Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Bioresour Technol ; 362: 127866, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36049714

ABSTRACT

How to manage potato peel waste sustainably has been an issue faced by the potato industry. This work explored the feasibility of potato peel waste for biohydrogen production via dark fermentation, and investigated the effects of various inoculum enrichment methods (acid, aeration, heat-shock and base) on the process efficiency. It was observed that the hydrogen production showed a great variation when using various inoculum enrichment methods, and the aeration enriched inoculum obtained the maximum hydrogen yield of 71.0 mL/g-VSadded and VS removal of 28.9 %. Different enriched cultures also exhibited huge variations in the bacterial community structure and metabolic pathway. The highest abundance of Clostridium sensu stricto fundamentally contributed to the highest process efficiency for the fermenter inoculated with aeration treated culture. This work puts forward a promising strategy for recycling potato peel waste, and fills a gap in the optimal inoculum preparation method for biohydrogen fermentation of potato peel waste.


Subject(s)
Solanum tuberosum , Bioreactors , Clostridium/metabolism , Fermentation , Hydrogen/metabolism
2.
J Biotechnol ; 356: 60-64, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35878811

ABSTRACT

The effect of tungsten and selenium on cell growth and production of metabolites such as acetic acid and ethanol when fermenting syngas using "Clostridium autoethanogenum" was investigated to improve the process efficiency. General concentrations of selenium and tungsten in the medium are 0.01 µM during acetogenic syngas fermentation. We conducted culture experiments at concentrations of 0, 0.001, 0.01 and 0.1 µM for each heavy metal. The effect of selenium on cell growth and total metabolite production was greater than that of tungsten as the effect of selenium on formate dehydrogenase, an important enzyme of the Wood-Ljungdahl pathway, is greater than that of tungsten. Although an increase in tungsten had a marginal effect on total metabolite production, the ethanol/acetic acid production ratio increased significantly due to a decrease in acetic acid and an increase in ethanol production. Thus, tungsten plays a key role in activating aldehyde:ferredoxin oxidoreductase, a key enzyme in the reduction of acetate to ethanol. A specific ethanol productivity of 0.462 g ethanol/g DCW∙d was obtained in a culture using 0.01 µM selenium and 0.1 µM tungsten, which was 2.18 times higher than when using 0.01 µM of both selenium and tungsten.


Subject(s)
Selenium , Tungsten , Acetic Acid/metabolism , Clostridium/metabolism , Ethanol/metabolism , Fermentation , Selenium/metabolism , Tungsten/metabolism
3.
Bioresour Technol ; 359: 127448, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35691503

ABSTRACT

A conductive metal compound can be used as a catalyst for enhancing hydrogen production by dark fermentation. This study aimed to identify mechanisms of enhanced hydrogen production by magnetite supplementation. Experiments were performed with lactate and/or magnetite supplementation to confirm that the lactate-utilizing pathway is the key cause of enhanced hydrogen production. Also, ribonucleic acid sample was collected for monitoring gene regulation under each condition. Hydrogen production was significantly enhanced by approximately 25.6% and 58.9%, respectively, via magnetite alone and with lactate. Moreover, the expression of genes involved in hydrogen production, including pyruvate ferredoxin oxidoreductase, hydrogenase, and ferredoxin, via magnetite alone and with lactate was upregulated by 0.26, 0.71, and 3.50 and 1.06, 2.14, and 1.94 times, respectively.


Subject(s)
Clostridium butyricum , Acceleration , Clostridium/metabolism , Clostridium butyricum/metabolism , Dietary Supplements , Fermentation , Ferrosoferric Oxide/metabolism , Hydrogen/metabolism , Lactic Acid/metabolism
4.
Appl Environ Microbiol ; 88(7): e0241921, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35311509

ABSTRACT

Butyrate is produced by chemical synthesis based on crude oil, produced by microbial fermentation, or extracted from animal fats (M. Dwidar, J.-Y. Park, R. J. Mitchell, and B.-I. Sang, The Scientific World Journal, 2012:471417, 2012, https://doi.org/10.1100/2012/471417). Butyrate production by anaerobic bacteria is highly favorable since waste or sustainable resources can be used as the substrates. For this purpose, the native hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was used as a chassis strain due to its broad substrate spectrum. BLASTp analysis of the predicted proteome of C. saccharoperbutylacetonicum N1-4(HMT) resulted in the identification of gene products potentially involved in acetone-butanol-ethanol (ABE) fermentation. Their participation in ABE fermentation was either confirmed or disproven by the parallel production of acids or solvents and the respective transcript levels obtained by transcriptome analysis of this strain. The genes encoding phosphotransacetylase (pta) and butyraldehyde dehydrogenase (bld) were deleted to reduce acetate and alcohol formation. The genes located in the butyryl-CoA synthesis (bcs) operon encoding crotonase, butyryl-CoA dehydrogenase with electron-transferring protein subunits α and ß, and 3-hydroxybutyryl-CoA dehydrogenase were overexpressed to channel the flux further towards butyrate formation. Thereby, the native hyper-butanol producer C. saccharoperbutylacetonicum N1-4(HMT) was converted into the hyper-butyrate producer C. saccharoperbutylacetonicum ΔbldΔpta [pMTL83151_BCS_PbgaL]. The transcription pattern following deletion and overexpression was characterized by a second transcriptomic study, revealing partial compensation for the deletion. Furthermore, this strain was characterized in pH-controlled fermentations with either glucose or Excello, a substrate yielded from spruce biomass. Butyrate was the main product, with maximum butyrate concentrations of 11.7 g·L-1 and 14.3 g·L-1, respectively. Minimal amounts of by-products were detected. IMPORTANCE Platform chemicals such as butyrate are usually produced chemically from crude oil, resulting in the carry-over of harmful compounds. The selective production of butyrate using sustainable resources or waste without harmful by-products can be achieved by bacteria such as clostridia. The hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was converted into a hyper-butyrate producer. Butyrate production with very small amounts of by-products was established with glucose and the sustainable lignocellulosic sugar substrate Excello extracted from spruce biomass by the biorefinery Borregaard (Sarpsborg, Norway).


Subject(s)
Butyrates , Petroleum , 1-Butanol/metabolism , Acetone/metabolism , Butanols/metabolism , Butyrates/metabolism , Clostridium/genetics , Clostridium/metabolism , Ethanol/metabolism , Fermentation , Glucose/metabolism , Lignin , Petroleum/metabolism , Sugars/metabolism
5.
Pharmacol Res ; 175: 105981, 2022 01.
Article in English | MEDLINE | ID: mdl-34798264

ABSTRACT

Inchinkoto (ICKT) is a popular choleretic and hepatoprotective herbal medicine that is widely used in Japan. Geniposide, a major ingredient of ICKT, is metabolized to genipin by gut microbiota, which exerts a choleretic effect. This study investigates the relationship between stool genipin-producing activity and diversity of the clinical effect of ICKT in patients with malignant obstructive jaundice. Fifty-two patients with malignant obstructive jaundice who underwent external biliary drainage were included. ICKT was administered as three packets per day (7.5 g/day) for three days and 2.5 g on the morning of the fourth day. Stool samples were collected before ICKT administration and bile flow was monitored on a daily basis. The microbiome, genipin-producing activity, and organic acids in stools were analyzed. The Shannon-Wiener (SW) index was calculated to evaluate gut microbiome diversity. The stool genipin-producing activity showed a significant positive correlation with the SW index. Stool genipin-producing activity positively correlated with the order Clostridia (obligate anaerobes), but negatively correlated with the order Lactobacillales (facultative anaerobes). Moreover, stool genipin-producing activity was positively correlated to the concentration valeric acid, but negatively correlated to the concentration of lactic acid and succinic acid. The change of bile flow at 2 and 3 days after ICKT administration showed significant positive correlation with genipin-producing activity (correlation coefficient, 0.40 and 0.29, respectively, P < 0.05). An analysis of stool profile, including stool genipin-producing activity, may predict the efficacy of ICKT. Modification of the microbiome may be a target to enhance the therapeutic effect of ICKT.


Subject(s)
Cholagogues and Choleretics/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Feces/chemistry , Gastrointestinal Microbiome/drug effects , Iridoids/metabolism , Jaundice, Obstructive/drug therapy , Adult , Aged , Aged, 80 and over , Bile/chemistry , Carboxylic Acids/metabolism , Clostridium/genetics , Clostridium/metabolism , Female , Gastrointestinal Microbiome/genetics , Humans , Jaundice, Obstructive/microbiology , Lactobacillales/genetics , Lactobacillales/metabolism , Male , Middle Aged , Neoplasms/drug therapy , Neoplasms/microbiology , Treatment Outcome
6.
Biochem Soc Trans ; 48(5): 2283-2293, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32897293

ABSTRACT

Butanol is an important chemical and potential fuel. For more than 100 years, acetone-butanol-ethanol (ABE) fermentation of Clostridium strains has been the most successful process for biological butanol production. In recent years, other microbes have been engineered to produce butanol as well, among which Escherichia coli was the best one. Considering the crude oil price fluctuation, minimizing the cost of butanol production is of highest priority for its industrial application. Therefore, using cheaper feedstocks instead of pure sugars is an important project. In this review, we summarized butanol production from different renewable resources, such as industrial and food waste, lignocellulosic biomass, syngas and other renewable resources. This review will present the current progress in this field and provide insights for further engineering efforts on renewable butanol production.


Subject(s)
Biofuels , Butanols/metabolism , Metabolic Engineering/methods , Refuse Disposal/methods , Acetone/metabolism , Biomass , Biotechnology/methods , Butanols/chemistry , Carbon/chemistry , Clostridium/metabolism , Electrons , Escherichia coli/metabolism , Ethanol/metabolism , Fermentation , Food , Hexoses/chemistry , Hydrolysis , Models, Biological , Pentoses/chemistry , Petroleum , Sucrose/chemistry , Synthetic Biology
7.
PLoS One ; 15(5): e0229889, 2020.
Article in English | MEDLINE | ID: mdl-32396555

ABSTRACT

The purpose of the study involves the development of an anaerobic, thermophilic microbial consortium TERIK from the high temperature reservoir of Gujarat for enhance oil recovery. To isolate indigenous microbial consortia, anaerobic baltch media were prepared and inoculated with the formation water; incubated at 65°C for 10 days. Further, the microbial metabolites were analyzed by gas chromatography, FTIR and surface tension. The efficiency of isolated consortia towards enhancing oil recovery was analyzed through core flood assay. The novelty of studied consortia was that, it produces biomass (600 mg/l), bio-surfactant (325 mg/l), and volatile fatty acids (250 mg/l) at 65°C in the span of 10 days, that are adequate to alter the surface tension (70 to 34 mNm -1) and sweep efficiency of zones facilitating the displacement of oil. TERIK was identified as Clostridium sp. The FTIR spectra of biosurfactant indicate the presence of N-H stretch, amides and polysaccharide. A core flooding assay was designed to explore the potential of TERIK towards enhancing oil recovery. The results showed an effective reduction in permeability at residual oil saturation from 2.14 ± 0.1 to 1.39 ± 0.05 mD and 19% incremental oil recovery.


Subject(s)
Archaea/metabolism , Industrial Microbiology , Microbial Consortia , Oil and Gas Fields/microbiology , Clostridium/metabolism , Hot Temperature , Humans , Petroleum/microbiology , Surface Tension , Surface-Active Agents/pharmacology
8.
Molecules ; 24(19)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561523

ABSTRACT

A convenient and effective sucrose transport assay for Clostridium strains is needed. Traditional methods, such as 14C-sucrose isotope labelling, use radioactive materials and are not convenient for many laboratories. Here, a sucrose transporter from potato was introduced into Clostridium, and a fluorescence assay based on esculin was used for the analysis of sucrose transport in Clostridium strains. This showed that the heterologously expressed potato sucrose transporter is functional in Clostridium. Recombinant engineering of high-level sucrose transport would aid sucrose fermentation in Clostridium strains. The assay described herein provides an important technological platform for studying sucrose transporter function following heterologous expression in Clostridium.


Subject(s)
Biological Assay , Clostridium/genetics , Clostridium/metabolism , Gene Expression , Membrane Transport Proteins/genetics , Plant Proteins/genetics , Solanum tuberosum/metabolism , Sucrose/metabolism , Biological Transport , Fluorescence , Membrane Transport Proteins/metabolism , Plant Proteins/metabolism
9.
Colloids Surf B Biointerfaces ; 182: 110372, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31369953

ABSTRACT

Biosurfactant producing hypethermophilic microorganisms are essentially required for Microbial Enhanced Oil Recovery (MEOR) from high temperature oil reservoirs (above 90 °C). In the present study, biosurfactant producing Clostridium sp. N-4, optimally growing at 96 °C was isolated from a high temperature oil reservoir. Effect of pH, temperature and salinity on production and activity of N-4 biosurfactant was investigated. Biosurfactant produced by N-4 was partially purified by acid precipitation, characterized using FT-IR spectroscopy; and evaluated for its ability to enhance oil recovery in sand pack studies. The strain N-4 produced biosurfactant over a wide range of pH (5.0-9.0) and salinity (0-13%) at high temperature (80-100 °C) and optimally at pH 7, 96 °C and 4% salinity. N-4 biosurfactant was active at 37-101 °C; pH, 5-10 and salinity of 0-12 % (w/v). N-4 biosurfactant, characterized as glycoprotein reduced the surface tension of water by 32 ± 0.4 mN/m at critical micelle concentration of 100 µg/ml. N-4 biosurfactant mobilized 17.15% of residual oil saturation in sand pack studies. Similarly, the strain N-4 also recovered 36.92% of the residual oil in sand pack studies under the conditions mimicking the environment of depleted high temperature oil reservoir. Thus, the biosurfactant producing Clostridium sp. N-4 was identified as a suitable agent for enhanced oil recovery from high temperature oil reservoirs.


Subject(s)
Bacterial Proteins/metabolism , Clostridium/metabolism , Glycoproteins/metabolism , Hot Temperature , Petroleum/metabolism , Surface-Active Agents/metabolism , Bacterial Proteins/chemistry , Glycoproteins/chemistry , Hydrogen-Ion Concentration , Oil and Gas Fields/chemistry , Salinity , Spectroscopy, Fourier Transform Infrared , Surface-Active Agents/chemistry
10.
Food Res Int ; 123: 172-180, 2019 09.
Article in English | MEDLINE | ID: mdl-31284965

ABSTRACT

The effect of soluble extracts with putative prebiotic ability extracted from various bean varieties on the intestinal brush border membrane (BBM) iron related proteins, and intestinal bacterial populations were evaluated using the Gallus gallus model and by the intra-amniotic administration procedure. Eight treatment groups [(non-injected; 18 MΩ H2O; 40 mg/mL Inulin; 50 mg/mL BRS Perola (carioca standard); 50 mg/mL BRS Cometa (carioca, Fe biofortified); 50 mg/mL BRS Esteio (black, standard); 50 mg/mL SMN 39 (black, Fe biofortified); 50 mg/mL BRS Artico (white, standard)] were utilized. Tested groups reduced the relative abundance of Clostridium and E. coli compared to the Inulin group (positive control) and they did not affect the relative abundance of Bifidobacterium and Lactobacillus compared to the negative control (18MΩ H2O). The relative expression of zinc transporter 1, ferroportin and amino peptidase were up-regulated in the BRS Cometa group (Fe-biofortified carioca beans). Results suggest that soluble extracts from carioca beans may improve the iron bioavailability by affecting intestinal bacterial populations, and BBM functionality.


Subject(s)
Chickens/microbiology , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Iron/metabolism , Microvilli/metabolism , Phaseolus/chemistry , Plant Extracts/pharmacology , Animals , Bacteria/classification , Bacteria/drug effects , Bacteria/metabolism , Bifidobacterium/metabolism , Cation Transport Proteins/metabolism , Clostridium/drug effects , Clostridium/metabolism , Dietary Fiber , Escherichia coli/drug effects , Escherichia coli/metabolism , Prebiotics
11.
J Microbiol Biotechnol ; 29(7): 1083-1095, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31216841

ABSTRACT

Butyrate is known to play a significant role in energy metabolism and regulating genomic activities that influence rumen nutrition utilization and function. Thus, this study investigated the effects of an isolated butyrate-producing bacteria, Clostridium saccharobutylicum, in rumen butyrate production, fermentation parameters and microbial population in Holstein-Friesian cow. An isolated butyrate-producing bacterium from the ruminal fluid of a Holstein-Friesian cow was identified and characterized as Clostridium saccharobutylicum RNAL841125 using 16S rRNA gene sequencing and phylogenetic analyses. The bacterium was evaluated on its effects as supplement on in vitro rumen fermentation and microbial population. Supplementation with 106 CFU/ml Clostridium saccharobutylicum increased (p < 0.05) microbial crude protein, butyrate and total volatile fatty acids concentration but had no significant effect on NH3-N at 24 h incubation. Butyrate and total VFA concentrations were higher (p < 0.05) in supplementation with 106 CFU/ml Clostridium saccharobutylicum compared with control, with no differences observed for total gas production, NH3-N and propionate concentration. However, as the inclusion rate (CFU/ml) of C. saccharobutylicum was increased, reduction of rumen fermentation values was observed. Furthermore, butyrate-producing bacteria and Fibrobacter succinogenes population in the rumen increased in response with supplementation of C. saccharobutylicum, while no differences in the population in total bacteria, protozoa and fungi were observed among treatments. Overall, our study suggests that supplementation with 106 CFU/ml C. saccharobutylicum has the potential to improve ruminal fermentation through increased concentrations of butyrate and total volatile fatty acid, and enhanced population of butyrate-producing bacteria and cellulolytic bacteria F. succinogenes.


Subject(s)
Butyrates/metabolism , Clostridium/physiology , Dietary Supplements , Fermentation , Gastrointestinal Microbiome , Rumen/microbiology , Animal Feed/analysis , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cattle/metabolism , Cattle/microbiology , Clostridium/classification , Clostridium/genetics , Clostridium/metabolism , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics
12.
J Vasc Interv Radiol ; 30(7): 1106-1115.e1, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30952520

ABSTRACT

PURPOSE: To label Clostridium novyi-NT spores (C. novyi-NT) with iron oxide nanoclusters and track distribution of bacteria during magnetic resonance (MR) imaging-monitored locoregional delivery to liver tumors using intratumoral injection or intra-arterial transcatheter infusion. MATERIALS AND METHODS: Vegetative state C. novyi-NT were labeled with iron oxide particles followed by induction of sporulation. Labeling was confirmed with fluorescence microscopy and transmission electron microscopy (TEM). T2 and T2* relaxation times for magnetic clusters and magnetic microspheres were determined using 7T and 1.5T MR imaging scanners. In vitro assays compared labeled bacteria viability and oncolytic potential to unlabeled controls. Labeled spores were either directly injected into N1-S1 rodent liver tumors (n = 24) or selectively infused via the hepatic artery in rabbits with VX2 liver tumors (n = 3). Hematoxylin-eosin, Prussian blue, and gram staining were performed. Statistical comparison methods included paired t-test and ANOVA. RESULTS: Both fluorescence microscopy and TEM studies confirmed presence of iron oxide labels within the bacterial spores. Phantom studies demonstrated that the synthesized nanoclusters produce R2 relaxivities comparable to clinical agents. Labeling had no significant impact on overall growth or oncolytic properties (P >.05). Tumor signal-to-noise ratio (SNR) decreased significantly following intratumoral injection and intra-arterial infusion of labeled spores (P <.05). Prussian blue and gram staining confirmed spore delivery. CONCLUSIONS: C. novyi-NT spores can be internally labeled with iron oxide nanoparticles to visualize distribution with MR imaging during locoregional bacteriolytic therapy involving direct injection or intra-arterial transcatheter infusion.


Subject(s)
Biological Therapy/methods , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/therapy , Clostridium/metabolism , Contrast Media/administration & dosage , Ferric Compounds/administration & dosage , Liver Neoplasms, Experimental/diagnostic imaging , Liver Neoplasms, Experimental/therapy , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/administration & dosage , Molecular Imaging/methods , Spores, Bacterial , Animals , Carcinoma, Hepatocellular/microbiology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Clostridium/genetics , Clostridium/pathogenicity , Contrast Media/metabolism , Ferric Compounds/metabolism , Liver Neoplasms, Experimental/microbiology , Liver Neoplasms, Experimental/pathology , Predictive Value of Tests , Rabbits , Rats, Sprague-Dawley
13.
Bioresour Technol ; 282: 110-117, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30852330

ABSTRACT

In this work, effect of Fe0 nanoparticles (Fe0 NPs) on macroalgae fermentation was explored. Hydrogen production was significantly enhanced by 6.5 times comparing with control test, achieving 20.25 mL H2/g VSadded with addition of 200 mg/L Fe0 NPs. In-depth analysis of substrate conversion showed that both hydrogen generation and acids accumulation were promoted with Fe0 NPs supplementation. Microbial analysis demonstrated that both hydrogen-producing strains belonging to genus Clostridium and Terrisporobacter sp. favorable for acids formation were enriched with Fe0 NPs supplementation, while species Acinetobacter lwoffii beneficial to organics mineralization was eliminated. Complex substrate compositions resulted in more prevalent cooperative relationships among species in the system. This study suggested that Fe0 NPs plays a crucial role in macroalgae fermentation by affecting the microbial distribution, subsequently influencing the products distribution and energy conversion.


Subject(s)
Bacteria/metabolism , Hydrogen/metabolism , Nanoparticles , Seaweed/metabolism , Clostridium/metabolism , Fermentation , Iron/chemistry
14.
Trends Biotechnol ; 37(8): 855-869, 2019 08.
Article in English | MEDLINE | ID: mdl-30871798

ABSTRACT

'Higher' alcohols, which contain more than two carbons, have a higher boiling point, higher cetane number, and higher energy density than ethanol. Blends of biodiesel and higher alcohols can be used in internal combustion engines as next-generation biofuels without any modification and are minimally corrosive over extensive use. Producing higher alcohols from biomass involves fermenting and metabolizing amino acids. In this review, we describe the pathways and regulatory mechanisms involved in amino acid bioprocessing to produce higher alcohols and the effects of amino acid supplementation as a nitrogen source for higher alcohol production. We also discuss the most recent approaches to improve higher alcohol production via genetic engineering technologies for three microorganisms: Saccharomyces cerevisiae, Clostridium spp., and Escherichia coli.


Subject(s)
Alcohols/metabolism , Amino Acids/metabolism , Clostridium/metabolism , Escherichia coli/metabolism , Metabolic Networks and Pathways , Saccharomyces cerevisiae/metabolism , Biotechnology/methods , Biotransformation , Clostridium/genetics , Escherichia coli/genetics , Saccharomyces cerevisiae/genetics
15.
Biotechnol Bioeng ; 116(2): 294-306, 2019 02.
Article in English | MEDLINE | ID: mdl-30267586

ABSTRACT

Synthesis gas (syngas) fermentation via the Wood-Ljungdahl pathway is receiving growing attention as a possible platform for the fixation of CO2 and renewable production of fuels and chemicals. However, the pathway operates near the thermodynamic limit of life, resulting in minimal adenosine triphosphate (ATP) production and long doubling times. This calls into question the feasibility of producing high-energy compounds at industrially relevant levels. In this study, we investigated the possibility of co-utilizing nitrate as an inexpensive additional electron acceptor to enhance ATP production during H2 -dependent growth of Clostridium ljungdahlii, Moorella thermoacetica, and Acetobacterium woodii. In contrast to other acetogens tested, growth rate and final biomass titer were improved for C. ljungdahlii growing on a mixture of H2 and CO2 when supplemented with nitrate. Transcriptomic analysis, 13CO2 labeling, and an electron balance were used to understand how electron flux was partitioned between CO2 and nitrate. We further show that, with nitrate supplementation, the ATP/adenosine diphosphate (ADP) ratio and acetyl-CoA pools were increased by fivefold and threefold, respectively, suggesting that this strategy could be useful for the production of ATP-intensive heterologous products from acetyl-CoA. Finally, we propose a pathway for enhanced ATP production from nitrate and use this as a basis to calculate theoretical yields for a variety of products. This study demonstrates a viable strategy for the decoupling of ATP production from carbon dioxide fixation, which will serve to significantly improve the CO2 fixation rate and the production metrics of other chemicals from CO2 and H2 in this host.


Subject(s)
Acetobacterium/metabolism , Carbon Dioxide/metabolism , Clostridium/metabolism , Hydrogen/metabolism , Moorella/metabolism , Nitrates/metabolism , Acetobacterium/growth & development , Adenosine Triphosphate/biosynthesis , Carbon Cycle , Clostridium/growth & development , Metabolic Flux Analysis , Moorella/growth & development
16.
Biotechnol Adv ; 36(8): 2101-2117, 2018 12.
Article in English | MEDLINE | ID: mdl-30266343

ABSTRACT

Butyric acid is an important C4 organic acid with broad applications. It is currently produced by chemosynthesis from petroleum-based feedstocks. However, the fermentative production of butyric acid from renewable feedstocks has received growing attention because of consumer demand for green products and natural ingredients in foods, pharmaceuticals, animal feed supplements, and cosmetics. In this review, strategies for improving microbial butyric acid production, including strain engineering and novel fermentation process development are discussed and compared regarding product yield, titer, purity and productivity. Future perspectives on strain and process improvements for butyric acid production are also discussed.


Subject(s)
Bioreactors/microbiology , Butyric Acid/metabolism , Clostridium , Metabolic Engineering , Clostridium/enzymology , Clostridium/genetics , Clostridium/metabolism , Fermentation , Metabolic Networks and Pathways
17.
N Biotechnol ; 46: 54-60, 2018 Nov 25.
Article in English | MEDLINE | ID: mdl-30044962

ABSTRACT

Potato peel from a snack factory was assessed as possible feedstock for biobutanol production. This lignocellulosic biomass was subjected to various physicochemical pretreatments (autohydrolysis and hydrolysis with dilute acids, alkalis, organic solvents or surfactants) under different conditions of time, temperature and reagent concentrations, in order to favour the release of sugars and reduce the generation of fermentation inhibitors. Thereafter, the pretreated potato peel was treated enzymatically to complete the hydrolysis. Autohydrolysis at 140 °C and 56 min was the most effective pretreatment, releasing 37.9 ± 2.99 g/L sugars from an aqueous mixture containing 10% (w/w) potato peel (sugar recovery efficiency 55 ± 13%). The fermentability of the hydrolysates was checked with six strains of Clostridium beijerinckii, C. acetobutylicum, C. saccharobutylicum and C. saccaroperbutylacetonicum. C. saccharobutylicum DSM 13864 produced 2.1 g/L acetone, 7.6 g/L butanol and 0.6 g/L ethanol in 96 h (0.186 gB/gS), whereas C. saccharoperbutylacetonicum DSM 2152 generated 1.8 g/L acetone, 8.1 g/L butanol and 1.0 g/L ethanol in 120 h (0.203 gB/gS). Detoxification steps of the hydrolysate before fermentation were not necessary. Potato peel may be an interesting feedstock for biorefineries focused on butanol production.


Subject(s)
Butanols/metabolism , Butanols/supply & distribution , Industrial Waste , Snacks , Solanum tuberosum/metabolism , Butanols/chemistry , Clostridium/metabolism , Fermentation , Hydrolysis , Solanum tuberosum/chemistry
18.
FEMS Microbiol Ecol ; 94(9)2018 09 01.
Article in English | MEDLINE | ID: mdl-29982420

ABSTRACT

To identify intestinal bacteria that produce phenols (phenol and p-cresol), we screened 153 strains within 152 species in 44 genera by culture-based assay using broth media supplemented with 200 µM each of tyrosine and its predicted microbial metabolic intermediates (4-hydroxyphenylpyruvate, DL-4-hydroxyphenyllactate, 3-(p-hydroxyphenyl)propionate, 4-hydroxyphenylacetate and 4-hydroxybenzoate). Phenol-producing activity was found in 36 strains and p-cresol-producing activity in 55 strains. Sixteen strains had both types of activity. Phylogenetic analysis based on the 16S rRNA gene sequences of strains that produced 100 µM or more of phenols revealed that 16 phenol producers belonged to the Coriobacteriaceae, Enterobacteriaceae, Fusobacteriaceae and Clostridium clusters I and XIVa; four p-cresol-producing bacteria belonged to the Coriobacteriaceae and Clostridium clusters XI and XIVa; and one strain producing both belonged to the Coriobacteriaceae. A genomic search for protein homologs of enzymes involved in the metabolism of tyrosine to phenols in 10 phenol producers and four p-cresol producers, the draft genomes of which were available in public databases, predicted that phenol producers harbored tyrosine phenol-lyase or hydroxyarylic acid decarboxylase, or both, and p-cresol producers harbored p-hydroxyphenylacetate decarboxylase or tyrosine lyase, or both. These results provide important information about the bacterial strains that contribute to production of phenols in the intestine.


Subject(s)
Actinobacteria/metabolism , Clostridium/metabolism , Cresols/metabolism , Enterobacteriaceae/metabolism , Fusobacteria/metabolism , Intestines/microbiology , Phenol/metabolism , Actinobacteria/classification , Actinobacteria/genetics , Clostridium/classification , Clostridium/genetics , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Fusobacteria/classification , Fusobacteria/genetics , Gastrointestinal Microbiome/physiology , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Tyrosine
19.
J Sci Food Agric ; 98(12): 4462-4470, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29457650

ABSTRACT

BACKGROUND: A laboratory-silo study was conducted to evaluate the fermentation quality, feed-nutritive value and aerobic stability of sweet sorghum silage with or without oil-extracted microalgae supplementation. Sweet sorghum was mixed with four microalgae levels (0%, 1%, 2% and 3% on a dry matter basis; control, M1, M2 and M3, respectively) and ensiled for 45 d. Further, the four experimental silages were subjected to an aerobic stability test lasting 7 d. RESULTS: All the silages except M3 silage had good fermentative characteristics with low pH and ammonia nitrogen concentrations, and high lactic acid concentrations and favorable microbial parameters. Meanwhile, oil-extracted microalgae supplementation improved the feed-nutritional value of sweet sorghum silage. Fibre (neutral detergent fibre, acid detergent fibre, acid detergent lignin and cellulose) concentrations decreased, while dry matter and crude protein levels markedly increased (P < 0.05). Compared with the control (69.7 h), treatments M2 and M3 improved the aerobic stability of sweet sorghum silage by 43.8% and more than 143% respectively, and decreased the clostridia spore counts during the stage of air exposure. CONCLUSION: Sweet sorghum silage produced with 2% oil-extracted microalgae addition was the most suitable for animal use due to the optimal balance of fermentation quality, feed-nutritional value and aerobic stability, which merits further in vivo studies using grazing ruminants. © 2018 Society of Chemical Industry.


Subject(s)
Animal Feed/analysis , Microalgae/chemistry , Plant Extracts/chemistry , Ruminants/metabolism , Sorghum/chemistry , Animals , Clostridium/growth & development , Clostridium/metabolism , Fermentation , Lactobacillales/growth & development , Lactobacillales/metabolism , Microalgae/metabolism , Nutritive Value , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Silage/analysis , Sorghum/metabolism , Yeasts/growth & development , Yeasts/metabolism
20.
Arch Microbiol ; 200(3): 505-515, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29204666

ABSTRACT

A Gram-positive, obligately anaerobic, oval-rod shaped, non-spore-forming, and non-pigmented bacterium, designated strain NATH-2371T (= JCM31739T = DSM105698T), was isolated from dog feces. Comparative 16S rRNA gene sequence analysis revealed that strain NATH-2371T belongs to Clostridium cluster XIVa, and the closest strains were Coprococcus comes ATCC 27758T (94.8% 16S rRNA gene sequence similarity) and Clostridium nexile DSM 1787T (94.0%). Strain NATH-2371T produced acetate, formate, and ethanol from glucose. Predominant cellular fatty acids are C16:0 and C16:0 DMA. On the basis of the phenotypic and genotypic differences, strain NATH-2371T represents a novel species in a new genus of the family Lachnospiraceae, for which the name Glucerabacter canisensis gen. nov., sp. nov., is proposed. This strain was found to efficiently hydrolyze plant glucosylceramide (GluCer). The abundance of strain NATH-2371T in dog feces was higher in young dogs than in old dogs. Incubation of dog fecal bacteria showed that GluCer-hydrolyzing activity decreased with the age of dogs. The cell number of strain NATH-2371T in dog feces appeared to be correlated with GluCer hydrolysis. Thus, this bacterium is likely to play a major role in GluCer hydrolysis in the dog intestine.


Subject(s)
Clostridium/genetics , Glucosylceramides/metabolism , Animals , Base Composition , Clostridium/isolation & purification , Clostridium/metabolism , DNA, Bacterial/genetics , Dogs , Fatty Acids/analysis , Fatty Acids/chemistry , Feces/microbiology , Female , Hydrolysis , Intestines/microbiology , Molecular Typing , Phylogeny , Plant Extracts/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL