Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.915
Filter
Add more filters

Publication year range
1.
An Acad Bras Cienc ; 96(1): e20230640, 2024.
Article in English | MEDLINE | ID: mdl-38656056

ABSTRACT

The current research intended to examine the impact of dietary lemon peel powder (LPP) on laying quail performance, egg quality criteria, and the antioxidant capacity of the yolk. A total of 120 female Japanese quails (272.6±9.3 g), aged 21 weeks, were allotted to 6 trial groups, each with 5 replicates of 4 quails. Additions of 0, 1, 2, 3, 4, or 5 g/kg of LPP to the basal diet were used to create the treatment groups. Quails were fed ad libitum for 70 days. Neither performance parameters nor egg production was affected by LPP. However, eggshell-breaking strength improved by adding 2 g/kg LPP to the diet, but worsened at 5 g/kg. Moreover, the relative weight of eggshell and yolk L* value decreased with the treatments. Dietary LPP enhanced oxidative stability, reducing malondialdehyde (MDA) and increasing 1,1-diphenyl-2-picrylhydrazyl (DPPH) yolk values. The current study demonstrated that LPP, a safe and easily accessible agricultural by-product, enhanced eggshell quality when it was included in the diet of laying quails at doses of 2 g/kg. In contrast, improvement of yolk antioxidant capacity required increased amounts of LPP (4 g/kg). LPP could be advantageous to animal nutrition as an adequate substitute to reduce waste by-products.


Subject(s)
Animal Feed , Antioxidants , Citrus , Coturnix , Dietary Supplements , Powders , Animals , Citrus/chemistry , Female , Antioxidants/analysis , Antioxidants/pharmacology , Animal Feed/analysis , Egg Shell/drug effects , Egg Shell/chemistry , Egg Yolk/chemistry
2.
Sci Rep ; 14(1): 9182, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649422

ABSTRACT

In order to obtain high yield pomelo peel pectin with better physicochemical properties, four pectin extraction methods, including hot acid extraction (HAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction, and enzymatic assisted extraction (EAE) were compared. MAE led to the highest pectin yield (20.43%), and the lowest pectin recovery was found for EAE (11.94%). The physicochemical properties of pomelo peel pectin obtained by different methods were also significantly different. Pectin samples obtained by MAE had the highest methoxyl content (8.35%), galacturonic acid content (71.36%), and showed a higher apparent viscosity, thermal and emulsion stability. The pectin extracted by EAE showed the highest total phenolic content (12.86%) and lowest particle size (843.69 nm), showing higher DPPH and ABTS scavenging activities than other extract methods. The pectin extracted by HAE had the highest particle size (966.12 nm) and degree of esterification (55.67%). However, Fourier-transform infrared spectroscopy showed that no significant difference occurred among the different methods in the chemical structure of the extracted pectin. This study provides a theoretical basis for the industrial production of pomelo peel pectin.


Subject(s)
Citrus , Hexuronic Acids , Pectins , Pectins/chemistry , Pectins/isolation & purification , Citrus/chemistry , Viscosity , Particle Size , Microwaves , Spectroscopy, Fourier Transform Infrared , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Chemical Fractionation/methods , Chemical Phenomena , Fruit/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Phenols/analysis , Phenols/chemistry , Phenols/isolation & purification , Esterification
3.
Phytother Res ; 38(6): 2847-2859, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561995

ABSTRACT

The present systematic review and dose-response meta-analysis was conducted to synthesize existing data from randomized clinical trials (RCTs) concerning the impact of citrus flavonoids supplementation (CFS) on endothelial function. Relevant RCTs were identified through comprehensive searches of the PubMed, ISI Web of Science, and Scopus databases up to May 30, 2023. Weighted mean differences and their corresponding 95% confidence intervals (CI) were pooled utilizing a random-effects model. A total of eight eligible RCTs, comprising 596 participants, were included in the analysis. The pooled data demonstrated a statistically significant augmentation in flow-mediated vasodilation (FMD) (2.75%; 95% CI: 1.29, 4.20; I2 = 87.3%; p < 0.001) associated with CFS compared to the placebo group. Furthermore, the linear dose-response analysis indicated that each increment of 200 mg/d in CFS led to an increase of 1.09% in FMD (95% CI: 0.70, 1.48; I2 = 94.5%; p < 0.001). The findings from the nonlinear dose-response analysis also revealed a linear relationship between CFS and FMD (Pnon-linearity = 0.903, Pdose-response <0.001). Our findings suggest that CFS enhances endothelial function. However, more extensive RTCs encompassing longer intervention durations and different populations are warranted to establish more precise conclusions.


Subject(s)
Citrus , Dietary Supplements , Endothelium, Vascular , Flavonoids , Randomized Controlled Trials as Topic , Vasodilation , Humans , Citrus/chemistry , Flavonoids/pharmacology , Vasodilation/drug effects , Endothelium, Vascular/drug effects , Dose-Response Relationship, Drug
4.
J Ethnopharmacol ; 329: 118162, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588989

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Exocarpium Citri Grandis (ECG), the epicarp of C. grandis 'Tomentosa' which is also known as Hua-Ju-Hong in China, has been widely used for thousands of years to treat inflammatory lung disorders such as asthma, and cough as well as dispelling phlegm. However, its underlying pharmacological mechanisms in acute lung injury (ALI) remain unclear. AIM OF THE STUDY: To explore the therapeutic effect of ECG on ALI and reveal the potential mechanisms based on experimental techniques in vivo and in vitro. MATERIALS AND METHODS: Lipopolysaccharides (LPS) induced ALI in mice and induced RAW 264.7 cell inflammatory model were established to investigate the pharmacodynamics of ECG. ELISA kits, commercial kits, Western Blot, qPCR, Hematoxylin and Eosin (H&E) staining, immunohistochemistry, and immunofluorescence technologies were used to evaluate the pharmacological mechanisms of ECG in ameliorating ALI. RESULTS: ECG significantly attenuated pulmonary edema in LPS-stimulated mice and decreased the levels of IL1ß, IL6, and TNF-α in serum and BALF, reduced MDA and iron concentration as well as increased SOD and GSH levels in lung tissues, and also decreased the ROS level in BALF and Lung tissue. Further pharmacological mechanism studies showed that ECG significantly inhibited mRNA expression of inflammatory signaling factors and chemokines, and down-regulated the expression of TLR4, MyD88, NF-κB p65, NF-κB p-p65 (S536), COX2, iNOS, Txnip, NLRP3, ASC, Caspase-1, JAK1, p-JAK1 (Y1022), JAK2, STAT1, p-STAT1 (S727), STAT3, p-STAT3 (Y705), STAT4, p-STAT4 (Y693), and Keap1, and also up-regulated the expression of Trx-1, Nrf2, HO-1, NQO1, GPX4, PCBP1, and SLC40A1. In the LPS-induced RAW264.7 cell inflammatory model, ECG showed similar results to animal experiments. CONCLUSIONS: Our results showed that ECG alleviated ALI by inhibiting TLR4/MyD88/NF-κB p65 and JAK/STAT signaling pathway-mediated inflammatory response, Txnip/NLRP3 signaling pathway-mediated inflammasome activation, and regulating Nrf2/GPX4 axis-mediated ferroptosis. Our findings provide an experimental basis for the application of ECG.


Subject(s)
Acute Lung Injury , Ferroptosis , Inflammasomes , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Mice , Lipopolysaccharides/toxicity , RAW 264.7 Cells , Ferroptosis/drug effects , Male , Inflammasomes/metabolism , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Mice, Inbred C57BL , Citrus/chemistry , Signal Transduction/drug effects , Plant Extracts/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism
5.
Sci Rep ; 14(1): 8079, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582926

ABSTRACT

With the growing resistance of pathogenic microbes to traditional drugs, biogenic silver nanoparticles (SNPs) have recently drawn attention as potent antimicrobial agents. In the present study, SNPs synthesized with the aid of orange (Citrus sinensis) peel were engineered by screening variables affecting their properties via Plackett-Burman design. Among the variables screened (temperature, pH, shaking speed, incubation time, peel extract concentration, AgNO3 concentration and extract/AgNO3 volume ratio), pH was the only variable with significant effect on SNPs synthesis. Therefore, SNPs properties could be enhanced to possess highly regular shape with zeta size of 11.44 nm and zeta potential of - 23.7 mV. SNPs purified, capped and stabilized by cloud point extraction technique were then checked for their antimicrobial activity against Bacillus cereus, Listeria innocua, Listeria monocytogenes, Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium and Candida albicans. The maximum antimicrobial activity of SNPs was recorded against E. coli, L. monocytogenes and C. albicans with clear zone diameter of 33.2, 31.8 and 31.7 mm, respectively. Based on minimum inhibition concentration and minimum bactericidal concentration of SNPs (300 mg/l) as well as their effect on respiratory chain dehydrogenases, cellular sugar leakage, protein leakage and lipid peroxidation of microbial cells, E. coli was the most affected. Scanning electron microscopy, protein banding and DNA fragmentation proved obvious ultrastructural and molecular alterations of E. coli treated with SNPs. Thus, biogenic SNPs with enhanced properties can be synthesized with the aid of Citrus peel; and such engineered nanoparticles can be used as potent antimicrobial drug against E. coli.


Subject(s)
Anti-Infective Agents , Citrus sinensis , Citrus , Metal Nanoparticles , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Citrus/chemistry , Escherichia coli/metabolism , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Citrus sinensis/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology
6.
Food Chem ; 448: 139125, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38537547

ABSTRACT

In this study, the ultrasonic-microwave pretreatment was defined as a processing technology in the production of tribute citrus powder, and it could increase the flavonoid compounds in the processing fruit powder. A total of 183 upregulated metabolites and 280 downregulated metabolites were obtained by non-targeted metabolomics, and the differential metabolites was mainly involved in the pathways of flavonoid biosynthesis, flavone and flavonol biosynthesis. A total of 8 flavonoid differential metabolites were obtained including 5 upregulated metabolites (6"-O-acetylglycitin, scutellarin, isosakuranin, rutin, and robinin), and 3 downregulated metabolites (astragalin, luteolin, and (-)-catechin gallate) by flavonoids-targeted metabolomics. The 8 flavonoid differential metabolites participated in the flavonoid biosynthesis pathways, flavone and flavonol biosynthesis pathways, and isoflavonoid biosynthesis pathways. The results provide a reference for further understanding the relationship between food processing and food components, and also lay a basis for the development of food targeted-processing technologies.


Subject(s)
Citrus , Flavonoids , Fruit , Metabolomics , Citrus/metabolism , Citrus/chemistry , Flavonoids/metabolism , Flavonoids/chemistry , Fruit/chemistry , Fruit/metabolism , Powders/chemistry , Powders/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Food Handling
7.
Phytomedicine ; 128: 155324, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552437

ABSTRACT

BACKGROUND: Researchers have not studied the integrity, orderly correlation, and dynamic openness of complex organisms and explored the laws of systems from a global perspective. In the context of reductionism, antidepressant development formerly focused on advanced technology and molecular details, clear targets and mechanisms, but the clinical results were often unsatisfactory. PURPOSE: MDD represents an aggregate of different and highly diverse disease subtypes. The co-occurrence of stress-induced nonrandom multimorbidity is widespread, whereas only a fraction of the potential clusters are well known, such as the MDD-FGID cluster. Mapping these clusters, and determining which are nonrandom, is vital for discovering new mechanisms, developing treatments, and reconfiguring services to better meet patient needs. STUDY DESIGN: Acute stress 15-minute forced swimming (AFS) or CUMS protocols can induce the nonrandom MDD-FGID cluster. Multiple biological processes of rats with depression-like behaviours and gastrointestinal dysmobility will be captured under conditions of stress, and the Fructus Aurantii-Rhizoma Chuanxiong (ZQCX) decoction will be utilized to dock the MDD-FGID cluster. METHODS/RESULTS: Here, Rhizoma Chuanxiong, one of the seven components of Chaihu-shugan-San, elicited the best antidepressant effect on CUMS rats, followed by Fructus Aurantii. ZQCX reversed AFS-induced depression-like behaviours and gastrointestinal dysmobility by regulating the glutamatergic system, AMPAR/BDNF/mTOR/synapsin I pathway, ghrelin signalling and gastrointestinal nitric oxide synthase. Based on the bioethnopharmacological analysis strategy, the determined meranzin hydrate (MH) and senkyunolide I (SI) by UPLC-PDA, simultaneously absorbed by the jejunum and hippocampus of rats, have been considered major absorbed bioactive compounds acting on behalf of ZQCX. Cotreatment with MH and SI at an equivalent dose in ZQCX synergistically replicated over 50.33 % efficacy of the parent formula in terms of antidepressant and prokinetic actions by modulating neuroinflammation and ghrelin signalling. CONCLUSION: Brain-centric mind shifts require the integration of multiple central and peripheral systems and the elucidation of the underlying neurobiological mechanisms that ultimately contribute to novel therapeutic options. Ghrelin signalling and the immune system may partially underlie multimorbidity vulnerability, and ZQCX anchors stress-induced MDD-FGID clusters by docking them. Combining the results of micro details with the laws of the macro world may be more effective in finding treatments for MDD.


Subject(s)
Drugs, Chinese Herbal , Rats, Sprague-Dawley , Stress, Psychological , Animals , Drugs, Chinese Herbal/pharmacology , Stress, Psychological/drug therapy , Male , Rats , Antidepressive Agents/pharmacology , Disease Models, Animal , Gastrointestinal Diseases/drug therapy , Depression/drug therapy , Depressive Disorder, Major/drug therapy , Gastrointestinal Motility/drug effects , Neurosecretory Systems/drug effects , Behavior, Animal/drug effects , Citrus/chemistry , Brain-Derived Neurotrophic Factor/metabolism
8.
Fitoterapia ; 175: 105899, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471575

ABSTRACT

Limonin is a natural tetracyclic triterpenoid compound in citrus seeds that presents hepatoprotective effects but is often discarded as agricultural waste because of its low content and low solubility. Herein, limonin with high purity (98.11%) from citrus seeds was obtained via purification by high-speed counter-current chromatography (HSCCC) and recrystallization. Limonin-loaded liposomes (Lip-LM) prepared by thin film hydration and high pressure homogenization method to enhance its solubility and hepatoprotective effect on APAP-induced liver injury (AILI). Lip-LM appeared as lipid nanoparticles under a transmission electron microscope, and showed well dispersed nano-scale size (69.04 ± 0.42 nm), high encapsulation efficiency (93.67% ± 2.51%), sustained release, fine stability. Lip-LM also exhibited significantly better hepatoprotective activity on AILI than free limonin in vivo. In summary, Lip-LM might be used as a potential hepatoprotective agent in the form of dietary supplement and provide an effective strategy to improve the potential value of citrus seeds.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Citrus , Limonins , Liposomes , Protective Agents , Seeds , Limonins/isolation & purification , Limonins/pharmacology , Citrus/chemistry , Seeds/chemistry , Animals , Chemical and Drug Induced Liver Injury/prevention & control , Mice , Protective Agents/pharmacology , Protective Agents/isolation & purification , Male , Phytochemicals/isolation & purification , Phytochemicals/pharmacology
9.
PLoS One ; 19(3): e0294318, 2024.
Article in English | MEDLINE | ID: mdl-38446779

ABSTRACT

Enzymatic browning poses a significant challenge that limits in vitro propagation and genetic transformation of plant tissues. This research focuses on investigating how adding antioxidant substances can suppress browning, leading to improved efficiency in transforming plant tissues using Agrobacterium and subsequent plant regeneration from rough lemon (Citrus × jambhiri). When epicotyl segments of rough lemon were exposed to Agrobacterium, they displayed excessive browning and tissue decay. This was notably different from the 'Hamlin' explants, which did not exhibit the same issue. The regeneration process failed completely in rough lemon explants, and they accumulated high levels of total phenolic compounds (TPC) and polyphenol oxidase (PPO), which contribute to browning. To overcome these challenges, several antioxidant and osmoprotectant compounds, including lipoic acid, melatonin, glycine betaine, and proline were added to the tissue culture medium to reduce the oxidation of phenolic compounds and mitigate browning. Treating epicotyl segments with 100 or 200 µM melatonin led to a significant reduction in browning and phenolic compound accumulation. This resulted in enhanced shoot regeneration, increased transformation efficiency, and reduced tissue decay. Importantly, melatonin supplementation effectively lowered the levels of TPC and PPO in the cultured explants. Molecular and physiological analyses also confirmed the successful overexpression of the CcNHX1 transcription factor, which plays a key role in imparting tolerance to salinity stress. This study emphasizes the noteworthy impact of supplementing antioxidants in achieving successful genetic transformation and plant regeneration in rough lemon. These findings provide valuable insights for developing strategies to address enzymatic browning and enhance the effectiveness of plant tissue culture and genetic engineering methods with potential applications across diverse plant species.


Subject(s)
Citrus , Melatonin , Plants, Genetically Modified , Melatonin/pharmacology , Antioxidants/pharmacology , Citrus/genetics , Agrobacterium , Catechol Oxidase , Phenols/pharmacology , Regeneration , Dietary Supplements
10.
J Texture Stud ; 55(2): e12828, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38486415

ABSTRACT

Rheological analysis of citrus pectin at pH 3 and 7 elucidates its structural dynamics, revealing distinct behaviors influenced by pH. At pH 3, pectin exhibits shear-thinning, with solvent-independent unified rheological profiles identifying three concentration regimes: 0.5%-1.5%, 2%-3%, and 3.5%-4%. These regimes, alongside Cox-Merz superpositions, outline the semi-dilute (c*) and concentrated (c**) transitions at 1.5%-2% and 3%-3.5%, respectively. Moreover, a Morris equation exponent of 0.65 indicates flexible, mobility-restricted macromolecules. Conversely, at pH 7, increased viscosities and Morris plot linearity for p = .1 suggest rigid chain behavior due to electrostatic repulsion among ionized acidic groups. This rigidity leads to concentration-dependent self-assembly structures that diverge from expected unified rheological profiles, a deviation amplified by heating-cooling cycles. This study clarifies the impact of pH on citrus pectin's rheology and emphasizes the intricate relationship between polymeric chain rigidity, self-assembly, and viscosity. By providing a refined understanding of these mechanisms, our findings contribute to the broader field of polysaccharide research, offering insights critical for developing and optimizing pectin-based applications in various industries.


Subject(s)
Citrus , Pectins , Cold Temperature , Rheology
11.
Food Chem ; 447: 138964, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38461715

ABSTRACT

Citrus peel is a commonly used food-medicine material in the production of fast-moving consumer goods (FMCGs). For instance, Ganpu tea is manufactured by combining the peel of Citri Reticulatae 'Chachi' (PCRC) with Pu-erh tea. The alleviated irritation of PCRC through years of aging makes Citri reticulatae Pericarpium a traditional Chinese medicine. Herein, we introduced short-term steaming into the processing of PCRC to favor the quick removal of its irritation while retaining its food-medicine properties. Sensory evaluation and volatile component analysis showed that 60-s steaming reduced irritation of freshly prepared PCRC. Biological evaluations indicated no effects of steaming on the neuroprotective activity of PCRC. The process increased the contents of several bioactive ingredients, including hesperidin, nobiletin, tangeretin, and synephrine. In addition, physical indications of accelerating PCRC aging were observed. Taken together, our findings suggest that short-term steaming may offer a promising new possibility for enhancing the quality of citrus peel.


Subject(s)
Citrus , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Food , Tea
12.
Food Chem ; 447: 138989, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38492297

ABSTRACT

Limonin is an intensely bitter and highly oxidized tetracyclic triterpenoid secondary metabolite, which is abundant in the Rutaceae and Meliaceae, especially in Citrus. In order to detect limonin content in complex substrates such as citrus and traditional Chinese medicine, monoclonal antibodies specifically recognizing limonin were prepared and an indirect competitive enzyme-linked immunosorbent assay (icELISA) was established. The median inhibition concentration (IC50) was 5.40 ng/mL and the linear range was 1.25-23.84 ng/mL. The average recoveries from citrus peel and pulp samples were 95.9%-118.8% and 77.5%-113.1%, respectively. Moreover, the contents of limonin in 6 citrus samples and 4 herbal samples were analyzed by icELISA and UPLC-MS, and the results of the two methods were consistent. This validation is sufficient to demonstrate that the developed immunoassay is applicable for the detection of limonin in citrus and herbal samples and has the advantage of high efficiency, sensitivity, and convenience.


Subject(s)
Citrus , Limonins , Antibodies, Monoclonal , Limonins/analysis , Enzyme-Linked Immunosorbent Assay/methods , Citrus/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry
13.
J Med Food ; 27(4): 369-378, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38489599

ABSTRACT

Lipid accumulation in adipocytes occurs through multifactorial effects such as overnutrition due to unbalanced eating habits, reduced physical activity, and genetic factors. In addition, obesity can be intensified by the dis-regulation of various metabolic systems such as differentiation, lipogenesis, lipolysis, and energy metabolism of adipocytes. In this study, the Jeju roasted peel extract from Citrus unshiu S.Markov. (JRC), which is discarded as opposed to the pulp of C. unshiu S.Markov., is commonly consumed to ameliorate obesity. To investigate the anti-obesity effect of JRC, these studies were conducted on differentiated 3T3-L1 cells and in high-fat diet-induced mice, and related methods were used to confirm whether it decreased lipid accumulation in adipocytes. The mechanism of inhibiting obesity by JRC was confirmed through mRNA expression studies. JRC suppressed lipid accumulation in adipocytes and adipose tissue, and significantly improved enzymes such as alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase and serum lipid profiles. In addition, it effectively modulated the expression of genes related to lipid and energy metabolism in adipose tissue. As a result, these findings suggest that JRC could be a therapeutic regulator of body fat accumulation by significantly alleviating the dis-regulation of intracellular lipid metabolism in adipocytes and by enhancement of energy metabolism (Approval No. CNU IACUC-YB-2023-98).


Subject(s)
Anti-Obesity Agents , Citrus , Mice , Animals , Lipid Metabolism , 3T3-L1 Cells , Mice, Obese , Diet, High-Fat/adverse effects , Adipogenesis , Anti-Obesity Agents/pharmacology , Plant Extracts/therapeutic use , Obesity/drug therapy , Obesity/metabolism , Adipocytes , Lipids , Mice, Inbred C57BL
14.
Phytochem Anal ; 35(5): 1017-1035, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38369680

ABSTRACT

INTRODUCTION: Citri Sarcodactylis Fructus (CSF), a common fruit and traditional Chinese medicine (TCM), has been hindered in its further development and research owing to the lack of comprehensive and specific quality evaluation standards. OBJECTIVE: This study aimed to establish clear TCM quality standards related to the therapeutic mechanisms of CSF and to provide a basis for subsequent research and development. METHODS: Ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry (UPLC-Q-orbitrap HRMS) technology was used to comprehensively identify CSF components and explore their absorbance levels in rat serum. Network pharmacology research methods were employed to investigate the potential mechanisms of action of the identified components in the treatment of major clinical diseases. Subsequently, a combination of HPLC chromatographic fingerprinting for qualitative analysis and multi-index content determination was used to evaluate the detectability of the identified quality markers (Q-markers). RESULTS: Twenty-six prototype components were tentatively characterized in rat serum. Network pharmacology analysis showed six effective components, namely 7-hydroxycoumarin, isoscopoletin, diosmin, hesperidin, 5,7-dimethoxycoumarin, and bergapten, which played important roles in the treatment of chronic gastritis, functional dyspepsia, peptic ulcer, and depression and were preliminarily identified as Q-markers. The results of content determination in 15 batches of CSF indicated significant differences in the content of medicinal materials from different origins. However, compared with the preliminarily determined Q-markers, all six components could be measured and were determined as Q-markers of CSF. CONCLUSION: The chemical Q-markers obtained in this study could be used for effective quality control of CSF.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Animals , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Network Pharmacology/methods , Rats , Rats, Sprague-Dawley , Fruit/chemistry , Male , Quality Control , Citrus/chemistry , Biomarkers/blood , Medicine, Chinese Traditional , Diosmin/pharmacology , Diosmin/blood , Coumarins/blood , Coumarins/pharmacology , Mass Spectrometry/methods , Flavonoids
15.
Biomol Concepts ; 15(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38353049

ABSTRACT

This study explores the synergistic antibacterial effects of essential oils (EOs) and phenolic extracts from three plants against foodborne pathogenic bacteria. The present work aimed to investigate the synergistic effects of the binary and the ternary combinations of extracts using different blend proportions of the following plant extracts: Artemisia campestris (AC), Artemisia herba alba (AHA), and Citrus aurantium (CA). The antimicrobial activities of EOs and phenolic extracts were determined and evaluated against five strains. For the EOs, the results of the DIZ showed the existence of synergism for different combinations of binary blends, such as AC/AHA or AHA/CA against Escherichia coli, and AC/CA against Enterobacter faecalis. In addition, ternary blends of AC:AHA:CA at a ratio of 1/6:2/3:1/6 exhibited a synergy effect, as measured by the CI, against E. coli. On the other hand, for the phenolic extracts, synergistic effects were noticed for binary blends of AC/CA at different ratios against E. coli, E. faecalis, and Pseudomonas aeruginosa strains. Similarly, ternary blends of phenolic extracts presented synergy against E. coli, E. faecalis, P. aeruginosa strains, and even C. albicans. In this case, the blending ratios were crucial determining factors for maximizing the synergy effect. The study established that the proportion of a single drug could play an essential role in determining the bioefficacy of a drug combination treatment. Therefore, the results showed the importance of studying the modulation of antibacterial activities based on the proportions of extracts in the mixture and finding the range of proportions (as determined by SLMD) that have a synergistic/additive/antagonistic effect with no or low side effects, which can be used in a food preservation system.


Subject(s)
Artemisia , Citrus , Oils, Volatile , Oils, Volatile/pharmacology , Escherichia coli , Anti-Bacterial Agents/pharmacology , Phenols/pharmacology
16.
Food Chem ; 443: 138616, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38306907

ABSTRACT

Guangchenpi (GCP), which is the peel of Citrus reticulata 'Chachiensis', is widely used as an herbal medicine, tea and food ingredient in southeast Asia. Prolonging its aging process results in a more pleasant flavor and increases its profitability. Through the integration of sensory evaluation with flavoromic analysis approaches, we evaluated the correlation between the flavor attributes and the profiles of the volatiles and flavonoids of GCP with various aging years. Notably, d-limonene, γ-terpinene, dimethyl anthranilate and α-phellandrene were the characteristic aroma compounds of GCP. Besides, α-phellandrene and nonanal were decisive for consumers' perception of GCP aging time due to changes of their odor activity values (OAVs). The flavor attributes of GCP tea liquid enhanced with the extension of aging time, and limonene-1,2-diol was identified as an important flavor enhancer. Combined with machine learning models, key flavor-related metabolites could be developed as efficient biomarkers for aging years to prevent GCP adulteration.


Subject(s)
Citrus , Cyclohexane Monoterpenes , Limonene , Tea
17.
Int J Mol Sci ; 25(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38339154

ABSTRACT

Increasingly globally prevalent obesity and related metabolic disorders have underscored the demand for safe and natural therapeutic approaches, given the limitations of weight loss drugs and surgeries. This study compared the phytochemical composition and antioxidant activity of five different varieties of citrus physiological premature fruit drop (CPFD). Untargeted metabolomics was employed to identify variations in metabolites among different CPFDs, and their antilipidemic effects in vitro were assessed. The results showed that Citrus aurantium L. 'Daidai' physiological premature fruit drop (DDPD) and Citrus aurantium 'Changshan-huyou' physiological premature fruit drop (HYPD) exhibited higher levels of phytochemicals and stronger antioxidant activity. There were 97 differential metabolites identified in DDPD and HYPD, including phenylpropanoids, flavonoids, alkaloids, organic acids, terpenes, and lipids. Additionally, DDPD and HYPD demonstrated potential antilipidemic effects against oleic acid (OA)-induced steatosis in HepG2 hepatocytes and 3T3-L1 adipocytes. In conclusion, our findings reveal the outstanding antioxidant activity and antilipidemic effects of CPFD, indicating its potential use as a natural antioxidant and health supplement and promoting the high-value utilization of this resource.


Subject(s)
Antioxidants , Citrus , Phenylenediamines , Antioxidants/metabolism , Citrus/metabolism , Fruit/chemistry , Flavonoids/pharmacology , Plant Extracts/chemistry
18.
BMC Complement Med Ther ; 24(1): 73, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308284

ABSTRACT

Citrus fruit essential oil is considered one of the widely studied essential oils while its leaves attract less attention although being rich in nearly the same composition as the peel and flowers. The leaves of bitter orange or sour orange (Citrus aurantium L.) were extracted using three different techniques namely; hydrodistillation (HD), steam distillation (SD), and microwave-assisted distillation (MV) to compare their chemical composition. The three essential oil samples were analyzed through GC/FID and GC/MS analyses. The samples were tested in vitro using different antioxidant techniques (DPPH, ABTS, CUPRAC, FRAP, PBD, and MCA), neuroprotective enzyme inhibitory activities (acetylcholine and butyl choline enzymes), and antidiabetic activities (α-amylase and α-glucosidase). The results showed that thirty-five volatile ingredients were detected and quantified. Monoterpenes represented the most abundant class in the three essential oils followed by sesquiterpenes. C. aurantium essential oil carried potential antioxidant activity where SD exhibited the highest antioxidant activity, with values arranged in the following order: FRAP (200.43 mg TE/g), CUPRAC (138.69 mg TE/g), ABTS (129.49 mg TE/g), and DPPH (51.67 mg TE/g). SD essential oil also presented the most potent α-amylase (0.32) inhibition while the MV essential oil showed the highest α-glucosidase inhibition (2.73 mmol ACAE/g), followed by HD (2.53 mmol ACAE/g), and SD (2.46 mmol ACAE/g). The SD essential oil exhibited the highest BChE and AChE inhibitory activities (3.73 and 2.06 mg GALAE/g), respectively). Thus, bitter orange essential oil can act as a potential source of potent antioxidant, antidiabetic, and neuroprotective activities for future drug leads.


Subject(s)
Alzheimer Disease , Benzothiazoles , Citrus , Neuroprotective Agents , Oils, Volatile , Sulfonic Acids , Antioxidants/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Citrus/chemistry , Distillation , Alzheimer Disease/drug therapy , alpha-Glucosidases , Plant Extracts/pharmacology , Plant Extracts/chemistry , alpha-Amylases
19.
Tissue Cell ; 87: 102321, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350206

ABSTRACT

The prevalent use of abamectin (ABM) has latterly raised safety attention as it has different toxicities to non-target living organisms. Citrus fruits are widely renowned for their nutritional and health-promoting qualities, and their peels are full of phenolic constituents. The purpose of the current study was to evaluate the modulatory effectiveness of Citrus reticulata peel extract (CPE) against abamectin-induced hepatotoxicity and oxidative injury. Rats were distributed into 4 groups as follows: control, CPE (400 mg/kg bw orally for 14 days), ABM (2 mg/kg bw for 5 days), and CPE + ABM at the doses mentioned above. Results revealed that GC-MS analysis of CPE has 19 identified components with significant total phenolic and flavonoid contents. Treatment with ABM in rats displayed significant variations in enzymatic and non-enzymatic antioxidants, oxidative stress markers (MDA, H2O2, PCC), liver and kidney function biomarkers, hematological parameters, lipids, and protein profile as well as histopathological abnormalities, inflammation and apoptosis (TNF-α, Caspase-3, NF-κB, and Bcl-2 genes) in rats' liver. Supplementation of CPE solo dramatically improved the antioxidant state and reduced oxidative stress. C. reticulata peel extract pretreatment alleviated ABM toxicity by modulating most of the tested parameters compared to the ABM group. Conclusively, CPE had potent antioxidant activity and could be used in the modulation of ABM hepatotoxicity presumably due to its antioxidant, anti-inflammatory, and gene-regulating capabilities.


Subject(s)
Chemical and Drug Induced Liver Injury , Citrus , Ivermectin/analogs & derivatives , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Liver/pathology , Citrus/metabolism , Plant Extracts/pharmacology , Chemical and Drug Induced Liver Injury/metabolism
20.
J Environ Sci Health B ; 59(4): 152-159, 2024.
Article in English | MEDLINE | ID: mdl-38347689

ABSTRACT

Picoxystrobin is a systemic fungicide widely used on potato, citrus fruit, and Dendrobium officinale. To provide information for the risk assessment of potato, citrus, and Dendrobium officinale, field experiments combined with QuEChERS and HPLC-MS/MS were performed to detect picoxystrobin. Picoxystrobin had good linearity (R2 > 0.99), the average recovery rate was 75 - 102%, and the relative standard deviation was 1 - 11%. Picoxystrobin was utilized as the test agent in field experiments, and samples were evaluated and analyzed at various times after the final application utilizing random sampling. The results showed that picoxystrobin residuals in potato and citrus (orange meat) were ˂ 0.01 mg kg-1, whereas those in citrus whole fruit, D. officinale (fresh), and D. officinale (dried) were < 0.05 - 0.084, 0.16 - 3.82, and 0.34 - 9.05 mg kg-1, respectively. Based on these results, both the acute risk quotient (2.77%) and chronic risk quotient (8.7%) were ˂100%, and the dietary risk assessment indicated that the intake of picoxystrobin residues in potato, citrus fruit, and D. officinale did not pose a health risk. This study can guide the reasonable use of picoxystrobin in potato, citrus fruit, and D. officinale.


Subject(s)
Citrus , Dendrobium , Solanum tuberosum , Strobilurins , Tandem Mass Spectrometry/methods , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL