Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33883279

ABSTRACT

Plants produce ∼300 aromatic compounds enzymatically linked to prenyl side chains via C-O bonds. These O-prenylated aromatic compounds have been found in taxonomically distant plant taxa, with some of them being beneficial or detrimental to human health. Although their O-prenyl moieties often play crucial roles in the biological activities of these compounds, no plant gene encoding an aromatic O-prenyltransferase (O-PT) has been isolated to date. This study describes the isolation of an aromatic O-PT gene, CpPT1, belonging to the UbiA superfamily, from grapefruit (Citrus × paradisi, Rutaceae). This gene was shown responsible for the biosynthesis of O-prenylated coumarin derivatives that alter drug pharmacokinetics in the human body. Another coumarin O-PT gene encoding a protein of the same family was identified in Angelica keiskei, an apiaceous medicinal plant containing pharmaceutically active O-prenylated coumarins. Phylogenetic analysis of these O-PTs suggested that aromatic O-prenylation activity evolved independently from the same ancestral gene in these distant plant taxa. These findings shed light on understanding the evolution of plant secondary (specialized) metabolites via the UbiA superfamily.


Subject(s)
Angelica/genetics , Citrus paradisi/genetics , Evolution, Molecular , Furocoumarins/biosynthesis , Plant Proteins/genetics , Prenylation , Angelica/metabolism , Citrus paradisi/metabolism , Phylogeny , Plant Proteins/metabolism
2.
Phytochemistry ; 180: 112509, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32966904

ABSTRACT

This work reports the development of suspension culture system of transgenic Marsh grapefruit (Citrus paradisi Macf., Rutaceae) callus overexpressing bacterial phytoene synthase; and the use of this suspension culture to investigate the effects of ß-cyclocitral on carotenoid content and composition. At a ß-cyclocitral concentration of 0.5 mM and after ten days cultivation, analysis of the carotenoids showed a significant increase in the content of ß-, α-carotene, and phytoene predominantly. The maximal increase in total provitamin A carotenoids content following ß-cyclocitral application was ~2-fold higher than the control, reaching 245.8 µg/g DW. The trend for increased transcript levels of biosynthetic genes PSY and ZDS correlated with the enhancement of the content of these carotenes following ß-cyclocitral treatment and GC-MS based metabolite profiling showed significant changes of metabolite levels across intermediary metabolism. These findings suggest that ß-cyclocitral can act as a chemical elicitor, to enhance the formation of carotenes in citrus suspension-cultured cells (SCC), which could be utilized in studying the regulation of carotenoid biosynthesis and biotechnological application to the renewable production of nutritional carotenoids.


Subject(s)
Citrus paradisi , Citrus , Aldehydes , Carotenoids , Cells, Cultured , Citrus paradisi/genetics , Diterpenes , Wetlands
3.
J Agric Food Chem ; 64(47): 9022-9032, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27808514

ABSTRACT

In the current study, the phytochemical contents and expression of genes involved in flavonoid biosynthesis in Rio Red grapefruit were studied at different developmental and maturity stages for the first time. Grapefruit were harvested in June, August, November, January, and April and analyzed for the levels of carotenoids, vitamin C, limonoids, flavonoids, and furocoumarins by HPLC. In addition, genes encoding for phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and 1,2-rhamnosyltransferase (2RT) were isolated, and their expression in grapefruit juice vesicles was studied. Fruit maturity had significant influence on the expression of the genes, with PAL, CHS, and CHI having higher expression in immature fruits (June), whereas 2RT expression was higher in mature fruits (November and January). The levels of flavonoids (except naringin and poncirin), vitamin C, and furocoumarins gradually decreased from June to April. Furthermore, limonin levels sharply decreased in January. Lycopene decreased whereas ß-carotene gradually increased with fruit maturity. Naringin did not exactly follow the pattern of 2RT or of PAL, CHS, and CHI expression, indicating that the four genes may have complementary effects on the level of naringin. Nevertheless, of the marketable fruit stages, early-season grapefruits harvested in November contained more beneficial phytochemicals as compared to mid- and late-season fruits harvested in January and April, respectively.


Subject(s)
Acyltransferases/genetics , Citrus paradisi/genetics , Fruit/chemistry , Intramolecular Lyases/genetics , Phenylalanine Ammonia-Lyase/genetics , Acyltransferases/metabolism , Ascorbic Acid/analysis , Carotenoids/analysis , Citrus paradisi/chemistry , Citrus paradisi/enzymology , Flavanones/analysis , Flavonoids/analysis , Flavonoids/biosynthesis , Fruit and Vegetable Juices/analysis , Furocoumarins/analysis , Gene Expression Regulation, Plant , Hexosyltransferases/metabolism , Intramolecular Lyases/metabolism , Limonins/analysis , Phenylalanine Ammonia-Lyase/metabolism , Phytochemicals/analysis , Phytochemicals/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Plant Physiol ; 159(1): 81-94, 2012 May.
Article in English | MEDLINE | ID: mdl-22452856

ABSTRACT

Epithelial cells (ECs) lining the secretory cavities of Citrus peel have been hypothesized to be responsible for the synthesis of essential oil, but direct evidence for such a role is currently sparse. We used laser-capture microdissection and pressure catapulting to isolate ECs and parenchyma cells (as controls not synthesizing oil) from the peel of young grapefruit (Citrus × paradisi 'Duncan'), isolated RNA, and evaluated transcript patterns based on oligonucleotide microarrays. A Gene Ontology analysis of these data sets indicated an enrichment of genes involved in the biosynthesis of volatile terpenoids and nonvolatile phenylpropanoids in ECs (when compared with parenchyma cells), thus indicating a significant metabolic specialization in this cell type. The gene expression patterns in ECs were consistent with the accumulation of the major essential oil constituents (monoterpenes, prenylated coumarins, and polymethoxylated flavonoids). Morphometric analyses demonstrated that secretory cavities are formed early during fruit development, whereas the expansion of cavities, and thus oil accumulation, correlates with later stages of fruit expansion. Our studies have laid the methodological and experimental groundwork for a vastly improved knowledge of the as yet poorly understood processes controlling essential oil biosynthesis in Citrus peel.


Subject(s)
Citrus paradisi/chemistry , Oils, Volatile/chemistry , RNA, Plant/genetics , Secretory Pathway , Citrus paradisi/genetics , Citrus paradisi/growth & development , Fruit/chemistry , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Laser Capture Microdissection , Oils, Volatile/analysis , Oligonucleotide Array Sequence Analysis , Plant Cells/chemistry , Plant Oils/analysis , Plant Oils/chemistry , Terpenes/analysis , Terpenes/chemistry , Transcription, Genetic
5.
Phytochemistry ; 70(11-12): 1382-91, 2009.
Article in English | MEDLINE | ID: mdl-19733370

ABSTRACT

Glucosylation is a predominant flavonoid modification reaction affecting the solubility, stability, and subsequent bioavailability of these metabolites. Flavonoid glycosides affect taste characteristics in citrus making the associated glucosyltransferases particularly interesting targets for biotechnology applications in these species. In this work, a Citrus paradisi glucosyltransferase gene was identified, cloned, and introduced into the pET recombinant protein expression system utilizing primers designed against a predicted flavonoid glucosyltransferase gene (AY519364) from Citrus sinensis. The encoded C. paradisi protein is 51.2 kDa with a predicted pI of 6.27 and is 96% identical to the C. sinensis homologue. A number of compounds from various flavonoid subclasses were tested, and the enzyme glucosylated only the flavonol aglycones quercetin (K(m)(app)=67 microM; V(max)=20.45 pKat/microg), kaempferol (K(m)(app)=12 microM; V(max)=11.63 pKat/microg), and myricetin (K(m)(app)=33 microM; V(max)=12.21 pKat/microg) but did not glucosylate the anthocyanidin, cyanidin. Glucosylation occurred at the 3 hydroxyl position as confirmed by HPLC and TLC analyses with certified reference compounds. The optimum pH was 7.5 with a pronounced buffer effect noted for reactions performed in Tris-HCl buffer. The enzyme was inhibited by Cu(2+), Fe(2+), and Zn(2+) as well as UDP (K(i)(app)=69.5 microM), which is a product of the reaction. Treatment of the enzyme with a variety of amino acid modifying compounds suggests that cysteine, histidine, arginine, tryptophan, and tyrosine residues are important for activity. The thorough characterization of this C. paradisi flavonol 3-O-glucosyltransferase adds to the growing base of glucosyltransferase knowledge, and will be used to further investigate structure-function relationships.


Subject(s)
Citrus paradisi/enzymology , Flavonoids/metabolism , Gene Expression , Genes, Plant , Glucosyltransferases/metabolism , Amino Acid Sequence , Amino Acids/metabolism , Citrus paradisi/genetics , Citrus sinensis/enzymology , DNA, Complementary , Glucosyltransferases/genetics , Glycosylation , Metals/metabolism , Molecular Sequence Data , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Substrate Specificity , Uridine Diphosphate
SELECTION OF CITATIONS
SEARCH DETAIL