ABSTRACT
Titanium dioxide nanoparticles (TiO2-NPs) have found wide applications in medical and industrial fields. However, the toxic effect of various tissues is still under study. In this study, we evaluated the toxic effect of TiO2-NP on stomach, liver, and kidney tissues and the amelioration effect of clove oil nanoemulsion (CLV-NE) against DNA damage, oxidative stress, pathological changes, and the apoptotic effect of TiO2-NPs. Four groups of male mice were subjected to oral treatment for five consecutive days including, the control group, the group treated with TiO2-NPs (50 mg/kg), the group treated with (CLV-NE) (5% of the MTD), and the group treated with TiO2-NPs plus CLV-NE. The results revealed that the treatment with TiO2-NPs significantly caused DNA damage in the liver, stomach, and kidney tissues due to increased ROS as indicated by the reduction of the antioxidant activity of SOD and Gpx and increased MDA level. Further, abnormal histological signs and apoptotic effect confirmed by the significant elevation of p53 expression were reported after TiO2-NPs administration. The present data reported a significant improvement in the previous parameters after treatment with CLV-NE. These results showed the collaborative effect of the oils and the extra role of nanoemulsion in enhancing antioxidant effectiveness that enhances its disperse-ability and further promotes its controlled release. One could conclude that CLV-NE is safe and can be used as a powerful antioxidative agent to assess the toxic effects of the acute use of TiO2-NPs.
Subject(s)
Metal Nanoparticles , Nanoparticles , Mice , Male , Animals , Clove Oil/toxicity , Nanoparticles/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress , Titanium/toxicity , DNA DamageABSTRACT
The use of natural compounds to prevent and treat infective diseases is increasing its importance, especially in the case of multidrug-resistant (MDR) microorganisms-mediated infections. The drug resistance phenomenon is today a global problem, so it is important to have available substances able to counteract MDR infections. Syzygium aromaticum (L.) Merr. & L.M. Perry (commonly called clove) is a spice characterized by several biological properties. Clove essential oil (EO) consists of numerous active molecules, being eugenol as the principal component; however, other compounds that synergize with each other are responsible for the biological properties of the EO. S. aromaticum is traditionally used for bowel and stomach disorders, cold and flu, oral hygiene, tooth decay, and for its analgesic action. Its EO has shown antioxidant, antimicrobial, anti-inflammatory, neuro-protective, anti-stress, anticancer, and anti-nociceptive activities. This review aims to investigate the role of E. S. aromaticum EO in the counteraction of MDR microorganisms responsible for human disorders, diseases, or infections, such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi, Candida albicans, Giardia lamblia, Streptococcus mutans, Porphyromonas gingivalis, and Klebsiella pneumoniae. This study might orient clinical researchers on future therapeutic uses of S. aromaticum EO in the prevention and treatment of infectious diseases.
Subject(s)
Anti-Infective Agents , Oils, Volatile , Syzygium , Humans , Clove Oil , EugenolABSTRACT
BACKGROUND: External parasites, particularly ticks and fleas, are among the most common problems affecting dogs. Chemical medicines are commonly used to prevent and eliminate such external parasites, but their improper use can cause adverse reactions, and the toxins they contain may remain in the environment. OBJECTIVES: The objective of this study was to investigate the in vitro efficacy of Zanthoxylum limonella, citronella, clove, peppermint, and ginger essential oils against dog ticks and fleas and to test the sensitivity of dogs' skin to these essential oils. METHODS: The five essential oils were tested for in vitro efficacy against ticks and fleas, and the two most effective essential oils were then tested on the dogs' skin. RESULTS: The results revealed that these five essential oils at 16% concentrations effectively inhibited the spawning of female engorged ticks. In addition, all five essential oils had a strong ability to kill tick larvae at concentrations of 2% upward. Furthermore, 4% concentrations of the five essential oils quickly eliminated fleas, especially clove oil, which killed 100% of fleas within 1 h. A 50%, 90%, and 99% lethal concentration (LC50, LC90, and LC99) for the essential oils on tick larvae in 24 h were found to be low values. LC50, LC90, and LC99 for the essential oils on flea in 1 h was lowest values. Clove oil at 16% concentration was the most satisfactory essential oil for application on dogs' skin, with a low percentage of adverse effects. CONCLUSIONS: This study confirmed the effectiveness of essential oils for practical use as tick and flea repellents and eliminators. Essential-oil-based pharmaceutical can replace chemical pesticides and provide benefits for both consumers and the environment.
Subject(s)
Dog Diseases , Flea Infestations , Insecticides , Oils, Volatile , Siphonaptera , Tick Infestations , Veterinary Drugs , Animals , Female , Dogs , Insecticides/pharmacology , Tick Infestations/prevention & control , Tick Infestations/veterinary , Oils, Volatile/pharmacology , Clove Oil/pharmacology , Veterinary Drugs/pharmacology , Flea Infestations/parasitology , Flea Infestations/prevention & control , Flea Infestations/veterinary , Dog Diseases/drug therapy , Dog Diseases/prevention & control , Dog Diseases/parasitologyABSTRACT
The ectoparasitic mite, Varroa destructor is the most serious widespread pest of managed honeybees (Apis mellifera). Several acaricide products, which include essential oils, have been proposed for mite control. In this study, we aimed to apply atmospheric-pressure plasma to modify a cardboard piece surface in order to prolong the delivery of essential oils for controlling Varroa in honeybee colonies. Absorption capacity, release rates and evaporation rates of essential oils were determined. Cardboard piece showed a higher absorption capacity of cinnamon compared to citronella and clove. Surface modification of cardboard pieces using argon plasma at different gas flow rates and treatment durations, significantly affected the absorption of clove oil. Additionally, the release rate of cinnamon, citronella and clove was significantly enhanced after argon plasma treatments. Evaporation of cinnamon was dramatically increased by plasma treatment at 6-h of incubation. The highest evaporation rate was obtained by plasma-treated cardboard piece at a gas flow rate of 0.5 Lpm for 60 s (0.2175 ± 0.0148 µl/gâ¢h). Efficiency of plasma-treated cardboard piece, impregnated with essential oils, was also investigated for Varroa control in honeybee colonies. In the first experiment, formic acid 65% (v/v) showed the highest efficiency of 90.60% and 81.59% with the percent of mite infestation was 0.23 ± 0.13% and 0.47 ± 0.19% at 21 and 35 days, respectively after treatment. The efficacy of cardamon oil (5% (v/v)) delivered using plasma-treated cardboard pieces was 57.71% (0.70 ± 0.16% of mite infestation) at day 21 of experiment. However, the delivery of cardamon oil at the concentration of 1% and 5% (v/v) by untreated cardboard piece had 16.93% and 24.05% of efficacy to control mites. In the 2nd experiment, the application of plasma-treated cardboard pieces impregnated with 5% (v/v) clove oil induced a 38.10% reduction in the population of Varroa mites followed by 5% (v/v) of cardamon with 30% efficiency. Although, the infestation rate of Varroa in colonies was not significant different between treatments, essential oils delivered using plasma-treated cardboard pieces tended to decrease Varroa population in the treated colonies. Hence, atmospheric-pressure plasma for the modification of other materials, should be further investigated to provide alternative control treatment applications against honeybee mites.
Subject(s)
Acaricides , Lamiaceae , Oils, Volatile , Plasma Gases , Scabies , Varroidae , Bees , Animals , Acaricides/pharmacology , Oils, Volatile/pharmacology , Clove Oil , Plasma Gases/pharmacologyABSTRACT
In this study, we have successfully produced a corn starch-based composite film through the casting method, formulated with clove essential oil nanoemulsion (NCEO) and corn starch. The physical and chemical changes of the composite films were investigated at various concentrations (10 %, 20 % and 40 %) of NCEO. Furthermore, the non-contact preservation effects of the composite films on bread during 15-day storage were also examined in this study. As the concentration of NCEO increased, the composite films presented a gradual thinning, roughening, and yellowing in appearance. Following this, the water content, water vapor permeability rate, and elongation at break of the films decreased, while their hydrophobicity, tensile strength, antioxidant and antimicrobial activity increased accordingly. Through FT-IR, X-ray diffraction and thermal gravimetric analysis, it was demonstrated that NCEO has strong compatibility with corn starch. Additionally, the indices' analysis indicated that utilizing the composite film incorporating 40 % NCEO can significantly boost the shelf life and quality of bread. Moreover, it was revealed that application of the non-contact treatment with composite film could potentially contribute certain preservation effects towards bread. In light of these findings, the composite film with non-contact treatment exhibits potential as an effective, safe, and sustainable preservation technique for grain products.
Subject(s)
Oils, Volatile , Syzygium , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Clove Oil/pharmacology , Clove Oil/chemistry , Starch/chemistry , Spectroscopy, Fourier Transform Infrared , Bread , Permeability , Food PackagingABSTRACT
This study evaluated the physicochemical and antioxidant properties of clove essential oil (0, 0.2, 0.4, 0.6, 0.8, 1.0 % v/v) nanoemulsion (CEON) loaded chitosan-based films. With the increasing concentrations of the CEON, the thickness, b* and ΔE values of the films increased significantly (P < 0.05), while L* and light transmission dropped noticeably (P < 0.05). The hydrogen bonds formed between the CEON and chitosan could be demonstrated through Fourier-transform infrared spectra, indicating their good compatibility and intermolecular interactions. Furthermore, the added CEON considerably reduced the crystallinity and resulted in a porous structure of the films, as observed through X-ray diffraction plots and scanning electron microscopy images, respectively. This eventually led to a drop in both tensile strength and moisture content of the films. Moreover, the antioxidant properties were significantly enhanced (P < 0.05) with the increase in the amount of clove essential oil (CEO) due to the encapsulation of CEO by the nanoemulsion. Films containing 0.6 % CEO had higher elongation at break, higher water contact angle, lower water solubility, lower water vapor permeability, and lower oxygen permeability than the other films; therefore, such films are promising for application in meat preservation.
Subject(s)
Chitosan , Oils, Volatile , Syzygium , Chitosan/chemistry , Oils, Volatile/pharmacology , Clove Oil/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Syzygium/chemistry , Spectroscopy, Fourier Transform Infrared , Permeability , Food Packaging/methods , SteamABSTRACT
The objective of this study was to evaluate lactational performance, enteric gas emissions, ruminal fermentation, nutrient use efficiency, milk fatty acid profile, and energy and inflammatory markers in blood of peak-lactation dairy cows fed diets supplemented with Capsicum oleoresin or a combination of Capsicum oleoresin and clove oil. A 10-wk randomized complete block design experiment was conducted with 18 primiparous and 30 multiparous Holstein cows. Cows were blocked based on parity, days in milk, and milk yield (MY), and randomly assigned to 1 of 3 treatments (16 cows/treatment): (1) basal diet (CON); (2) basal diet supplemented with 300 mg/cow per day of Capsicum oleoresin (CAP); and (3) basal diet supplemented with 300 mg/cow per day of a combination of Capsicum oleoresin and clove oil (CAPCO). Premixes containing ground corn (CON), CAP, or CAPCO were mixed daily with the basal diet at 0.8% of dry matter intake (DMI). Supplementation of the diet with CAP or CAPCO did not affect DMI, MY, milk components, and feed efficiency of the cows. Body weight (BW) was increased during the last 2 wk of the experiment by CAP and CAPCO, compared with CON. The botanicals improved BW gain (0.85 and 0.66 kg/d for CAP and CAPCO, respectively, compared with -0.01 kg/d for CON) and CAP enhanced the efficiency of energy utilization, compared with CON (94.5% vs. 78.4%, respectively). Daily CH4 emission was not affected by treatments, but CH4 emission yield (per kg of DMI) and intensity (per kg of MY) were decreased by up to 11% by CAPCO supplementation, compared with CON and CAP. A treatment × parity interaction indicated that the CH4 mitigation effect was pronounced in primiparous but not in multiparous cows. Ruminal molar proportion of propionate was decreased by botanicals, compared with CON. Concentrations of trans-10 C18:1 and total trans fatty acids in milk fat were decreased by CAP and tended to be decreased by CAPCO, compared with CON. Total-tract apparent digestibility of nutrients was not affected by treatments, except for a tendency for decreased starch digestibility in cows supplemented with botanicals. Blood concentrations of ß-hydroxybutyrate, total fatty acids, and insulin were not affected by botanicals. Blood haptoglobin concentration was increased by CAP in multiparous but not in primiparous cows. Lactational performance of peak-lactation dairy cows was not affected by the botanicals in this study, but they appeared to improve efficiency of energy utilization and partitioned energy toward BW gain. In addition, CH4 yield and intensity were decreased in primiparous cows fed CAPCO, suggesting a potential positive environmental effect of the combination of Capsicum oleoresin and clove oil supplementation.
Subject(s)
Clove Oil , Methane , Animals , Cattle , Female , Pregnancy , Clove Oil/pharmacology , Diet/veterinary , Dietary Supplements/analysis , Digestion , Fatty Acids , Lactation , Milk , Nutrients , Rumen , Zea maysABSTRACT
Little research has taken place on the effect of euthanasia methods on biophysical and biochemical changes at the time of euthanasia in fish. These changes are used in multiple species to determine stress levels before death. Koi (Cyprinus carpio) are an important fish species often used in laboratory research, kept in backyard ponds, and managed in zoological and aquarium collections. The current study evaluated euthanasia of koi by immersion in 0.5 g/L tricaine methanesulfonate (MS-222) (n = 10), 0.5 g/L clove oil (n = 8), 1 g/L clove oil (n = 10), and CO2 (n = 7) on time to cessation of opercular movement, plasma lactate levels, and plasma cortisol levels. CO2 had the longest mean time to cessation of opercular movement, and MS-222 had the shortest (mean CO2: 24.9 min, range 13.18-31.35 min; MS-222: 2.68 min, range 1.33-4.5 min). The difference was not significant between any of the groups for plasma cortisol or lactate levels. MS-222 demonstrated the highest cortisol levels, and CO2 had the lowest (mean CO2: 108.7 ng/ml, range 33.9-195.8 ng/ml; MS-222: 650.6 ng/ml, range 77.3-2374.9 ng/ml). Average lactate levels were highest for 1 g/L clove oil and lowest for 0.5 g/L clove oil (mean 0.5 g/L clove oil: 5.1 mmol/L, range 1.8-8.1 mmol/L; 1 g/L clove oil: 7.4 mmol/L, range 5.6-10.5 mmol/L).
Subject(s)
Aminobenzoates , Carps , Lactic Acid , Animals , Carbon Dioxide , Clove Oil/pharmacology , Hydrocortisone , Water , Immersion , Anesthetics, Local , Esters , MesylatesABSTRACT
Nile tilapia, Oreochromis niloticus, is the most cultivated fish species in the world, due to its low cost, high growth rate, environmental adaptability, and resistance to disease and stress. Anesthetics for fish become necessary in management because they minimize mortality during transport and maintenance of ponds, one of the most used anesthetics is clove oil, which has eugenol as the major substance, representing 90-95 % of clove oil. The present study evaluates the effect of eugenol on cardiac activity in Oreochromis niloticus specimens and relates it to behavioral data to determine a concentration window for safe anesthesia. For the comportamental analysis, was used five treatments (50, 75, 100, 125, and 150 µL·L-1) were evaluated and for the eletrocardiographic test was used seven groups (Control, Vehicle, 50, 75, 100, 125, and 150 µL·L-1), n = 9/treatment, totaling 108 animals. Behavioral and electrocardiographic tests were performed on all treatments during induction and recovery. The results of the behavioral tests demonstrated the reversibility of the effects with recovery of the posture reflex, varying according to the concentration. The ECG results showed a slow recovery because, at concentrations above 100 µL·L-1, there was no full reversibility of the cardiac effects in the observed experiment time, which could cause greater changes in the tilapia hemodynamics, which led us to identify a window for safe anesthesia. Eugenol is an effective anesthetic in Nile tilapia juveniles when used in concentrations ranging from 50 to 100 µL·L-1, if there is a need for anesthetic deepening, doses above 100 µL·L-1, however, the animals must be monitored due to hemodynamic changes.
Subject(s)
Anesthesia , Anesthetics , Cichlids , Animals , Eugenol/toxicity , Clove Oil , Baths , Immersion , Anesthetics/toxicity , Anesthesia/veterinaryABSTRACT
This study aimed to investigate the effectiveness of cellulose nanocrystals (CNC) isolated from cotton in augmenting pectin (PEC)/konjac glucomannan (KGM) composite films containing clove essential oil (CEO) for food packaging application. The effects of CNC dosage on film properties were examined by analyzing the rheology of film-forming solutions and the mechanical, barrier, antimicrobial, and CEO-release properties of the films. Rheological and FTIR analysis revealed the enhanced interactions among the film components after CNC incorporation due to its high aspect ratio and abundant hydroxyl groups, which can also prevent CEO droplet aggregation, contributing to form a compact microstructure as confirmed by SEM and 3D surface topography observations. Consequently, the addition of CNC reinforced the polysaccharide matrix, increasing the tensile strength of the films and improving their barrier properties to water vapor. More importantly, antibacterial, controlled release and kinetic simulation experiments proved that the addition of CNC could further slow down the release rate of CEO, prolonging the antimicrobial properties of the films. PEC/KGM/CEO composite films with 15 wt% CNC was found to have relatively best comprehensive properties, which was also most effective in delaying deterioration of grape quality during the storage of 9 days at 25 °C.
Subject(s)
Anti-Infective Agents , Mannans , Nanoparticles , Oils, Volatile , Syzygium , Cellulose/chemistry , Oils, Volatile/pharmacology , Clove Oil/pharmacology , Pectins , Anti-Infective Agents/pharmacology , Nanoparticles/chemistryABSTRACT
Recently, the concept of biodegradable and bioactive packaging and surface coating has become a trend. In this work, the bioactive films of chitosan were elaborated following the casting method. Contrary to the films containing the Cinnamomum zeylanicum Blume, Thymus satureioides Cosson, and Syzygium aromaticum essential oils (EOs) mixtures, the control film was thin, colorless, and showed high moisture content, swelling degree, and elongation at break. Concerning the physicochemical parameters, the incorporation of the EOs mixtures minimized the hydrophobicity of the material (θw < 65°) and modified randomly its surface free energy components (γ-; γ+; γLW). The theoretical prediction of Aspergillus sp. and Rhizopus sp. adherence to the chitosan-based films was relatively correlated to the experimental results (r = -0.601). The latter showed that 6.80 % and 19.02 % of the control film surface was covered by Aspergillus sp. and Rhizopus sp. spores, respectively. In contrast, no fungal adherence was noticed in the case of the film incorporating the triple EOs mixture. These promising results revealed that chitosan film containing C. zeylanicum, T. satureioides, and S. aromaticum EOs mixtures could be utilized as a surface coating or bioactive packaging in the food industry.
Subject(s)
Chitosan , Oils, Volatile , Oils, Volatile/chemistry , Chitosan/chemistry , Clove Oil , Aspergillus , Food Packaging/methods , Food PreservationABSTRACT
Aquaponics is a method of producing food in a sustainable manner through the integration of aquaculture and hydroponics, which allows simultaneous cultivation of fish and economic crops. The use of natural fungicides are crucial to the sustainable control of diseases in aquaponics. We assessed the potential impacts of natural fungicides, such as clove oil and lecithin, as well as a synthetic fungicide, tebuconazole, following foliar application in aquaponics. This study examined the runoff rates of the fungicides in decoupled aquaponics, and the subsequent effects of the runoffs on nitrification processes and Nile tilapia (Oreochromis niloticus). The runoffs of the foliar-applied fungicides, clove oil, lecithin, and tebuconazole, were detected in aquaponics water at a percentage runoff rate of 0.3 %, 2.3 %, and 0.3-0.8 % respectively. In the biofilter, lecithin altered the ammonium levels by increasing ammonium-nitrogen levels by 7 mg L-1, 6 h post application. Clove oil, on the other hand, showed no significant effect on ammonium, nitrite, and nitrate-nitrogen. Similarly, the toxicity test showed that eugenol had no significant effects on the hematological, biochemical and antioxidative activities of O. niloticus. Conversely, tebuconazole exhibited significant and persistent effects on various biochemical parameters, including lactate, albumin, and total protein, as well as hematological parameters like hemoglobin and MCH. The use of lecithin and tebuconazole should only be limited to decoupled aquaponics.
Subject(s)
Ammonium Compounds , Cichlids , Fungicides, Industrial , Animals , Nitrification , Fungicides, Industrial/toxicity , Clove Oil , Lecithins , Cichlids/metabolism , Aquaculture/methods , Nitrogen/analysisABSTRACT
Ectoparasite infestations significantly impact the health and productivity of poultry. Chemical applications, although common for pest control, lead to pesticide residues and parasite resistance in poultry. Nanoemulsion-based plant essential oil formulations (NEOFs) provide a promising alternative for controlling poultry ectoparasites. This study aimed to assess the efficacy of NEOFs from clove, cinnamon, and turmeric essential oils (EOs) against ectoparasites, Menopon gallinae and Megninia ginglymura, under laboratory conditions. The toxicity and repellent properties of the NEOFs were examined, with the major chemical compounds of the EOs analyzed using chromatography mass spectrometer. Results identified eugenol as the dominant component in clove and cinnamon EOs (84.60 and 75.19%, respectively), while turmerone (68.46%) was the major compound in turmeric EO. NEOFs with clove:cinnamon:turmeric ratios of 4:0:0, 2:2:0, and 2:0:2 had particle size of 20.76 nm, 20.66 nm, and 89.56 nm, respectively, while those based on eugenol and turmerone standards had sizes <21.0 nm. In addition, NEOFs at 0.3% concentration with ratios of 4:0:0 and 2:2:0 achieved full control of both ectoparasites. These formulas demonstrated exceptional potency in exterminating ectoparasites, with LC50 and LC90 at <0.160 and <0.250%, respectively, 6 h after treatments. Furthermore, both NEOFs showed higher repellence responses in M. gallinae compared to M. ginglymura. The toxicities of these NEOFs were comparably effective against both parasites, showing no significant difference compared with chemical insecticide treatment. Therefore, further research will explore the practicality of using clove and cinnamon-derived NEOFs under farm conditions.
Subject(s)
Oils, Volatile , Pesticides , Animals , Plant Oils , Clove Oil/pharmacology , Eugenol , Pesticides/toxicity , Poultry/parasitology , Chickens , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Cinnamomum zeylanicum/chemistryABSTRACT
This study aimed to prepare a novel emulsion film with high stability, using soy protein-derived amyloid fibrils (SAFs) as an emulsifier incorporating clove essential oil (CEO) as the active component, and the polyvinyl alcohol (PVA) matrix to stabilize the system. The results demonstrated that SAFs can successfully stabilize CEO. Emulsion prepared by SAFS and CEO (SAC) exhibited a small droplet size and better dispersibility compared with SPI and CEO (SC) emulsion. According to FT-IR results, PVA addition increased the hydrogen bond interactions among emulsion film components, thus further reinforcing the protein matrix, increasing the tensile strength (TS) (41.18 MPa) and elongation at break (E) (121.62 %) of the films. The uniform appearance of SAC-PVA (SACP) emulsion films was confirmed by SEM images. Furthermore, SACP emulsion films show distinctive barrier properties, optical properties, and outstanding antioxidant properties. Finally, emulsion films exhibited excellent preservation of strawberries, resulting in an effective decline of the decay rate.
Subject(s)
Oils, Volatile , Syzygium , Clove Oil/chemistry , Oils, Volatile/chemistry , Soybean Proteins/chemistry , Polyvinyl Alcohol/chemistry , Syzygium/chemistry , Emulsions/chemistry , Amyloid , Spectroscopy, Fourier Transform Infrared , Food Packaging/methodsABSTRACT
The purpose of this study was to develop a composite film composed of eugenol Pickering emulsion and pullulan-gelatin, and to evaluate its preservation effect on chilled beef. The prepared composite film was comprehensively evaluated in terms of the stability of emulsion, the physical properties of the film, and an analysis of freshness preservation for chilled beef. The emulsion size (296.0 ± 10.2 nm), polydispersity index (0.457 ± 0.039), and potential (20.1 ± 0.9 mV) proved the success of emulsion. At the same time, the films displayed good mechanical and barrier properties. The index of beef preservation also indicated that eugenol was a better active ingredient than clove essence oil, which led to the rise of potential of hydrogen, chroma and water content, and effectively inhibited microbial propagation, protein degradation and lipid oxidation. These results suggest that the prepared composites can be used as promising materials for chilled beef preservation.
Subject(s)
Edible Films , Eugenol , Animals , Cattle , Eugenol/pharmacology , Gelatin , Emulsions , Clove OilABSTRACT
Mango is the "king of tropical fruits" because of its attractive appearance, delicious taste, rich aroma, and high nutritional value. However, mango keeps fast metabolizing after harvest, leading to water loss, starch conversion into sugar, texture softening, and decay. Here, a gas barrier coating based on cellulose nanocrystals (CNCs) is proposed to control the post-harvest metabolism of mango. The results of gas barrier permeability show that CNCs enhance the barrier ability of the chitosan (CS) membrane on mango by 202 % and 63 % for oxygen and water vapor, respectively. The gas-barrier coating reduces the climb in pH and the decrease in firmness by 84.9 % and 45.8 %, respectively, decelerating the conversion process from starch to sugar. Besides, introducing clove essential oil (CEO), the CEO mainly adsorbs and crystalizes on the hydrophobic facets of CNCs, presenting high compatibility, increases the antibacterial rate to nearly 100 %. As a consequence, the preservation period of the mango coated by the CNC-based membrane is at least 7-day longer than the control group. Such a gas-barrier coating based on eco-friendly composites must have excellent potential in the preservation of mango, and even for other tropical fruits.
Subject(s)
Mangifera , Nanoparticles , Oils, Volatile , Cellulose , Clove Oil , Starch , SugarsABSTRACT
In this study, the formation of clove essential oil loaded chitosan nanocapsules (CEO/CS-NCs) was achieved by the ionotropic gelation technology. The spherical shape and core-shell structure of CEO/CS-NCs were characterized by SEM, TEM, and FT-IR. CEO/CS-NCs have a reasonable encapsulation efficiency rate of 39 % and an average size of 253.63 nm. The simulated release of CEO/CS-NCs in a citric acid buffer solution shows that the nano-encapsulation technology could control the sustained release of clove essential oil (CEO). The shelf life of untreated blueberries at room temperature is only about 3 days, while CEO/CS-NCs combined with low-temperature storage can extend the shelf life to about 12 days. The quality characteristic of blueberries, including fruit firmness and moisture content, were effectively maintained, and the rotting rate of blueberries was significantly reduced with CEO/CS-NCs. As a natural preservative, CEO/CS-NCs have a good antioxidant activity close to the commercial antioxidant butylated hydroxytoluene (BHT) and a high antibacterial activity against pathogenic bacteria (PB) isolated from naturally occurring blueberries. Therefore, this study not only gives a theoretical basis for the development of CEO as a commercial preservative but also provides a practical solution to solve the protection challenge of preserving blueberries.
Subject(s)
Blueberry Plants , Chitosan , Nanocapsules , Nanoparticles , Oils, Volatile , Syzygium , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Chitosan/chemistry , Syzygium/chemistry , Spectroscopy, Fourier Transform Infrared , Nanoparticles/chemistry , Clove Oil/pharmacology , Clove Oil/chemistry , Antioxidants/pharmacology , Antioxidants/chemistryABSTRACT
Ortho-eugenol is a synthetic derivative from eugenol, the major compound of clove essential oil, which has demonstrated antidepressant and antinociceptive effects in pioneering studies. Additionally, its effects appear to be dependent on the noradrenergic and dopaminergic systems. Depression and anxiety disorders are known to share a great overlap in their pathophysiology, and many drugs are effective in the treatment of both diseases. Furthermore, high levels of anxiety are related to working memory deficits and increased oxidative stress. Thus, in this study we investigated the effects of acute treatment of ortho-eugenol, at 50, 75 and 100 mg/kg, on anxiety, working memory and oxidative stress in male Swiss mice. Our results show that the 100 mg/kg dose increased the number of head-dips and reduced the latency in the hole-board test. The 50 mg/kg dose reduced malondialdehyde levels in the prefrontal cortex and the number of Y-maze entries compared to the MK-801-induced hyperlocomotion group. All doses reduced nitrite levels in the hippocampus. It was also possible to assess a statistical correlation between the reduction of oxidative stress and hyperlocomotion after the administration of ortho-eugenol. However, acute treatment was not able to prevent working memory deficits. Therefore, the present study shows that ortho-eugenol has an anxiolytic and antioxidant effect, and was able to prevent substance-induced hyperlocomotion. Our results contribute to the elucidation of the pharmacological profile of ortho-eugenol, as well as to direct further studies that seek to investigate its possible clinical applications.
Subject(s)
Eugenol , Memory, Short-Term , Male , Animals , Mice , Eugenol/pharmacology , Eugenol/therapeutic use , Anxiety/drug therapy , Anxiety Disorders , Oxidative Stress , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Clove OilABSTRACT
BACKGROUND: Clove volatile oil (CVO) and its major compound, eugenol (EUG), have anxiolytic effects, but their clinical use has been impaired due to their low bioavailability. Thus, their encapsulation in nanosystems can be an alternative to overcome these limitations. OBJECTIVES: This work aims to prepare, characterize and study the anxiolytic potential of CVO loaded-nanoemulsions (CVO-NE) against anxious-like behavior in adult zebrafish (Danio rerio). METHODS: The CVO-NE was prepared using Agaricus blazei Murill polysaccharides as stabilizing agent. The drug-excipient interactions were performed, as well as colloidal characterization of CVO-NE and empty nanoemulsion (B-NE). The acute toxicity and potential anxiolytic activity of CVO, EUG, CVO-NE and B-NE against adult zebrafish models were determined. RESULTS: CVO, EUG, CVO-NE and B-NE presented low acute toxicity, reduced the locomotor activity and anxious-like behavior of the zebrafish at 4 - 20 mg kg-1. CVO-NE reduced the anxious-like behavior of adult zebrafish without affecting their locomotor activity. In addition, it was demonstrated that anxiolytic activity of CVO, EUG and CVO-NE is linked to the involvement of GABAergic pathway. CONCLUSION: Therefore, this study demonstrates the anxiolytic effect of CVO, in addition to providing a new nanoformulation for its administration.
Subject(s)
Anti-Anxiety Agents , Oils, Volatile , Syzygium , Animals , Clove Oil/pharmacology , Clove Oil/metabolism , Oils, Volatile/pharmacology , Zebrafish , Syzygium/metabolism , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/metabolism , Eugenol/pharmacology , Eugenol/metabolismABSTRACT
Rheumatoid arthritis (RA), a distressing inflammatory autoimmune disease, is managed mainly by Disease-modifying antirheumatic drugs (DMARDs), e.g. leflunomide (LEF). LEF (BCS class II) has limited solubility and adverse effects following its systemic exposure. The appealing antirheumatic properties of both clove oil and chitosan (CS) were exploited to design oral leflunomide (LEF)-loaded nanoemulsion (NE) system to augment the therapeutic action of LEF and decrease its systemic side effects as well. Different LEF-NEs were prepared using clove oil, Tween® 20 (surfactant), and PEG 400(co-surfactant) and characterized by thermodynamic stability, percentage transmittance, cloud point, size analysis, and drug content. Optimized LEF-NE was subjected to CS coating forming LEF-CS-NE that exhibited nanometric size range, prolonged drug release, and good physical stability. In vivo anti-rheumatic activity of pure LEF, market LEF, and LEF-CS-NE was assessed utilizing a complete Freund's adjuvant (CFA) rat model. Treatment with LEF-CS-NE reduced edema rate (48.68% inhibition) and caused a marked reduction in interleukin-6 (IL-6) (510.9 ± 2.48 pg/ml), tumor necrosis factor- α (TNF-α) (397.3 ± 2.53 pg/ml), and rheumatoid factor (RF) (42.58 ± 0.49 U/ml). Furthermore, LEF-CS-NE reduced serum levels of glutamic pyruvic transaminase (GPT) to (83.19%) and glutamic oxaloacetic transaminase (GOT) to (40.68%) compared to the control + ve group. The effects of LEF-CS-NE were also superior to both pure and market LEF and showed better results in histopathological studies of paws, liver, kidney, lung, and heart. The remarkable therapeutic and safety profile of LEF-CS-NE makes it a potential oral system for the management of RA.