Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 326: 117903, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38342154

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Reflux esophagitis (RE) is a common chronic inflammatory disease of the esophageal mucosa with a high prevalence and recurrence rate, for which a satisfactory therapeutic strategy is still lacking. Chinese medicine has its characteristics and advantages in treating RE, and the clinical application of Xuanfu Daizhe Tang (XDT) in treating RE has achieved sound therapeutic effects. However, there needs to be more research on its mechanism of action. AIM OF THE STUDY: The present work aimed to investigate the mechanism of XDT action in RE through the Signal Transducer and Activator of Transcription 1 (STAT1)/Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) pathway. MATERIALS AND METHODS: The main active components of XDT were analyzed by ultra-performance liquid chromatography-mass spectrometer (UPLC-MS). The effect of XDT on RE was evaluated in a rat model of RE induced by "Cardioplasty + pyloric ligation + Roux-en-Y esophagojejunostomy". Each administration group was treated by gavage. The degree of damage to the esophageal mucosa was evaluated by visual observation, and the Potential of Hydrogen (PH) method and Hematoxylin-eosin staining (HE) staining were performed. Serum levels of Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6), Tumor Necrosis Factor alpha (TNF-α), and Inducible Nitric Oxide Synthase (iNOS) were measured by ELISA. Quantitative Real-time PCR (qPCR), Western Blot (WB), and Immunofluorescence (IF) methods were used to detect Claudin-4, Claudin-5, TREM-1, and p-STAT1 in esophageal tissues for studying the mechanism of action and signaling pathway of XDT. Immunohistochemistry (IHC) analysis was used to detect the expression of TREM-1 and CD68 in esophageal tissues. Flow Cytometry (FC) was used to detect the polarization of macrophages in the blood. After conducting preliminary experiments to verify our hypothesis, we performed molecular docking between the active component of XDT and STAT1 derived from rats and parallel experiments with STAT1 inhibitor. The selective increaser of STAT1 transcription (2-NP) group was used to validate the mechanism by which XDT acts. RESULTS: XDT alleviated esophageal injury and attenuated histopathological changes in RE rats. XDT also inhibited the inflammatory response and decreased serum IL-1ß, IL-6, TNF-α, and iNOS levels in RE rats. qPCR and WB results revealed that XDT inhibited the expression of Claudin-4, Claudin-5, TREM-1, and STAT1 in the esophageal mucosa of RE rats. IHC and FC results showed that XDT reduced TREM-1 levels in esophageal tissues and polarized macrophages toward M2. The molecular docking results showed that rat-derived STAT1 can strongly bind to Isochronogenic acid A in XDT. The parallel experimental results of STAT1 inhibitor showed that XDT has anti-inflammatory effects similar to STAT1 inhibitors. The 2-NP group confirmed that XDT exerts its therapeutic effect on reflux esophagitis through the STAT1/TREM-1 pathway, with STAT1 as the upstream protein. CONCLUSIONS: This study suggests that XDT may treat reflux esophagitis by modulating the STAT1/TREM-1 pathway.


Subject(s)
Esophagitis, Peptic , Rats , Animals , Esophagitis, Peptic/drug therapy , Esophagitis, Peptic/metabolism , Esophagitis, Peptic/pathology , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha , Claudin-4 , Claudin-5 , Chromatography, Liquid , Molecular Docking Simulation , Tandem Mass Spectrometry
2.
Chin J Integr Med ; 30(3): 243-250, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37987961

ABSTRACT

OBJECTIVE: To investigate the effects of Danmu Extract Syrup (DMS) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the mechanism. METHODS: Seventy-two male Balb/C mice were randomly divided into 6 groups according to a random number table (n=12), including control (normal saline), LPS (5 mg/kg), LPS+DMS 2.5 mL/kg, LPS+DMS 5 mL/kg, LPS+DMS 10 mL/kg, and LPS+Dexamethasone (DXM, 5 mg/kg) groups. After pretreatment with DMS and DXM, the ALI mice model was induced by LPS, and the bronchoalveolar lavage fluid (BALF) were collected to determine protein concentration, cell counts and inflammatory cytokines. The lung tissues of mice were stained with hematoxylin-eosin, and the wet/dry weight ratio (W/D) of lung tissue was calculated. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1 ß in BALF of mice were detected by enzyme linked immunosorbent assay. The expression levels of Claudin-5, vascular endothelial (VE)-cadherin, vascular endothelial growth factor (VEGF), phospho-protein kinase B (p-Akt) and Akt were detected by Western blot analysis. RESULTS: DMS pre-treatment significantly ameliorated lung histopathological changes. Compared with the LPS group, the W/D ratio and protein contents in BALF were obviously reduced after DMS pretreatment (P<0.05 or P<0.01). The number of cells in BALF and myeloperoxidase (MPO) activity decreased significantly after DMS pretreatment (P<0.05 or P<0.01). DMS pre-treatment decreased the levels of TNF-α, IL-6 and IL-1 ß (P<0.01). Meanwhile, DMS activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway and reversed the expressions of Claudin-5, VE-cadherin and VEGF (P<0.01). CONCLUSIONS: DMS attenuated LPS-induced ALI in mice through repairing endothelial barrier. It might be a potential therapeutic drug for LPS-induced lung injury.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , Proto-Oncogene Proteins c-akt , Mice , Male , Animals , Proto-Oncogene Proteins c-akt/metabolism , Lipopolysaccharides , Phosphatidylinositol 3-Kinases/metabolism , Interleukin-1beta/metabolism , Vascular Endothelial Growth Factor A/metabolism , Tumor Necrosis Factor-alpha/metabolism , Claudin-5/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Lung/pathology , Interleukin-6/metabolism
3.
J Ethnopharmacol ; 301: 115764, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36183951

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ligusticum striatum DC., also known as Ligusticum chuanxiong Hort. (LCH), is widely used in China for its excellent effect in ischaemic stroke (IS) patients, and borneol (BO) has been confirmed to maintain the blood‒brain barrier (BBB) after stroke. They are often used as a combination in the prescriptions of IS patients. Although the advantage of their combined treatment in improving brain ischaemia has been verified, their synergistic mechanism on BBB maintenance is still unclear. AIM OF THE STUDY: This study was designed to evaluate the synergistic effect of maintaining the BBB between LCH and BO against IS and to further explore the potential mechanism. MATERIALS AND METHODS: After primary mouse brain microvascular endothelial cells (BMECs) were extracted and identified, the duration of oxygen-glucose deprivation (OGD) and the doses of LCH and BO were optimized. Then, the cells were divided into five groups: control, model, LCH, BO, and LCH + BO. Cell viability, injury degree, proliferation and migration were detected by CCK-8, LDH, EdU and wound-healing assays, respectively. Hoechst 33342 staining was adopted to detect the apoptosis rate, and western blotting was employed to observe the expressions of Bax, Bcl-2, caspase-3 and cleaved caspase-3. The TEER value and NaF permeability were measured to assess tight junction (TJ) function, while ZO-1, occludin and claudin-5 were also probed by western blotting. Moreover, the HIF-1α/VEGF pathway was observed to explore the underlying mechanism of BBB maintenance. In vivo, global cerebral ischaemia/reperfusion (GCIR) surgery was performed to establish an IS model. After treatment with LCH (200 mg/kg) and/or BO (160 mg/kg), histopathological structure and BMECs repair were observed by HE staining and immunohistochemistry of vWF. Meanwhile, TJ-associated proteins in vivo were also detected by western blotting. RESULTS: Basically, LCH and BO had different emphases. LCH significantly attenuated the vacuolar structure, nuclear pyknosis and neuronal loss of GCIR mice, while BO focused on promoting BMECs proliferation and angiogenesis and inhibiting the degradation of TJ-associated proteins in vivo after IS. Interestingly, their combination further enhanced these effects. OGD injury markedly reduced the viability, proliferation and migration of primary BMECs; decreased the ratio of Bcl-2/Bax, TEER value, and the expressions of ZO-1, occludin and claudin-5; induced LDH release and apoptosis; and increased the cleaved caspase-3/caspase-3 ratio and NaF permeability. Meanwhile, BO might be the main contributor to the combinative treatment in ameliorating OGD-induced damage of BMECs and degradation of TJ-related proteins, and the potential mechanism might be involved in upregulating the HIF-1α/VEGF signalling pathway. Although LCH showed no obvious improvement, it could enhance the therapeutic effect of BO. Interestingly, their combination even produced some new improvements, including the reduction of cleaved caspase-3 and increase in TEER value, none of which were exhibited in their monotherapies. CONCLUSIONS: LCH and BO exhibited complementary therapeutic features in alleviating cerebral ischaemic injury by inhibiting BMECs apoptosis, maintaining the BBB and attenuating the loss of neurons. LCH preferred to protect ischaemic neurons, while BO played a key role in protecting BMECs, maintaining the BBB and TJs by activating the HIF-1α/VEGF signalling pathway.


Subject(s)
Brain Ischemia , Ligusticum , Stroke , Animals , Mice , bcl-2-Associated X Protein/metabolism , Blood-Brain Barrier , Brain Ischemia/metabolism , Caspase 3/metabolism , Claudin-5/metabolism , Endothelial Cells , Glucose/metabolism , Occludin/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Stroke/drug therapy , Tight Junction Proteins/metabolism , Tight Junctions , Vascular Endothelial Growth Factor A/metabolism
4.
Physiol Behav ; 260: 114068, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36567032

ABSTRACT

OBJECTIVE: To assess the effects of omega-3 (n3) supplementation on intestinal microbiota, fatty acids profile, neuroinflammation, and social memory of cafeteria diet (CAF)-fed rats. METHODS: Male Wistar rats were fed with CAF for 20 weeks. Omega-3 (500 mg/kg/day) was supplemented between the 16th and 20th week. Colon morphology, intestinal microbiota composition, short-chain fatty acids (SCFA) and lipopolysaccharide (LPS) in the plasma, fatty acids profile, TLR-4 and claudin-5 expressions in the brain, and social memory were investigated. RESULTS: CAF reduced colon length, crypts' depth, and microbiota diversity, while n3 increased the Firmicutes/Bacteroidetes ratio. CAF increased SCFA plasma levels, but n3 reduced butyrate and isobutyrate in obese rats. LPS was increased in CAF-fed rats, and n3 decreased its levels. In the cerebral cortex, n3 increased caprylic, palmitic, stearic, tricosanoic, lignoceric, myristoleic, and linoleic acids. CAF increased palmitic acid and TLR-4 expression in the cerebral cortex while decreasing claudin-5 in the hippocampus. In the social memory test, CAF-fed animals showed greater social interaction with no effect of n3. CONCLUSIONS: The lack of n3 effect in some of the evaluated parameters may be due to the severity of the obesity caused by CAF. However, n3 reduced LPS levels, suggesting its ability to reverse endotoxemia.


Subject(s)
Gastrointestinal Microbiome , Rats , Male , Animals , Rats, Wistar , Neuroinflammatory Diseases , Lipopolysaccharides/pharmacology , Claudin-5 , Toll-Like Receptor 4 , Diet , Obesity/metabolism , Dietary Supplements , Fatty Acids
5.
Nutrients ; 14(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36235574

ABSTRACT

Zinc (Zn) plays an important role in metabolic homeostasis and may modulate neurological impairment related to obesity. The present study aimed to evaluate the effect of Zn supplementation on the intestinal microbiota, fatty acid profile, and neurofunctional parameters in obese male Wistar rats. Rats were fed a cafeteria diet (CAF), composed of ultra-processed and highly caloric and palatable foods, for 20 weeks to induce obesity. From week 16, Zn supplementation was started (10 mg/kg/day). At the end of the experiment, we evaluated the colon morphology, composition of gut microbiota, intestinal fatty acids, integrity of the intestinal barrier and blood-brain barrier (BBB), and neuroplasticity markers in the cerebral cortex and hippocampus. Obese rats showed dysbiosis, morphological changes, short-chain fatty acid (SCFA) reduction, and increased saturated fatty acids in the colon. BBB may also be compromised in CAF-fed animals, as claudin-5 expression is reduced in the cerebral cortex. In addition, synaptophysin was decreased in the hippocampus, which may affect synaptic function. Our findings showed that Zn could not protect obese animals from intestinal dysbiosis. However, an increase in acetate levels was observed, which suggests a partial beneficial effect of Zn. Thus, Zn supplementation may not be sufficient to protect from obesity-related dysfunctions.


Subject(s)
Diet, High-Fat , Dysbiosis , Animals , Claudin-5 , Dietary Supplements , Fatty Acids, Volatile , Male , Obesity/etiology , Obesity/metabolism , Obesity/prevention & control , Rats , Rats, Wistar , Synaptophysin , Zinc
6.
J Ethnopharmacol ; 298: 115646, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36031103

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The existence of the blood-brain barrier/blood tumor barrier (BBB/BTB) severely restricts the effectiveness of anti-tumor drugs, thus glioma is still an incurable disease with a high fatality rate. Chuanxiong (Ligusticum chuanxiong Hort., Umbelliferae) was used as a messenger drug to increase the distribution of drugs in brain tissue, and its application in Chinese herbal formula for treating glioma was also the highest. AIM OF THE STUDY: Our previous researches showed that essential oil (EO) of chuanxiong could promote temozolomide (TMZ) entry into glioma cells in vitro and enhance TMZ-induced anticancer efficiency in vivo, and therefore, the aim of this study was to investigate whether EO could increase the concentration accumulation of TMZ in brain or tumor of C6 glioma rats and the related mechanisms. MATERIALS AND METHODS: The pharmacokinetics were conducted in C6 glioma rats by administering either TMZ alone or combined with EO through oral routes. TMZ concentration in blood, brain and tumor was detected using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and then pharmacokinetic parameters were calculated. The changed expressions of P-gp protein, tight junction occludin, claudin-5 and zonula occludens-1 (ZO-1) in brain of glioma rats were studied by Western blot to clarify the mechanism. Finally, the chemical composition of EO was analyzed by gas chromatography-massspectrometry (GC-MS). RESULTS: The results showed that EO significantly affected the pharmacokinetic parameters such as Tmax, Cmax and CL (p < 0.01), but did not significantly change the AUC(0→∞) of TMZ in blood (p > 0.05). However, EO markedly improved the AUC(0→∞)of TMZ in brain and tumor (p < 0.01). The calculate drug targeting index was greater than 1, indicating that EO could promote the distribution of TMZ to the brain and tumor. Western blot analysis showed that EO significantly inhibited the expression of P-gp, tight junction protein claudin-5, occludin and ZO-1. And meanwhile, the expressions of P-gp, claudin-5 and occludin also markedly down-regulated in EO-TMZ co-administration treatment. GC-MS analysis of the TIC component of EO was (E)-Ligustilide (36.93%), Terpinolene (7.245%), gamma-terpinene (7.225%) etc. CONCLUSION: EO could promote the distribution of TMZ in the brain and tumor of C6 glioma rats, which may attribute to down-regulate the expression of P-gp, claudin-5 and occludin.


Subject(s)
Brain Neoplasms , Glioma , Ligusticum , Oils, Volatile , Animals , Blood-Brain Barrier/metabolism , Brain Neoplasms/pathology , Chromatography, Liquid , Claudin-5/metabolism , Gas Chromatography-Mass Spectrometry , Glioma/metabolism , Occludin/metabolism , Oils, Volatile/chemistry , Rats , Tandem Mass Spectrometry , Temozolomide/pharmacology , Temozolomide/therapeutic use , Tight Junction Proteins/metabolism
7.
J Anim Sci ; 100(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35913841

ABSTRACT

The purpose of the present study was to investigate the effects of drinking water alkaline mineral complex (AMC) supplementation on growth performance, intestinal morphology, inflammatory response, immunity, antioxidant defense system, and barrier functions in weaned piglets. In a 15-d trial, 240 weaned piglets (9.35 ± 0.86 kg) at 28 d of age (large white × landrace × Duroc) were randomly divided into two groups: the control (Con) group and the AMC group. Drinking water AMC supplementation improved (P < 0.01) final body weight (BW) and average daily gain (ADG) in weaned piglets compared to the Con group. Importantly, AMC reduced (P < 0.01) the feed-to-gain (F:G) ratio. AMC water improved the physical health conditions of piglets under weaning stress, as reflected by the decreased (P < 0.05) hair score and conjunctival score. Moreover, there was no significant (P > 0.05) difference in relatively small intestinal length, organ (liver, spleen, and kidney) indices, or gastrointestinal pH value in weaned piglets between the two groups. Of note, AMC significantly promoted the microvilli numbers in the small intestine and effectively ameliorated the gut morphology damage induced by weaning stress, as evidenced by the increased (P < 0.05) villous height (VH) and ratio of VH to crypt depth. Additionally, AMC lessened the levels of lipopolysaccharide (LPS, P < 0.01) and the contents of IL1ß (P<0.05), and TNF-α (P<0.05) in the weaned piglet small intestine. Conversely, the gut immune barrier marker, secretory immunoglobulin A (sIgA) levels in serum and small intestine mucosa were elevated after AMC water treatment (P < 0.01). Furthermore, AMC elevated the antioxidant mRNA levels of (P < 0.05) SOD 1-2, (P < 0.01) CAT, and (P < 0.01) GPX 1-2 in the small intestine. Likewise, the mRNA levels of the small intestine tight junction factors Occludin (P < 0.01), ZO-1 (P < 0.05), Claudin 2 (P < 0.01), and Claudin 5 (P<0.01) in the AMC treatment group were notably higher than those in the Con group. In conclusion, drinking water AMC supplementation has an accelerative effect on growth performance by elevating gut health by improving intestinal morphology, the inflammatory response, the antioxidant defense system, and barrier function in weaned piglets.


The piglet suffers vital physiological, environmental, and social challenges when it is weaned from the sow that can predispose the piglet to subsequent diseases and other production losses, and these challenges are responsible for serious economic losses to the swine industry. Weaning stress induces intestinal injury, decreased immunity, and digestive system dysfunction, which then reduces feed intake and inhibits the growth performance of piglets. It is well known that alternatives to antibiotics for preventing weaning stress in weaned farm animals are sorely needed. The biologically beneficial effects of alkaline mineral water are widely reported. Alkaline mineral complex (AMC), as an immunomodulator, is considered to have antistress effects in the swine industry. In addition, treatment through drinking water is considered to be an efficient and low-cost feasible disease control strategy. Drinking water AMC supplementation is expected to exert health benefits in pigs; however, the responses of weaned piglets to water supplemented with AMC have not been fully explored. Thus, this study explored the effects of drinking water AMC supplementation on growth performance and gut health in weaned piglets. Our results showed that AMC water supplementation conspicuously enhanced the growth performance by improving the gut health.


Subject(s)
Antioxidants , Drinking Water , Animals , Swine , Weaning , Antioxidants/pharmacology , Lipopolysaccharides/pharmacology , Occludin , Dietary Supplements , Claudin-2 , Claudin-5/pharmacology , Tumor Necrosis Factor-alpha , Intestinal Mucosa , Minerals/pharmacology , RNA, Messenger , Immunoglobulin A, Secretory/pharmacology , Superoxide Dismutase
8.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3361-3371, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35851130

ABSTRACT

A high performance liquid chromatography(HPLC) method was established to analyze the components in Shengjiang Powder(SJP) such as emodin and curcumin and explore its therapeutic effect on experimental autoimmune encephalomyelitis(EAE) mice. To be specific, HPLC was performed to determine the content of compounds in SJP such as emodin and curcumin. A total of 72 female SPF C57 BL/6 mice were randomized into control group(equivalent volume of ultrapure water, ig), model group(equivalent volume of ultrapure water, ig), low-, medium-, and high-dose SJP groups(SJP, ig), and positive control group(prednisone acetate, ig), 12 each group. EAE was induced in mice except the control group. Administration began from the first day after immunization. The general conditions, symptom score, and body weight of the mice were recorded. On the 21 st day, mouse brain tissues were separrated. Then hematoxylin-eosin(HE) staining and Luxol Fast Blue(LFB) staining were used to detect the pathological changes of brain tissues. Immunohistochemistry(IHC) was employed to determine the myelin basic protein(MBP) level, and Western blot the expression of occludin and claudin-5, as well as the levels of interleukin-6(IL-6) and proteins in the Janus kinase 2(JAK2)/signal transducer and activator of transcription 3(STAT3) pathway and their phosphorylation levels. The mRNA expression of IL-6, JAK2, and STAT3 was detected by real-time quantitative polymerase chain reaction(qPCR). Finally, molecular docking of six main active components in SJP, including emodin and curcumin, with IL-6, JAK2 and STAT3 was performed, and the binding affinity was evaluated. The results showed that the established HPLC method demonstrated high precision, reproducibility, stability, and high recovery of samples. Compared with the model group, SJP reduced the clinical symptom score and alleviate the inflammatory infiltration of brain white matter and demyelination of EAE mice. At the same time, SJP increased the expression of occludin and claudin-5, down-regulated the mRNA expression of IL-6, JAK2, and STAT3, as well as the levels of IL-6/JAK/STAT3 proteins and the phosphorylation levels, with significant difference. Molecular docking suggested that the six active components in SJP had high binding energy with IL-6, JAK2, and STAT3 proteins. The established HPLC method is simple, accurate, and highly sensitive, which can simultaneously determine the content of emodin and curcumin in SJP. SJP may alleviate the clinical symptoms of EAE by inhibiting IL-6/JAK2/STAT3 signaling pathway, protecting the blood-brain barrier, and relieving the inflammatory response and demyelinization of brain tissue.


Subject(s)
Curcumin , Emodin , Encephalomyelitis, Autoimmune, Experimental , Animals , Chromatography, High Pressure Liquid , Claudin-5/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Interleukin-6/genetics , Interleukin-6/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Occludin/metabolism , Powders , RNA, Messenger , Reproducibility of Results , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction , Water/metabolism
9.
Zhen Ci Yan Jiu ; 47(7): 565-72, 2022 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-35880271

ABSTRACT

OBJECTIVE: To observe the effect of electroacupuncture (EA) on the expressions of tight junction related proteins Claudin-5, ZO-1 in the colon and hippocampus, Toll-like receptor 4/nuclear factor-kappa B/NOD-like receptor protein 3 (TLR4/NF-κB/NLRP3) pathway in the hippocampus of APP/PS1 mice, so as to explore its mechanisms underlying improvement of cognitive impairment. METHODS: Eighteen 5-month-old male APP/PS1 mice were equally randomized into model and EA groups,and nine 5-month-old male C57BL/6 mice were used as the normal control. EA(2 Hz, 1 mA) was applied to "Baihui" (GV20), "Dachangshu" (BL25) and "Zusanli" (ST36) for 15 min, once daily, 5 days a week for 5 weeks. The Morris water maze swimming test was used to evaluate the mice's cognitive impairment. Nissl staining was used to observe the pathological morphology of hippocampus. The expression of amyloid ß-peptide (Aß) in brain tissue was detect by immunohistochemistry; the contents of lipopolysaccharide (LPS) in colon, serum and hippocampus were detected by ELISA; the expression levels of Claudin-5, ZO-1 in colon and hippocampus, and TLR4/NF-κB/NLRP3 pathway related proteins in hippocampus were detected by Western blot. RESULTS: Compared with the normal group, the escape latency of the mice in the model group was prolonged from the 3rd day (P<0.05, P<0.01), the number of crossing the platform and the percentage of target quadrant residence time were significantly decreased (P<0.01), and the contents of LPS in colon, serum and hippocampus were significantly increased (P<0.01), the expression levels of TLR4, NF-κB p65, NLRP3, Caspase-1, interleukin (IL)-1ß and tumor necrosis factor (TNF)-α in hippocampus and Aß in brain tissue were significantly increased (P<0.01), while the expression levels of Claudin-5, ZO-1 in colon and hippocampus were significantly decreased (P<0.01). Compared with the model group, the escape latency of mice in the EA group was shortened from the 4th day (P<0.05, P<0.01), the number of crossing the platform and the percentage of target quadrant residence time were increased (P<0.01, P<0.05), and the contents of LPS in serum and hippocampus were decreased (P<0.05), and the expression levels of TLR4, NF-κB p65, Caspase-1, NLRP3, IL-1ß, TNF-α in hippocampus and Aß in brain tissue were significantly decreased (P<0.05, P<0.01), while the expression levels of Claudin-5, ZO-1 in colon and hippocampus were significantly increased (P<0.05, P<0.01). Outcomes of Nissl staining showed dispersed arrangement of neurons with nuclear pyknosis or hyperchromasia in the hippocampus, and a decreased number of cell layers in the model group, which was relatively milder in the EA group. CONCLUSION: EA may improve the cognitive impairment of APP/PS1 mice by up-regulating the expression of Claudin-5 and ZO-1, reducing the transposition of gut-derived LPS to the central nervous system, inhibiting the over-activation of TLR4/NF-κB/NLRP3 pathway, and alleviating the inflammatory reaction of the central nervous system.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Electroacupuncture , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Amyloid beta-Peptides , Animals , Caspases , Claudin-5 , Cognitive Dysfunction/genetics , Cognitive Dysfunction/therapy , Hippocampus , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Toll-Like Receptor 4/genetics
10.
Phytomedicine ; 103: 154240, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35691080

ABSTRACT

BACKGROUND: Rhodiola crenulate (R. crenulate), a famous Tibetan medicine, has been demonstrated to possess superiorly protective effects in high-altitude hypoxic brain injury (HHBI). However, its mechanisms on HHBI are still largely unknown. METHODS: Herein, the protective effects and underlying mechanisms of R. crenulate on HHBI of BABL/c mice were explored through in vivo experiments. The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE) (0.5, 1.0 and 2.0 g/kg) was given by gavage for 7 days. Pathological changes and neuronal viability of mice hippocampus and cortex were evaluated using H&E and Nissl staining, respectively. The brain water content (BWC) in mice was determined by calculating the ratio of dry to wet weight of brain tissue. And serum of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH-Px) and lactate dehydrogenase (LDH) were detected via commercial biochemical kits. Synchronously, the contents of total antioxidant capacity (T-AOC), lactic acid (LA), adenosine triphosphate (ATP), succinate dehydrogenase (SDH), pyruvate kinase (PK), Ca2+-Mg2+-ATPcase, Na+-K+-ATPcase, TNF-α, IL-1ß and IL-6 in brain tissue were quantitative analysis by corresponding ELISA assay. Subsequently, NLRP3, ZO-1, claudin-5, occluding, p-p65, p65, ASC, cleaved-caspase-1, caspase-1 and IL-18 were determined by immunofluorescent and western blot analyses. RESULTS: The results demonstrated that RCE remarkably alleviated pathological damage, BWC, as well enhanced neuronal viability. Furthermore, the oxidative stress injuries were reversely abrogated after RCE treatment, evidenced by the increases of SOD, GSH-Px and T-AOC, while the decreases of MDA and LDH contents. Marvelously, the administration of RCE rectified and balanced the abnormal energy metabolism via elevating the levels of ATP, SDH, PK, Ca2+-Mg2+-ATPcase and Na+-K+-ATPcase, and lowering LA. Simultaneously, the expression of tight junction proteins (ZO-1, claudin-5 and occludin) was enhanced, illustrating RCE treatment might maintain the integrity of blood-brain barrier (BBB). Additionally, RCE treatment confined the contents of IL-6, IL-1ß and TNF-α, and attenuated fluorescent signal of NLRP3 protein. Concurrently, the results of western blot indicated that RCE treatment dramatically restrained p-p65/p65, ASC, NLRP3, cleaved-caspase-1/caspase-1 and IL-18 protein expressions in brain tissues of mice. CONCLUSION: RCE may afford a protectively intervention in HHBI of mice through suppressing the oxidative stress, improving energy metabolism and the integrity of BBB, and subsiding inflammatory responses via the NF-κB/NLRP3 signaling pathway. As a promising agent for the treatment of mice HHBI, the deep-crossing molecular mechanisms of R. crenulate still needs to be further elucidated to identify novel core hub targets.


Subject(s)
Brain Injuries , Rhodiola , Adenosine Triphosphate , Animals , Antioxidants/metabolism , Brain Injuries/drug therapy , Brain Injuries/metabolism , Brain Injuries/pathology , Caspase 1 , Claudin-5 , Hypoxia/drug therapy , Inflammation/metabolism , Interleukin-18/therapeutic use , Interleukin-6 , Mice , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha
11.
BMC Complement Med Ther ; 22(1): 167, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35733188

ABSTRACT

BACKGROUND: Vascular damage, autoimmune abnormalities, and fibrosis are the three pathological features of systemic sclerosis (SSc).However, pulmonary vascular damage is the main factor affecting the progression and prognosis of SSc. The main purpose of this study was to explore the molecular mechanism of Wenyang Huazhuo Tongluo Formula in alleviating pulmonary vascular injury in bleomycin-induced SSc mouse model. METHODS: Masson staining and H&E staining were used to analyze the degree of pulmonary vascular fibrosis and the infiltration of leukocyte cells in lung tissue ofbleomycin-induced SSc mouse models treated with saline (BLM group), Wenyang Huazhuo Tongluo Formula (WYHZTL group) and HIF-1α inhibitor KC7F2 (KC7F2 group). Blood vessel exudation was determined by analyzing the cell number and albumin concentration in bronchoalveolar lavage fluid using a cell counter and ELISA assay, respectively. The degree of vascular injury was assessed by measuring the expression levels of vWF, E-selectin, ICAM-1, VCAM-1, VE-cadherin and claudin-5 in serum and pulmonary vascular endothelial cells using ELISA and immunofluorescence staining. Finally, the effect of Wenyang Huazhuo Tongluo Formula on the expression of HIF-1α was detected using immunofluorescence staining. RESULTS: Wenyang Huazhuo Tongluo Formula and KC7F2 significantly inhibited bleomycin-induced pulmonary vascular fibrosis and the level of perivascular inflammatory cell infiltration. The number of cells and the concentration of albumin were significantly reduced in the bronchoalveolar lavage fluid of the WYHZTL group and KC7F2 group compared with the BLM group. In addition, treatment with Wenyang Huazhuo Tongluo Formula and KC7F2 significantly downregulated the expression levels of vWF, E-selectin, ICAM-1, VCAM-1 and HIF-1α, but upregulated the expression of VE-cadherin and claudin-5 in serum and pulmonary vascular endothelial cells, compared with treatment with saline. CONCLUSIONS: This study reveals that Wenyang Huazhuo Tongluo Formula plays a new role in the treatment of SSc by alleviating pulmonary vascular damage. Furthermore, we found that Wenyang Huazhuo Tongluo Formula alleviates pulmonary vascular injury and inhibits HIF-1α expression.


Subject(s)
Drugs, Chinese Herbal , Pulmonary Fibrosis , Scleroderma, Systemic , Vascular System Injuries , Albumins/analysis , Animals , Bleomycin/adverse effects , Claudin-5/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , E-Selectin , Endothelial Cells/metabolism , Fibrosis , Intercellular Adhesion Molecule-1/metabolism , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Vascular Cell Adhesion Molecule-1/metabolism , Vascular System Injuries/pathology , von Willebrand Factor/metabolism
12.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(2): 145-150, 2022 Feb.
Article in Chinese | MEDLINE | ID: mdl-35387719

ABSTRACT

OBJECTIVE: To study the signaling pathway of the up-regulation of claudin-5 expression by Xuebijing injection. METHODS: Animal and cell models of acute respiratory distress syndrome (ARDS) were induced by lipopolysaccharide (LPS). (1) In vivo study, 20 male Sprague-Dawley (SD) rats were randomly divided into 4 groups: control group, LPS group (LPS injection 10 mg/kg for 12 hours), Xuebijing control group (Xuebijing injection 1 mg/kg, twice a day, for 3 days), and Xuebijing intervention group (LPS injection after pretreatment of Xuebijing injection), according to random number method with 5 rats in each group. The lung tissues were taken to detect lung dry/wet weight ratio (W/D) and the morphological changes in each group. Claudin-5, phosphorylated forkhead box transcription factor O1 (p-FOXO1), total FOXO1 (t-FOXO1), phosphorylated Akt (p-Akt) and total Akt (t-Akt) in lung tissues were detected by immunohistochemical staining (IHC) and Western blotting. (2) In vitro study, human pulmonary microvascular endothelial cells (HPMECs) were divided into 6 groups (5 holes in each group): control group, Xubijing control group (incubated with 2 g/L Xubijing for 24 hours), phosphoinositide 3-kinases (PI3K) signaling pathway LY294002 control group (incubated with 10 µmol/L LY294002 for 1 hour), LPS group (incubated with 1 mg/L LPS for 12 hours), Xubijing intervention group (incubated with 2 g/L Xuebijing for 24 hours, then with 1 mg/L LPS for 12 hours) and LY294002 intervention group (incubated with 10 µmol/L LY294002 for 1 hour, then with 2 g/L and Xubijing for 24 hours, and then with 1 mg/L LPS for 12 hours). The expression levels of claudin-5, p-FOXO1, t-FOXO1, p-Akt and t-Akt of HPMECs in each group were assessed by Western blotting. RESULTS: In vivo study: (1) Compared with the control group, the lung W/D ratio increased significantly in LPS group (6.79±0.42 vs. 4.19±0.13), and decreased significantly after the intervention of Xuebijing (4.92±0.38 vs. 6.79±0.42, P < 0.01). (2) Morphological changes of lung tissue: compared with the control group, the injury of lung tissue in LPS group was more serious, which was significantly improved after Xuebijing intervention. (3) Expression levels of claudin-5, p-Akt/t-Akt and p-FOXO1/t-FOXO1: the expression levels of claudin-5, p-Akt/t-Akt and p-FOXO1/t-FOXO1 in LPS group were significantly decreased as compared with the control group (claudin-5/GAPDH: 0.33±0.03 vs. 1.03±0.07, p-Akt/t-Akt: 0.18±0.02 vs. 1.01±0.13, p-FOXO1/t-FOXO1: 0.16±0.06 vs. 1.00±0.19, all P < 0.01). After the intervention of Xuebijing, the expression levels were significantly increased as compared with the LPS group (claudin-5/GAPDH: 0.53±0.05 vs. 0.33±0.03, p-Akt/t-Akt: 0.56±0.12 vs. 0.18±0.02, p-FOXO1/t-FOXO1: 0.68±0.10 vs. 0.16±0.06, all P < 0.01). In vitro study: compared with the control group, the expression level of claudin-5 in the LPS group was significantly decreased (claudin-5/ß-actin: 0.45±0.03 vs. 1.01±0.15, P < 0.01), and the expression level of claudin-5 in Xuebijing intervention group was also significantly decreased (claudin-5/ß-actin: 0.80±0.08 vs. 1.01±0.15, P < 0.01). After the intervention of LY294002, the expression of claudin-5 was significantly decreased as compared with the Xubijing intervention group (claudin-5/ß-actin: 0.41±0.02 vs. 0.80±0.08, P < 0.01). CONCLUSIONS: Xuebijing injection improve pulmonary vascular barrier function in rats with ARDS by up-regulating claudin-5 expression through PI3K/Akt/FOXO1 signaling pathway.


Subject(s)
Phosphatidylinositol 3-Kinases , Respiratory Distress Syndrome , Actins , Animals , Claudin-5 , Drugs, Chinese Herbal , Endothelial Cells , Lipopolysaccharides , Lung , Male , Nerve Tissue Proteins , Proto-Oncogene Proteins c-akt , Rats , Rats, Sprague-Dawley , Respiratory Distress Syndrome/drug therapy , Signal Transduction
13.
Article in English | WPRIM | ID: wpr-922576

ABSTRACT

OBJECTIVE@#To investigate the protective effects and underlying mechanisms of Xuebijing Injection (XBJ) on the lung endothelial barrier in hydrogen sulfide (H@*METHODS@#Sprague-Dawley rats were exposed to H@*RESULTS@#The morphological investigation showed that XBJ attenuated H@*CONCLUSIONS@#XBJ ameliorated H


Subject(s)
Animals , Rats , Claudin-5 , Drugs, Chinese Herbal , Endothelial Cells , Hydrogen Sulfide , Phosphatidylinositol 3-Kinases , Rats, Sprague-Dawley , Respiratory Distress Syndrome, Newborn/drug therapy
14.
Chin J Integr Med ; 28(2): 116-123, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34874518

ABSTRACT

OBJECTIVE: To investigate the protective effects and underlying mechanisms of Xuebijing Injection (XBJ) on the lung endothelial barrier in hydrogen sulfide (H2S)-induced acute respiratory distress syndrome (ARDS). METHODS: Sprague-Dawley rats were exposed to H2S (300 ppm) to establish ARDS model, while human pulmonary microvascular endothelial cells (HPMECs) were incubated with NaHS (a H2S donor, 500 µmol/L) to establish cell model. H2S and XBJ were concurrently administered to the rat and cell models. Lung hematoxylin and eosin staining, immunohistochemistry, transmission electron microscopy and wet/dry ratio measurement were used to confirm ARDS induced by H2S in vivo. The expression levels of claudin-5, phosphorylated protein kinase B (p-AKT)/t-AKT and p-forkhead box transcription factor O1 (FoxO1)/t-FoxO1 in vivo and in vitro were also assessed. Paracellular permeability and transepithelial electrical resistance (TEER) were measured to evaluate endothelial barrier function in the cell model. RESULTS: The morphological investigation showed that XBJ attenuated H2S-induced ARDS in rats. XBJ significantly ameliorated both the reduction in TEER and the increased paracellular permeability observed in NaHS-treated HPMECs (P<0.05). The protective effects of XBJ were blocked by LY294002, a phosphatidylinositol 3-kinase (PI3K)/AKT/FoxO1 pathway antagonist (P<0.05). Furthermore, XBJ promoted the expression of claudin-5 and increased the levels of p-AKT and p-FoxO1 in vivo and in vitro (P<0.05). CONCLUSIONS: XBJ ameliorated H2S-induced ARDS by promoting claudin-5 expression via the PI3K/AKT/FoxO1 signaling pathway.


Subject(s)
Hydrogen Sulfide , Respiratory Distress Syndrome , Animals , Claudin-5 , Drugs, Chinese Herbal , Endothelial Cells , Phosphatidylinositol 3-Kinases , Rats , Rats, Sprague-Dawley , Respiratory Distress Syndrome/drug therapy
15.
Brain Res ; 1768: 147586, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34289379

ABSTRACT

Cannabidiol is a natural herbal medicine known to protect the brain from traumatic brain injury (TBI). Here, a TBI rat model was established, with cannabidiol administered intraperitoneally at doses of 5, 10, or 20 mg/kg, 30 min before surgery and 6 h after surgery until sacrifice. Brain water content, body weight, and modified neurological severity scores were determined, and enzyme-linked immunosorbent assay, immunofluorescence staining, hematoxylin and eosin staining, Nissl staining, Evans-blue dye extravasation, and western blotting were performed. Results showed that cannabidiol decreased the number of aquaporin-4-positive and glial fibrillary acidic protein-positive cells. Cannabidiol also significantly reduced the protein levels of proinflammatory cytokines (TNF-α and IL-1ß) and significantly increased the expression of tight junction proteins (claudin-5 and occludin). Moreover, cannabidiol administration significantly mitigated water content in the brain after TBI and blood-brain barrier disruption and ameliorated the neurological deficit score after TBI. Cannabidiol administration improved the integrity and permeability of the blood-brain barrier and reduced edema in the brain after TBI.


Subject(s)
Blood-Brain Barrier/drug effects , Brain Injuries, Traumatic/drug therapy , Cannabinoids/pharmacology , Animals , Aquaporin 4/metabolism , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain/metabolism , Brain Edema/metabolism , Brain Injuries, Traumatic/metabolism , Cannabinoids/metabolism , Claudin-5/metabolism , Glial Fibrillary Acidic Protein/metabolism , Interleukin-1beta/metabolism , Male , Models, Animal , Neuroprotective Agents/pharmacology , Occludin/metabolism , Permeability/drug effects , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
16.
Fluids Barriers CNS ; 18(1): 28, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34158083

ABSTRACT

BACKGROUND: The blood-brain barrier (BBB) plays a critical role in protecting the central nervous system (CNS) from blood-borne agents and potentially harmful xenobiotics. Our group's previous data has shown that tobacco smoke (TS) and electronic cigarettes (EC) affect the BBB integrity, increase stroke incidence, and are considered a risk factor for multiple CNS disorders. Metformin was also found to abrogate the adverse effects of TS and EC. METHODS: We used sucrose and mannitol as paracellular markers to quantitatively assess TS and EC's impact on the BBB in-vitro. Specifically, we used a quantitative platform to determine the harmful effects of smoking on the BBB and study the protective effect of metformin. Using a transwell system and iPSCs-derived BMECs, we assessed TS and EC's effect on sucrose and mannitol permeability with and without metformin pre-treatment at different time points. Concurrently, using immunofluorescence (IF) and Western blot (WB) techniques, we evaluated the expression and distribution of tight junction proteins, including ZO-1, occludin, and claudin-5. RESULTS: Our data showed that TS and EC negatively affect sucrose and mannitol permeability starting after 6 h and up to 24 h. The loss of barrier integrity was associated with a reduction of TEER values. While the overall expression level of ZO-1 and occludin was not significantly downregulated, the distribution of ZO-1 was altered, and discontinuation patterns were evident through IF imaging. In contrast to occludin, claudin-5 expression was significantly decreased by TS and EC, as demonstrated by WB and IF data. CONCLUSION: In agreement with previous studies, our data showed the metformin could counteract the negative impact of TS and EC on BBB integrity, thus suggesting the possibility of repurposing this drug to afford cerebrovascular protection.


Subject(s)
Blood-Brain Barrier/metabolism , E-Cigarette Vapor/adverse effects , Metformin/administration & dosage , Neuroprotection/drug effects , Smoke/adverse effects , Tight Junctions/metabolism , Tobacco Products , Blood-Brain Barrier/drug effects , Capillary Permeability/drug effects , Capillary Permeability/physiology , Cell Survival/drug effects , Cell Survival/physiology , Claudin-5/metabolism , Drug Evaluation, Preclinical/methods , E-Cigarette Vapor/administration & dosage , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Neuroprotection/physiology , Occludin/metabolism , Tight Junctions/drug effects , Zonula Occludens-1 Protein/metabolism
17.
Pharmazie ; 76(2): 84-91, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33714284

ABSTRACT

Context: Daidzein is a secondary metabolite derived from plants, has a flavonoid structure and is known for its protective activity in gastrointestinal disorders. Objective: The current work determines the preventive effect of daidzein against injury in the esophagus mucosa induced by esophageal reflux (RE) in an animal model. Methods: Adult male Wistar rats were classified into six groups: normal control, ER + different doses of daidzein and ER + omeprazole. RE was induced in all animals except controls and supplemented with daidzein and standard drugs orally for 6 hours. Serum and tissue were used for further biochemical parameters. Results: Daidzein as a flavonoid has antioxidant properties and shows in vitro antioxidant activity. The outcomes also reveal an elevation in lipid peroxidation and a decline in the levels of sulphhydryl groups and glutathione, along with the depletion in the activities of enzymatic antioxidants in the oxidative stress state. In a dose-dependent manner daidzein and omeprazole amended all macroscopic and biochemical variations and protected against the raised level of hydrogen peroxide (H2O2), calcium and free iron levels in esophageal tissue induced during RE. It also improved the expression and level of proinflammatory cytokines. Conclusion: The finding reports that daidzein has a potential to show a shielding effect against esophagus damage induced by RE in rats, at least in part via alteration of inflammatory cytokines.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cytokines/drug effects , Esophageal Mucosa/drug effects , Gastroesophageal Reflux/drug therapy , Isoflavones/pharmacology , Animals , Antioxidants/metabolism , Cell Survival/drug effects , Claudin-4/metabolism , Claudin-5/metabolism , Cytokines/metabolism , Disease Models, Animal , Esophageal Mucosa/injuries , Esophagus/drug effects , Esophagus/metabolism , Gastroesophageal Reflux/chemically induced , Glutathione/metabolism , Lipid Peroxidation/drug effects , Lipopolysaccharides/pharmacology , Male , Mice , Oxidative Stress/drug effects , RAW 264.7 Cells , Rats , Rats, Wistar
18.
Neuromolecular Med ; 23(1): 184-198, 2021 03.
Article in English | MEDLINE | ID: mdl-33067719

ABSTRACT

Ergothioneine (ET) is a naturally occurring antioxidant that is synthesized by non-yeast fungi and certain bacteria. ET is not synthesized by animals, including humans, but is avidly taken up from the diet, especially from mushrooms. In the current study, we elucidated the effect of ET on the hCMEC/D3 human brain endothelial cell line. Endothelial cells are exposed to high levels of the cholesterol oxidation product, 7-ketocholesterol (7KC), in patients with cardiovascular disease and diabetes, and this process is thought to mediate pathological inflammation. 7KC induces a dose-dependent loss of cell viability and an increase in apoptosis and necrosis in the endothelial cells. A relocalization of the tight junction proteins, zonula occludens-1 (ZO-1) and claudin-5, towards the nucleus of the cells was also observed. These effects were significantly attenuated by ET. In addition, 7KC induces marked increases in the mRNA expression of pro-inflammatory cytokines, IL-1ß IL-6, IL-8, TNF-α and cyclooxygenase-2 (COX2), as well as COX2 enzymatic activity, and these were significantly reduced by ET. Moreover, the cytoprotective and anti-inflammatory effects of ET were significantly reduced by co-incubation with an inhibitor of the ET transporter, OCTN1 (VHCL). This shows that ET needs to enter the endothelial cells to have a protective effect and is unlikely to act via extracellular neutralizing of 7KC. The protective effect on inflammation in brain endothelial cells suggests that ET might be useful as a nutraceutical for the prevention or management of neurovascular diseases, such as stroke and vascular dementia. Moreover, the ability of ET to cross the blood-brain barrier could point to its usefulness in combatting 7KC that is produced in the CNS during neuroinflammation, e.g. after excitotoxicity, in chronic neurodegenerative diseases, and possibly COVID-19-related neurologic complications.


Subject(s)
Antioxidants/pharmacology , COVID-19/complications , Endothelial Cells/drug effects , Ergothioneine/pharmacology , Ketocholesterols/toxicity , Nervous System Diseases/prevention & control , Neuroprotective Agents/pharmacology , Antioxidants/pharmacokinetics , Apoptosis/drug effects , Biological Transport , Blood-Brain Barrier , Brain/blood supply , Brain/cytology , Cell Line , Cholesterol/metabolism , Claudin-5 , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , Cytokines/biosynthesis , Cytokines/genetics , Drug Evaluation, Preclinical , Ergothioneine/pharmacokinetics , Humans , Microvessels/cytology , Nervous System Diseases/etiology , Neuroprotective Agents/pharmacokinetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Organic Cation Transport Proteins , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Symporters , Zonula Occludens-1 Protein
19.
Biomed Pharmacother ; 131: 110723, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33152910

ABSTRACT

Stroke is an acute cerebrovascular disease caused by the sudden rupture of cerebral blood vessels or vascular obstruction from brain tissue damage or dysfunction, thereby preventing blood flow into the brain. Cerebral ischemia-reperfusion injury (CI/RI), a common syndrome of ischemic stroke, is a complex pathological process whose physiological mechanism is still unclear. Qishiwei Zhenzhu pills (QSW), a famous Tibetan medicine preparation, has the effect of tranquilizing by heavy settling, dredging channels and activating collaterals, harmonizing Qi and blood, restoring consciousness, and inducing resuscitation. Here, we investigated the protective effect of QSW on CI/RI in rats and its potential mechanism. First, the volatile and liposoluble components in QSW were determined using gas chromatography-mass spectrometry (GCMS). After 24 h of CI/RI, the neuroprotective effect was determined by evaluating the neurological function, cerebral infarction, histopathology, and blood-brain barrier (BBB) function. Immunofluorescence, real-time quantitative PCR (RT-qPCR), and western blot (WB) were used to detect the expression of matrix metalloproteinase 9 (MMP-9), claudin-5, and occludin. Finally, GCMS metabonomics was used to identify different metabolites and analyze metabolic pathways. The results showed that 88 volatile components and 63 liposoluble components were detected in QSW. Following the experimental stroke operation, it was observed that rats administered QSW pretreatment had improved neurological function, reduced infarct volume (P < 0.01), increased Nissl bodies (P < 0.05), improved histopathology, and reduced BBB disruption. Immunofluorescence, RT-qPCR, and WB results showed that MMP-9 level in the brain tissue of the QSW pretreatment group had a decreasing trend and the expression of claudin-5 and occludin had a tendency to increase. Eleven metabolites related to lipid metabolism, fatty acid metabolism, and energy metabolism, were identified via GC-MS metabonomics. Our study shows that QSW preconditioning has a neuroprotective effect on CI/RI; however, its mechanism requires further study.


Subject(s)
Blood-Brain Barrier/drug effects , Brain Ischemia/prevention & control , Medicine, Tibetan Traditional , Metabolomics , Neuroprotective Agents/pharmacology , Reperfusion Injury/prevention & control , Animals , Blood-Brain Barrier/ultrastructure , Brain Ischemia/pathology , Claudin-5/genetics , Gas Chromatography-Mass Spectrometry , Male , Matrix Metalloproteinase 9/analysis , Matrix Metalloproteinase 9/genetics , Metabolic Networks and Pathways , Neurons/ultrastructure , Permeability , Rats , Rats, Sprague-Dawley
20.
Biomolecules ; 10(8)2020 08 13.
Article in English | MEDLINE | ID: mdl-32823646

ABSTRACT

Understanding and targeting the molecular basis of peritoneal solute and protein transport is essential to improve peritoneal dialysis (PD) efficacy and patient outcome. Supplementation of PD fluids (PDF) with alanyl-glutamine (AlaGln) increased small solute transport and reduced peritoneal protein loss in a recent clinical trial. Transepithelial resistance and 10 kDa and 70 kDa dextran transport were measured in primary human endothelial cells (HUVEC) exposed to conventional acidic, glucose degradation products (GDP) containing PDF (CPDF) and to low GDP containing PDF (LPDF) with and without AlaGln. Zonula occludens-1 (ZO-1) and claudin-5 were quantified by Western blot and immunofluorescence and in mice exposed to saline and CPDF for 7 weeks by digital imaging analyses. Spatial clustering of ZO-1 molecules was assessed by single molecule localization microscopy. AlaGln increased transepithelial resistance, and in CPDF exposed HUVEC decreased dextran transport rates and preserved claudin-5 and ZO-1 abundance. Endothelial clustering of membrane bound ZO-1 was higher in CPDF supplemented with AlaGln. In mice, arteriolar endothelial claudin-5 was reduced in CPDF, but restored with AlaGln, while mesothelial claudin-5 abundance was unchanged. AlaGln supplementation seals the peritoneal endothelial barrier, and when supplemented to conventional PD fluid increases claudin-5 and ZO-1 abundance and clustering of ZO-1 in the endothelial cell membrane.


Subject(s)
Claudin-5/metabolism , Dialysis Solutions/adverse effects , Dipeptides/administration & dosage , Tight Junctions/metabolism , Zonula Occludens-1 Protein/metabolism , Animals , Biological Transport , Dipeptides/pharmacology , Disease Models, Animal , Female , Human Umbilical Vein Endothelial Cells , Humans , Mice , Peritoneal Dialysis/adverse effects , Single Molecule Imaging , Tight Junctions/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL