Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 22(14)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34299139

ABSTRACT

Acupuncture affects the central nervous system via the regulation of neurotransmitter transmission. We previously showed that Shemen (HT7) acupoint stimulation decreased cocaine-induced dopamine release in the nucleus accumbens. Here, we used the intracranial self-stimulation (ICSS) paradigm to evaluate whether HT stimulation regulates the brain reward function of rats. We found that HT stimulation triggered a rightward shift of the frequency-rate curve and elevated the ICSS thresholds. However, HT7 stimulation did not affect the threshold-lowering effects produced by cocaine. These results indicate that HT7 points only effectively regulates the ICSS thresholds of the medial forebrain bundle in drug-naïve rats.


Subject(s)
Acupuncture Therapy/methods , Cocaine/administration & dosage , Electric Stimulation/methods , Medial Forebrain Bundle/physiology , Reward , Self Stimulation/physiology , Anesthetics, Local/administration & dosage , Animals , Male , Medial Forebrain Bundle/drug effects , Rats , Rats, Sprague-Dawley , Self Stimulation/drug effects
2.
Psychopharmacology (Berl) ; 238(7): 1923-1936, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33839903

ABSTRACT

RATIONALE: Cocaine addiction is a chronic relapsing disorder that lacks of an effective treatment. Isoflavones are a family of compounds present in different plants and vegetables like soybeans that share a common chemical structure. Previous studies have described that synthetic derivatives from the natural isoflavone daidzin can modulate cocaine addiction, by a mechanism suggested to involve aldehyde-dehydrogenase (ALDH) activities. OBJECTIVES: Based on these previous studies, we investigated the effects of three natural isoflavones, daidzin, daidzein, and genistein, on the modulation of the cocaine reinforcing effects and on cue-induced reinstatement in an operant mouse model of cocaine self-administration. RESULTS: Chronic treatment with daidzein or genistein decreased operant responding to obtain cocaine intravenous infusions. On the other hand, daidzein and daidzin, but not genistein, were effective in decreasing cue-induced cocaine reinstatement. Complementary studies revealed that daidzein effects on cocaine reinforcement were mediated through a mechanism that involved dopamine type-2/3 receptors (DA-D2/3) activities. CONCLUSIONS: Our results suggest that these natural compounds alone or in combination can be a potential therapeutic approach for cocaine addiction. Further clinical studies are required in order to ascertain their potential therapeutic use.


Subject(s)
Cocaine-Related Disorders/drug therapy , Cocaine/administration & dosage , Cues , Isoflavones/administration & dosage , Phytoestrogens/administration & dosage , Reinforcement, Psychology , Animals , Cocaine-Related Disorders/psychology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Dopamine Uptake Inhibitors/administration & dosage , Dose-Response Relationship, Drug , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Self Administration
3.
Behav Pharmacol ; 32(1): 9-20, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33399293

ABSTRACT

Eating a high fat diet can lead to obesity, type 2 diabetes, and dopamine system dysfunction. For example, rats eating high fat chow are more sensitive than rats eating standard chow to the behavioral effects (e.g., locomotion and yawning) of dopaminergic drugs (e.g., quinpirole and cocaine). Daily dietary supplementation with 20% (w/w) fish oil prevents high fat diet-induced enhanced sensitivity to quinpirole-induced yawning and cocaine-induced locomotion; however, doctors recommend that patients take fish oil just two to three times a week. To test the hypothesis that intermittent (i.e., 2 days per week) dietary supplementation with fish oil prevents high fat diet-induced enhanced sensitivity to quinpirole and cocaine, rats eating standard chow (17% kcal from fat), high fat chow (60% kcal from fat), and rats eating standard or high fat chow with 20% (w/w) intermittent (e.g., 2 days per week) dietary fish oil supplementation were tested once weekly with quinpirole [0.0032-0.32 mg/kg, intraperitoneally (i.p.)] or cocaine (1.0-17.8 mg/kg, i.p.) using a cumulative dosing procedure. Consistent with previous reports, eating high fat chow enhanced sensitivity of rats to the behavioral effects of quinpirole and cocaine. Intermittent dietary supplementation of fish oil prevented high fat chow-induced enhanced sensitivity to dopaminergic drugs in male and female rats. Future experiments will focus on understanding the mechanism(s) by which fish oil produces these beneficial effects.


Subject(s)
Cocaine/pharmacology , Diet, High-Fat/adverse effects , Fish Oils/pharmacology , Quinpirole/pharmacology , Animals , Cocaine/administration & dosage , Dietary Supplements , Dopamine Agonists/administration & dosage , Dopamine Agonists/pharmacology , Dopamine Uptake Inhibitors/administration & dosage , Dopamine Uptake Inhibitors/pharmacology , Dose-Response Relationship, Drug , Female , Fish Oils/administration & dosage , Locomotion/drug effects , Male , Quinpirole/administration & dosage , Rats , Rats, Sprague-Dawley , Yawning/drug effects
4.
Psychopharmacology (Berl) ; 238(3): 787-810, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33241481

ABSTRACT

RATIONALE: The abuse of psychostimulants has adverse consequences on the physiology of the central nervous system. In Argentina, and other South American countries, coca paste or "PACO" (cocaine and caffeine are its major components) is massively consumed with deleterious clinical consequences for the health and well-being of the general population. A scant number of studies have addressed the consequences of stimulant combination of cocaine and caffeine on the physiology of the somatosensory thalamocortical (ThCo) system. OBJECTIVES: Our aim was to study ion conductances that have important implications regulating sleep-wake states 24-h after an acute or chronic binge-like administration of a cocaine and caffeine mixture following previously analyzed pasta base samples ("PACO"-like binge") using mice. METHODS: We randomly injected (i.p.) male C57BL/6JFcen mice with a binge-like psychostimulants regimen during either 1 day (acute) or 1 day on/1 day off during 13 days for a total of 7 binges (chronic). Single-cell patch-clamp recordings of VB neurons were performed in thalamocortical slices 24 h after the last psychostimulant injection. We also recorded EEG/EMG from mice 24 h after being systemically treated with chronic administration of cocaine + caffeine versus saline, vehicle. RESULTS: Our results showed notorious changes in the intrinsic properties of the VB nucleus neurons that persist after 24-h of either acute or chronic binge administrations of combined cocaine and caffeine ("PACO"-like binge). Functional dysregulation of HCN (hyperpolarization-activated cyclic nucleotide-gated) and T-type VGC (voltage-gated calcium) channels was described 24-h after acute/chronic "PACO"-like administrations. Furthermore, intracellular basal [Ca2+] disturbances resulted a key factor that modulated the availability and the activation of T-type channels, altering T-type "window currents." As a result, all these changes ultimately shaped the low-threshold spikes (LTS)-associated Ca2+ transients, regulated the membrane excitability, and altered sleep-wake transitions. CONCLUSION: Our results suggest that deleterious consequences of stimulants cocaine and caffeine combination on the thalamocortical physiology as a whole might be related to potential neurotoxic effects of soaring intracellular [Ca2+].


Subject(s)
Caffeine/adverse effects , Calcium Channels, T-Type/metabolism , Central Nervous System Stimulants/adverse effects , Cocaine/adverse effects , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Neurons/drug effects , Action Potentials/drug effects , Animals , Caffeine/administration & dosage , Central Nervous System Stimulants/administration & dosage , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cocaine/administration & dosage , Drug Synergism , Male , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Random Allocation , Sleep-Wake Transition Disorders/chemically induced , South America , Thalamus/drug effects , Thalamus/metabolism
5.
Neurotox Res ; 38(3): 824-832, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32696437

ABSTRACT

Cocaine (COC) is a psychostimulant that acts by increasing catecholaminergic neurotransmission mainly due to its effects on the dopamine transporter (DAT). However, other neurotransmitter systems may also be regulated by COC, including the GABAergic system. Since the effect of COC in modulating gamma-aminobutyric acid (GABA) reuptake is not defined, we investigated the molecular mechanisms related to the increase in GABA uptake induced by acute COC exposure and its effects on locomotor activity in adolescent mice. Behavioral experiments showed that COC increased locomotor activity and decreased immobilization time in mice. A single COC exposure reduced both GABA uptake and GAT-1 protein levels. On the other hand, cyclic adenosine monophosphate (cAMP) levels increased after a COC challenge. The major changes induced by acute COC on behavioral and neurochemical assays were avoided by previous treatment with the selective D1 receptor antagonist SCH-23390 (0.5 mg/kg). Our findings suggest that GABA uptake naturally decreases during mice development from preadolescence until adulthood and that dopamine (DA) D1-like receptors are key players in the regulation of GABA uptake levels following a single COC exposure in adolescent mice.


Subject(s)
Cocaine/pharmacology , Dopamine/metabolism , Frontal Lobe/drug effects , Synaptic Transmission/drug effects , gamma-Aminobutyric Acid/drug effects , Animals , Central Nervous System Stimulants/pharmacology , Cocaine/administration & dosage , Dopamine Plasma Membrane Transport Proteins/drug effects , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Uptake Inhibitors/pharmacology , Frontal Lobe/metabolism , Mice , Motor Activity/drug effects , gamma-Aminobutyric Acid/metabolism
6.
Neuropharmacology ; 176: 108241, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32712273

ABSTRACT

Cocaine abuse remains a public health threat around the world. There are no pharmacological treatments approved for cocaine use disorder. Cannabis has received growing attention as a treatment for many conditions, including addiction. Most cannabis-based medication development has focused on cannabinoid CB1 receptor (CB1R) antagonists (and also inverse agonists) such as rimonabant, but clinical trials with rimonabant have failed due to its significant side-effects. Here we sought to determine whether a novel and selective CB2R inverse agonist, Xie2-64, has similar therapeutic potential for cocaine use disorder. Computational modeling indicated that Xie2-64 binds to CB2R in a way similar to SR144528, another well-characterized but less selective CB2R antagonist/inverse agonist, suggesting that Xie2-64 may also have CB2R antagonist profiles. Unexpectedly, systemic administration of Xie2-64 or SR144528 dose-dependently inhibited intravenous cocaine self-administration and shifted cocaine dose-response curves downward in rats and wild-type, but not in CB2R-knockout, mice. Xie2-64 also dose-dependently attenuated cocaine-enhanced brain-stimulation reward maintained by optical stimulation of ventral tegmental area dopamine (DA) neurons in DAT-Cre mice, while Xie2-64 or SR144528 alone inhibited optical brain-stimulation reward. In vivo microdialysis revealed that systemic or local administration of Xie2-64 into the nucleus accumbens reduced extracellular dopamine levels in a dose-dependent manner in rats. Together, these results suggest that Xie2-64 has significant anti-cocaine reward effects likely through a dopamine-dependent mechanism, and therefore, deserves further study as a new pharmacotherapy for cocaine use disorder.


Subject(s)
Benzene Derivatives/therapeutic use , Cannabinoid Receptor Agonists/therapeutic use , Cocaine-Related Disorders/prevention & control , Cocaine/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Drug Inverse Agonism , Receptor, Cannabinoid, CB2/agonists , Sulfonamides/therapeutic use , Animals , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Cannabinoid Receptor Agonists/chemistry , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/psychology , Dose-Response Relationship, Drug , Male , Mice , Mice, Knockout , Protein Structure, Secondary , Rats , Rats, Long-Evans , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/metabolism , Rodentia , Self Administration , Sulfonamides/chemistry , Sulfonamides/pharmacology
7.
Pharmacol Biochem Behav ; 187: 172801, 2019 12.
Article in English | MEDLINE | ID: mdl-31678611

ABSTRACT

Speedball (heroin + cocaine) is a prevalent drug combination among intravenous drug users. Although its use is generally discussed to be a function of changes in the rewarding effects of either or both drugs, changes in the aversive effects of either drug may also be impacted (weakened) by the combination. To address this latter possibility and its potential role in the use of speedball, the present studies examined the interaction of cocaine and heroin in taste avoidance conditioning. In Experiment 1, male Sprague-Dawley rats were given access to a novel saccharin solution and then injected with either vehicle or heroin (3.2 mg/kg, IP) followed immediately by various doses of cocaine (10, 18 or 32 mg/kg, SC). At the two lowest doses of cocaine, only animals injected with the drug combination (H + C) displayed a taste avoidance relative to control subjects (taste avoidance was induced with both the combination and the high dose of cocaine). At no dose did animals injected with the combination of heroin and cocaine drink more than animals injected with cocaine alone. In Experiment 2, male Sprague-Dawley rats were similarly treated but injected with vehicle or cocaine (10 mg/kg) followed by injections of various doses of heroin (1.8, 3.2, 5.6 or 10 mg/kg). At the three highest doses of heroin, only animals injected with the drug combination (C + H) displayed significant avoidance relative to control subjects (no avoidance was evident with the combination of cocaine and the low dose of heroin). At no dose did animals injected with the combination of cocaine and heroin drink more than animals injected with heroin alone. Together, these results suggest that the aversive effects of heroin and cocaine are not attenuated by co-administration by cocaine and heroin, respectively. The importance of this for the use of speedball was discussed.


Subject(s)
Aversive Agents/pharmacology , Avoidance Learning/drug effects , Cocaine/pharmacology , Conditioning, Classical/drug effects , Heroin/pharmacology , Taste/drug effects , Animals , Aversive Agents/administration & dosage , Cocaine/administration & dosage , Dose-Response Relationship, Drug , Heroin/administration & dosage , Injections, Subcutaneous , Male , Rats , Rats, Sprague-Dawley , Reward , Saccharin/administration & dosage , Self Administration
8.
AIDS ; 33(12): 1831-1842, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31490211

ABSTRACT

OBJECTIVES: To evaluate the effects of cannabis and/or cocaine use on inflammatory, oxidative stress status and circulating monocyte subsets in HIV-infected individuals under antiretroviral therapy. DESIGN: Soluble CD14 (sCD14), intestinal fatty acid-binding protein (IFABP), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-8, IL-10, C-reactive protein (CRP) and oxidative stress markers were examined. The monocyte subsets and their activation and cytokine production by peripheral blood mononuclear cells (PBMCs) of HIV-1 infected individuals upon lipopolysaccharide (LPS)-stimulation were also investigated. METHODS: sCD14, IFABP, TNF-α, IL-6, IL-8 and IL-10 levels were evaluated using ELISA, CRP by turbidimetry; lipid peroxidation (TBARS) spectrofluometrically and total thiol levels by using 5-5'-dithio-bis (2-nitrobenzoic acid) reagent. Monocyte subsets and activation were assessed by flow cytometry. RESULTS: All HIV-infected drug user groups showed higher sCD14 levels compared with HIV+ nondrug users. IFABP was increased in HIV+ drug-users in relation to healthy individuals. Cannabis use lowered the percentages of inflammatory, nonclassical, activated-classic and activated-inflammatory monocytes. Cocaine users showed increased plasmatic TNF-α and TBARS levels, decreased thiols content and lower activated-classic and inflammatory-monocyte percentages. Cannabis-plus-cocaine use increased CRP, IL-8 and IL-6/IL-10 ratio, but decreased thiol content, and inflammatory and activated-classic monocyte percentages. PBMCs of cannabis and cannabis-plus-cocaine users showed low-potential cytokine production either spontaneously or under LPS-stimulation. CONCLUSION: In HIV infection, the use of cannabis induces predominantly an anti-inflammatory profile. The use of cocaine and cannabis-plus-cocaine showed a mixed pro-inflammatory and anti-inflammatory profile, with predominance of inflammatory status. Further studies are required to better understand the action of these drugs in HIV infection.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Biomarkers/blood , HIV Infections/complications , HIV Infections/pathology , Inflammation/pathology , Substance-Related Disorders/complications , Adult , Cannabinoids/administration & dosage , Cocaine/administration & dosage , Female , HIV Infections/drug therapy , Humans , Illicit Drugs , Male , Middle Aged , Young Adult
9.
Pharmacol Biochem Behav ; 181: 60-68, 2019 06.
Article in English | MEDLINE | ID: mdl-31004629

ABSTRACT

Adolescents are more sensitive than adults to the neural and behavioral effects of psychostimulants, and exhibit greater vulnerability to drug abuse, dependence or relapse into these conditions. We have reported that cocaine pretreatment during adolescence promotes the expression of behavioral sensitization to a greater extent than when the pretreatment occurs at adulthood. Behavioral sensitization has been associated to the transition from drug use to addiction and is postulated to indicate heightened sensitivity to the appetitive motivational effects of drugs. The relationship between behavioral sensitization and conventional measures of drug reward, such as conditioned place preference (CPP), has yet to be thoroughly investigated, and little is known about age-related differences in this phenomenon. The present study tested cocaine-induced CPP in adolescent and adult mice exposed to cocaine (or vehicle) pretreatment, either in an intermittent or "binge" (i.e., heavy cocaine use on a single occasion, which increases the likelihood of experiencing cocaine-related problems) fashion. Cocaine administration induced behavioral sensitization to a greater extent in adolescent than in adult mice. Cocaine-induced CPP was fairly similar in vehicle pretreated adolescent and adult mice, yet greater in adolescent vs. adults after cocaine-induced sensitization. The results confirmed the higher sensitivity of adolescent mice to cocaine-induced behavioral sensitization and suggest its association with greater sensitivity to cocaine's rewarding effects.


Subject(s)
Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/pharmacology , Cocaine/administration & dosage , Cocaine/pharmacology , Conditioning, Classical/drug effects , Drug Evaluation, Preclinical/methods , Analysis of Variance , Animals , Behavior, Animal/drug effects , Cocaine-Related Disorders/physiopathology , Locomotion/drug effects , Male , Mice , Reward , Saline Solution/administration & dosage , Saline Solution/pharmacology
10.
Mol Neurobiol ; 56(8): 5315-5331, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30603957

ABSTRACT

Inhibitors of DNA methylation and orexin type-1 receptor antagonists modulate the neurobiological effects driving drugs of abuse and natural reinforcers by activating common brain structures of the mesolimbic reward system. In this study, we applied a self-administration paradigm to assess the involvement of factors regulating DNA methylation processes and satiety or appetite signals. These factors include Dnmts and Tets, miR-212/132, orexins, and orx-R1 genes. The study focused on dopamine projection areas such as the prefrontal cortex (PFCx) and caudate putamen (CPu) and in the hypothalamus (HP) that is interconnected with the reward system. Striking changes were observed in response to both reinforcers, but differed depending on contingent and non-contingent delivery. Expression also differed in the PFCx and the CPu. Cocaine and food induced opposite effects on Dnmt3a expression in both brain structures, whereas they repressed both miRs to a different extent, without affecting their primary transcript in the CPu. Unexpectedly, orexin mRNAs were found in the CPu, suggesting a transport from their transcription site in the HP. The orexin receptor1 gene was found to be induced by cocaine in the PFCx, consistent with a regulation by DNA methylation. Global levels of 5-methylcytosines in the PFCx were not significantly altered by cocaine, suggesting that it is rather their distribution that contributes to long-lasting behaviors. Together, our data demonstrate that DNA methylation regulating factors are differentially altered by cocaine and food. At the molecular level, they support the idea that neural circuits activated by both reinforcers do not completely overlap.


Subject(s)
Brain/metabolism , Cocaine/administration & dosage , DNA Methylation/genetics , Food , Orexins/metabolism , Self Administration , Animals , Conditioning, Operant , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Feeding Behavior , Gene Expression Regulation , Hypothalamus/metabolism , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Orexin Receptors/genetics , Orexin Receptors/metabolism , Peptides/metabolism , Prefrontal Cortex/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Putamen/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , DNA Methyltransferase 3B
11.
J Neurosci ; 39(10): 1842-1854, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30626700

ABSTRACT

Rats trained to perform a version of the rat gambling task (rGT) in which salient audiovisual cues accompany reward delivery, similar to commercial gambling products, show greater preference for risky options. Given previous demonstrations that probabilistic reinforcement schedules can enhance psychostimulant-induced increases in accumbal DA and locomotor activity, we theorized that performing this cued task could perpetuate a proaddiction phenotype. Significantly more rats developed a preference for the risky options in the cued versus uncued rGT at baseline, and this bias was further exacerbated by cocaine self-administration, whereas the choice pattern of optimal decision-makers was unaffected. The addition of reward-paired cues therefore increased the proportion of rats exhibiting a maladaptive cognitive response to cocaine self-administration. Risky choice was not associated with responding for conditioned reinforcement or a marker of goal/sign-tracking, suggesting that reward-concurrent cues precipitate maladaptive choice via a unique mechanism unrelated to simple approach toward, or responding for, conditioned stimuli. Although "protected" from any resulting decision-making impairment, optimal decision-makers trained on the cued rGT nevertheless self-administered more cocaine than those trained on the uncued task. Collectively, these data suggest that repeated engagement with heavily cued probabilistic reward schedules can drive addiction vulnerability through multiple behavioral mechanisms. Rats trained on the cued rGT also exhibited blunted locomotor sensitization and lower basal accumbal DA levels, yet greater cocaine-induced increases in accumbal DA efflux. Gambling in the presence of salient cues may therefore result in an adaptive downregulation of the mesolimbic DA system, rendering individuals more sensitive to the deleterious effects of taking cocaine.SIGNIFICANCE STATEMENT Impaired cost/benefit decision making, exemplified by preference for the risky, disadvantageous options on the Iowa Gambling Task, is associated with greater risk of relapse and treatment failure in substance use disorder. Understanding factors that enhance preference for risk may help elucidate the neurobiological mechanisms underlying maladaptive decision making in addiction, thereby improving treatment outcomes. Problem gambling is also highly comorbid with substance use disorder, and many commercial gambling products incorporate salient win-paired cues. Here we show that adding reward-concurrent cues to a rat analog of the IGT precipitates a hypodopaminergic state, characterized by blunted accumbal DA efflux and attenuated locomotor sensitization, which may contribute to the enhanced responsivity to uncertain rewards or the reinforcing effects of cocaine we observed.


Subject(s)
Behavior, Addictive/physiopathology , Cocaine/administration & dosage , Cues , Dopamine/metabolism , Drug-Seeking Behavior/physiology , Gambling/physiopathology , Nucleus Accumbens/physiopathology , Reward , Acoustic Stimulation , Animals , Drug-Seeking Behavior/drug effects , Locomotion/drug effects , Male , Nucleus Accumbens/drug effects , Photic Stimulation , Rats, Long-Evans
13.
Neuropsychopharmacology ; 43(12): 2383-2389, 2018 11.
Article in English | MEDLINE | ID: mdl-29982266

ABSTRACT

Transient upregulation of GluN2B-containing NMDA receptors (R) in the nucleus accumbens (NAc) is proposed as an intermediate to long-term AMPAR plasticity associated with persistent cocaine-related behaviors. However, cell type- and input-specific contributions of GluN2B underlying lasting actions of cocaine remain to be elucidated. We utilized GluN2B cell type-specific knockouts and optogenetics to deconstruct the role of GluN2B in cocaine-induced NAc synaptic and behavioral plasticity. While reward learning was unaffected, loss of GluN2B in D1 dopamine receptor-expressing cells (D1) led to prolonged retention of reward memory. In control mice, prefrontal cortex (PFC)-D1(+) NAc AMPAR function was unaffected by cocaine exposure, while midline thalamus (mThal)-D1(+) NAc AMPAR function was potentiated but diminished after withdrawal. In D1-GluN2B-/- mice, the potentiation of mThal-D1(+) NAc AMPAR function persisted following withdrawal, corresponding with continued expression of cocaine reward behavior. These data suggest NAc GluN2B-containing NMDARs serve a feedback role and may weaken reward-related memories.


Subject(s)
Cocaine/administration & dosage , Nucleus Accumbens/metabolism , Receptors, Dopamine D1/biosynthesis , Receptors, N-Methyl-D-Aspartate/deficiency , Reward , Thalamus/metabolism , Animals , Gene Deletion , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nucleus Accumbens/drug effects , Receptors, Dopamine D1/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Thalamus/drug effects
14.
Addict Biol ; 23(1): 165-181, 2018 01.
Article in English | MEDLINE | ID: mdl-28271626

ABSTRACT

There is growing public interest in alternative approaches to addiction treatment and scientific interest in elucidating the neurobiological underpinnings of acupuncture. Our previous studies showed that acupuncture at a specific Shenmen (HT7) points reduced dopamine (DA) release in the nucleus accumbens (NAc) induced by drugs of abuse. The present study was carried out to evaluate the effects of HT7 acupuncture on γ-aminobutyric acid (GABA) neuronal activity in the ventral tegmental area (VTA) and the reinstatement of cocaine-seeking behavior. Using microdialysis and in vivo single-unit electrophysiology, we evaluated the effects of HT7 acupuncture on VTA GABA and NAc DA release and VTA GABA neuronal activity in rats. Using a within-session reinstatement paradigm in rats self-administering cocaine, we evaluated the effects of HT7 stimulation on cocaine-primed reinstatement. Acupuncture at HT7 significantly reduced cocaine suppression of GABA release and GABA neuron firing rates in the VTA. HT7 acupuncture attenuated cocaine-primed reinstatement, which was blocked by VTA infusions of the selective GABAB receptor antagonist 2-hydroxysaclofen. HT7 stimulation significantly decreased acute cocaine-induced DA release in the NAc, which was also blocked by 2-hydroxysaclofen. HT7 acupuncture also attenuated cocaine-induced sensitization of extracellular DA levels in the NAc. Moreover, HT7 acupuncture reduced both locomotor activity and neuronal activation in the NAc induced by acute cocaine in a needle-penetration depth-dependent fashion. These results suggest that acupuncture may suppress cocaine-induced DA release in the NAc and cocaine-seeking behavior through activation of VTA GABA neurons. Acupuncture may be an effective therapy to reduce cocaine relapse by enhancing GABAergic inhibition in the VTA.


Subject(s)
Acupuncture , Behavior, Animal , Cocaine/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Drug-Seeking Behavior , Locomotion , Ventral Tegmental Area/metabolism , Animals , Baclofen/analogs & derivatives , Baclofen/pharmacology , Dopamine/metabolism , Electrophysiological Phenomena , GABA-B Receptor Antagonists/pharmacology , GABAergic Neurons/metabolism , Microdialysis , Nucleus Accumbens/cytology , Nucleus Accumbens/metabolism , Rats , Ventral Tegmental Area/cytology , gamma-Aminobutyric Acid/metabolism
15.
Addict Biol ; 23(1): 6-15, 2018 01.
Article in English | MEDLINE | ID: mdl-27558790

ABSTRACT

Hypothalamic orexin/hypocretin (Orx/Hcrt) neurons are thought to mediate both food-reinforced behaviors and behavior motivated by drugs of abuse. However, the relative role of the Orx/Hcrt system in behavior motivated by food versus drugs of abuse remains unclear. This investigation addressed this question by contrasting hypothalamic Orx/Hcrt neuronal activation associated with reinstatement of reward seeking induced by stimuli conditioned to cocaine (COC) versus highly palatable food reward, sweetened condensed milk (SCM). Orx/Hcrt neuronal activation in the lateral hypothalamus, dorsomedial hypothalamus and perifornical area, determined by dual c-fos/orx immunocytochemistry, was quantified in rat brains, following reinstatement of reward seeking induced by a discriminative stimulus (S+ ) conditioned to COC or SCM. The COC S+ and SCM S+ initially produced the same magnitude of reward seeking. However, over four subsequent tests, behavior induced by the SCM S+ decreased to extinction levels, whereas reinstatement induced by the COC S+ perseverated at undiminished levels. Following both the first and fourth tests, the percentage of Orx/Hcrt cells expressing Fos was significantly increased in all hypothalamic subregions in rats tested with the COC S+ but not rats tested with the SCM S+ . These findings point toward a role for the Orx/Hcrt system in perseverating, compulsive-like COC seeking but not behavior motivated by palatable food. Moreover, analysis of the Orx/Hcrt recruitment patterns suggests that failure of Orx/Hcrt neurons in the lateral hypothalamus to respond to inhibitory inputs from Orx/Hcrt neurons in the dorsomedial hypothalamus/perifornical area may contribute to the perseverating nature of COC seeking.


Subject(s)
Cocaine/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Food , Hypothalamus/metabolism , Neurons/metabolism , Orexins/metabolism , Animals , Behavior, Animal , Conditioning, Operant , Drug-Seeking Behavior , Hypothalamus/cytology , Immunohistochemistry , Milk , Motivation , Neurons/cytology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Reward , Self Administration
17.
Addict Biol ; 21(3): 519-29, 2016 May.
Article in English | MEDLINE | ID: mdl-25684556

ABSTRACT

Exposure to stimuli and environments associated with drug use is considered one of the most important contributors to relapse among substance abusers. Neuroimaging studies have identified neural circuits underlying these responses in cocaine-dependent subjects. But these studies are often difficult to interpret because of the heterogeneity of the participants, substances abused, and differences in drug histories and social variables. Therefore, the goal of this study was to assess the functional effects of exposure to cocaine-associated stimuli in a non-human primate model of cocaine self-administration, providing precise control over these variables, with the 2-[(14) C]deoxyglucose method. Rhesus monkeys self-administered 0.3 mg/kg/injection cocaine (n = 4) under a fixed-interval 3-minute (FI 3-min) schedule of reinforcement (30 injections/session) for 100 sessions. Control animals (n = 4) underwent identical schedules of food reinforcement. Sessions were then discontinued for 30 days, after which time, monkeys were exposed to cocaine- or food-paired cues, and the 2-[(14) C]deoxyglucose experiment was conducted. The presentation of the cocaine-paired cues resulted in significant increases in functional activity within highly restricted circuits that included portions of the pre-commissural striatum, medial prefrontal cortex, rostral temporal cortex and limbic thalamus when compared with control animals presented with the food-paired cues. The presentation of cocaine-associated cues increased brain functional activity in contrast to the decreases observed after cocaine consumption. Furthermore, the topography of brain circuits engaged by the expectation of cocaine is similar to the distribution of effects during the earliest phases of cocaine self-administration, prior to the onset of neuroadaptations that accompany chronic cocaine exposure.


Subject(s)
Behavior, Animal , Brain/metabolism , Cocaine-Related Disorders/metabolism , Cocaine/administration & dosage , Cues , Dopamine Uptake Inhibitors/administration & dosage , Animals , Autoradiography , Carbon Radioisotopes , Deoxyglucose , Disease Models, Animal , Macaca mulatta , Male , Neostriatum/metabolism , Prefrontal Cortex/metabolism , Reinforcement Schedule , Reinforcement, Psychology , Self Administration , Spectrophotometry , Temporal Lobe/metabolism , Thalamus/metabolism
18.
Neuropsychopharmacology ; 41(9): 2192-205, 2016 08.
Article in English | MEDLINE | ID: mdl-26612422

ABSTRACT

The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.


Subject(s)
Brain/drug effects , Cocaine/administration & dosage , Drug-Seeking Behavior , GABAergic Neurons/drug effects , Glutamic Acid/physiology , Neurons/drug effects , Receptor, Cannabinoid, CB1/physiology , Animals , Brain/metabolism , Brain/physiology , Cues , Dopamine/metabolism , GABAergic Neurons/physiology , Mice , Mice, Knockout , Neurons/physiology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Reinforcement, Psychology , Self Administration
19.
J Pharmacol Exp Ther ; 356(2): 244-50, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26644281

ABSTRACT

There are several case reports of nonmedicinal quetiapine abuse, yet there are very limited preclinical studies investigating quetiapine self-administration. The goal of this study was to investigate the reinforcing effects of quetiapine alone and in combination with intravenous cocaine in monkeys. In experiment 1, cocaine-experienced female monkeys (N = 4) responded under a fixed-ratio (FR) 30 schedule of food reinforcement (1.0-g banana-flavored pellets), and when responding was stable, quetiapine (0.003-0.1 mg/kg per injection) or saline was substituted for a minimum of five sessions; there was a return to food-maintained responding between doses. Next, monkeys were treated with quetiapine (25 mg, by mouth, twice a day) for approximately 30 days, and then the quetiapine self-administration dose-response curve was redetermined. In experiment 2, male monkeys (N = 6) self-administered cocaine under a concurrent FR schedule with food reinforcement (three food pellets) as the alternative to cocaine (0.003-0.3 mg/kg per injection) presentation. Once choice responding was stable, the effects of adding quetiapine (0.03 or 0.1 mg/kg per injection) to the cocaine solution were examined. In experiment 1, quetiapine did not function as a reinforcer, and chronic quetiapine treatment did not alter these effects. In experiment 2, cocaine choice increased in a dose-dependent fashion. The addition of quetiapine to cocaine resulted in increases in low-dose cocaine choice and number of cocaine injections in four monkeys, while not affecting high-dose cocaine preference. Thus, although quetiapine alone does not have abuse potential, there was evidence of enhancement of the reinforcing potency of cocaine. These results suggest that the use of quetiapine in cocaine-addicted patients should be monitored.


Subject(s)
Cocaine/administration & dosage , Quetiapine Fumarate/administration & dosage , Reinforcement Schedule , Animals , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Drug Evaluation, Preclinical , Female , Macaca mulatta , Male , Self Administration
20.
Drug Alcohol Depend ; 158: 76-85, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26627911

ABSTRACT

BACKGROUND: Prenatal cocaine exposure (PCE) is associated with increased rates of illicit-substance use during adolescence. In addition, both PCE and illicit-substance use are associated with alterations in cortico-striato-limbic neurocircuitry, development of which is ongoing throughout adolescence. However, the relationship between illicit-substance use, PCE and functional neural responses has not previously been assessed concurrently. METHODS: Sixty-eight adolescents were recruited from an ongoing longitudinal study of childhood and adolescent development. All participants had been followed since birth. Functional magnetic resonance imaging (fMRI) data were acquired during presentation of personalized stressful, favorite-food and neutral/relaxing imagery scripts and compared between 46 PCE and 22 non-prenatally-drug-exposed (NDE) adolescents with and without lifetime illicit-substance use initiation. Data were analyzed using multi-level ANOVAs (pFWE<.05). RESULTS: There was a significant three-way interaction between illicit-substance use, PCE status and cue condition on neural responses within primarily cortical brain regions, including regions of the left and right insula. Among PCE versus NDE adolescents, illicit-substance use was associated with decreased subcortical and increased cortical activity during the favorite-food condition, whereas the opposite pattern of activation was observed during the neutral/relaxing condition. Among PCE versus NDE adolescents, illicit-substance use during stress processing was associated with decreased activity in cortical and subcortical regions including amygdala, hippocampus and prefrontal cortex. Neural activity within cortico-striato-limbic regions was significantly negatively associated with subjective ratings of anxiety and craving among illicit-substance users, but not among non-users. CONCLUSIONS: These findings suggest different neural substrates of experimentation with illicit drugs between adolescents with and without in utero cocaine exposure.


Subject(s)
Craving , Illicit Drugs , Prenatal Exposure Delayed Effects/epidemiology , Stress, Psychological/epidemiology , Substance-Related Disorders/epidemiology , Adolescent , Brain/drug effects , Brain/pathology , Child , Cocaine/administration & dosage , Cocaine/adverse effects , Cocaine-Related Disorders/diagnosis , Cocaine-Related Disorders/epidemiology , Cocaine-Related Disorders/psychology , Cohort Studies , Craving/drug effects , Female , Humans , Illicit Drugs/adverse effects , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Pregnancy , Prenatal Exposure Delayed Effects/diagnosis , Prenatal Exposure Delayed Effects/psychology , Stress, Psychological/diagnosis , Stress, Psychological/psychology , Substance-Related Disorders/diagnosis , Substance-Related Disorders/psychology
SELECTION OF CITATIONS
SEARCH DETAIL