The aim of the study was to combine molecular targets of the neuromuscular machinery using the in situ neuronal blocker effect of doxycycline, a semisynthetic second-generation tetracycline derivative, on mice neuromuscular preparations. METHODS: The effects of doxycycline were assessed on presynaptic, synaptic cleft, and postsynaptic neurotransmission, along with the muscle fiber, using the traditional myographic technique. Precisely, the effects of doxycycline were categorized into "all" or "nothing" effects depending on the concentration of doxycycline used; "all" was obtained with 4 µM doxycycline, and "nothing" was obtained with 1-3 µM doxycycline. The rationale of this study was to apply known pharmacological tools against the blocker effect of 4 µM doxycycline, such as F55-6 (Casearia sylvestris), CaCl2 (or Ca2+), atropine, neostigmine, polyethylene glycol (PEG 400), and d-Tubocurarine. The evaluation of cholinesterase enzyme activity and the diaphragm muscle histology were performed, and protocols on the neuromuscular preparation submitted to indirect or direct stimuli were complementary. RESULTS: Doxycycline does not affect cholinesterase activity nor causes damage to skeletal muscle diaphragm; it acts on ryanodine receptor, sarcolemmal membrane, and neuronal sodium channel with a postjunctional consequence due to the decreased availability of muscle nicotinic acetylcholine receptors. CONCLUSION: In conclusion, in addition to the neuronal blocker effect of doxycycline, we showed that doxycycline acts on multiple targets. It is antagonized by F55-6, a neuronal Na+-channel agonist, and Ca2+, but not by neostigmine.


Subject(s)
Doxycycline , Neostigmine , Animals , Cholinesterases/pharmacology , Doxycycline/pharmacology , Mice , Muscle Contraction , Neostigmine/pharmacology , Neuromuscular Junction/physiology , Phrenic Nerve/physiology
20.
Nutr Neurosci ; 25(5): 1011-1025, 2022 May.
Article in English | MEDLINE | ID: mdl-33054666

ABSTRACT

OBJECTIVES: Beta vulgaris, commonly known as beetroot, is a vegetable that contains red pigment and rich in betalains, phenolic acids, and flavonoids. This study was designed to assess the effect of beetroot supplemented diet (BRSD) on cognitive function and altered neurochemicals associated with Alzheimer's disease (AD) in the brain of rats treated with scopolamine (SCOP). METHODS: Rats were fed with BRSD (2 and 4%) for 14 days and administered with 2 mg/kg of SCOP intraperitoneally on the last day. Morris water Maze and Y-maze tests were performed to assess cognitive function. Purinergic enzymes [ectonucleotidase (NTPdase) and adenosine deaminase (ADA)], monoamine oxidase (MAO), and angiotensin-I converting enzyme (ACE) activities were determined in rat brain tissues. Furthermore, catalase activity, total thiol (T-SH) and non-protein thiol (NP-SH) levels were also assessed. Beetroot was characterized using liquid chromatography-mass spectrometry, and the structure-activity relationship between the constituents and target enzymes was assessed. RESULTS: BRSD improved cognitive function by increasing memory index in SCOP treated rats. An increase in NTPdase, ADA, MAO, and ACE activities were observed in the brain of rats treated with SCOP. However, the activities of these enzymes were significantly lower after treatment with BRSD. Treatment with BRSD triggered a significant increase in catalase activity, T-SH and NP-SH levels in SCOP-treated rats. Catechin, 6,7-benzocoumarin, gentisin, 5,7-dimethoxyflavone, and vulgaxanthin I was identified in beetroots. DISCUSSION: The result suggests that beetroot could prevent cognitive dysfunction in SCOP-treated rats, and enhance memory function, via modulation of purinergic enzymes, MAO and ACE activities, and neuronal antioxidant status.


Subject(s)
Monoamine Oxidase , Scopolamine , Animals , Antioxidants/pharmacology , Brain/metabolism , Catalase , Cholinesterases/pharmacology , Diet , Male , Maze Learning , Monoamine Oxidase/metabolism , Monoamine Oxidase/pharmacology , Oxidation-Reduction , Rats , Rats, Wistar , Sulfhydryl Compounds , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL