Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Nutrition ; 121: 112370, 2024 May.
Article in English | MEDLINE | ID: mdl-38401196

ABSTRACT

OBJECTIVE: The aim of this article is to investigate the effect of intermittent fasting, associated or not with coconut oil intake, on the gut-liver axis of obese rats. METHODS: A total of 50 rats were divided into five groups: control, obese, obese with intermittent fasting, obese with intermittent fasting plus coconut oil, and obese with caloric restriction. The rats were induced to obesity with a high-sugar diet for 17 wk. The respective interventions were carried out in the last 4 wk. RESULTS: The groups with intermittent fasting protocols had reduced total cholesterol (on average 54.31%), low-density lipoprotein (on average 53.39%), and triacylglycerols (on average 23.94%) versus the obese group; and the obese with intermittent fasting plus coconut oil group had the highest high-density lipoprotein compared with all groups. The obese with intermittent fasting plus coconut oil and obese with caloric restriction groups had lower metabolic load compared with the other groups. The obese group had high citric and succinic acid concentrations, which affected the hepatic tricarboxylic acid cycle, while all the interventions had reduced concentrations of these acids. No histologic changes were observed in the intestine or liver of the groups. CONCLUSION: Intermittent fasting, especially when associated with coconut oil, had effects comparable with caloric restriction in modulating the parameters of the gut-liver axis.


Subject(s)
Cocos , Intermittent Fasting , Rats , Animals , Coconut Oil/metabolism , Coconut Oil/pharmacology , Diet , Obesity/metabolism , Lipoproteins, HDL , Liver/metabolism , Plant Oils/metabolism
2.
J Nutr Sci ; 13: e5, 2024.
Article in English | MEDLINE | ID: mdl-38282651

ABSTRACT

A clinical study conducted in 2020 showed that virgin coconut oil (VCO) has been found effective in the rapid relief of COVID-19 symptoms and normalization of the C-reactive protein (CRP) concentration among probable and suspected cases of COVID-19. This present study aimed to validate those results and to evaluate the effects of VCO among COVID-19 patients through a 28-day randomized, single-blind trial conducted among 76 SARS-CoV-2 RT-PCR (reverse transcription-polymerase chain report)-confirmed adults, with VCO given as a COVID-19 adjunct therapy. The results showed that VCO recipients were free from symptoms and had normal CRP concentrations by day 14. In comparison, participants in the control group reported relief from signs and symptoms on day 23, with normal CRP concentrations on day 25. This second study bolsters the use of VCO as an effective adjunct therapy for COVID-19-positive patients showing mild-to-moderate symptoms.


Subject(s)
COVID-19 , Adult , Humans , Coconut Oil/pharmacology , Single-Blind Method , SARS-CoV-2 , Inflammation/drug therapy , Dietary Supplements
3.
J Alzheimers Dis ; 96(3): 1195-1206, 2023.
Article in English | MEDLINE | ID: mdl-37980665

ABSTRACT

BACKGROUND: Virgin coconut oil (VCO) is a potential therapeutic approach to improve cognition in Alzheimer's disease (AD) due to its properties as a ketogenic agent and antioxidative characteristics. OBJECTIVE: This study aimed to investigate the effect of VCO on cognition in people with AD and to determine the impact of apolipoprotein E (APOE) ɛ4 genotype on cognitive outcomes. METHODS: Participants of this double-blind placebo-controlled trial (SLCTR/2015/018, 15.09.2015) were 120 Sri Lankan individuals with mild-to-moderate AD (MMSE = 15-25), aged > 65 years, and they were randomly allocated to treatment or control groups. The treatment group was given 30 mL/day of VCO orally and the control group, received similar amount of canola oil, for 24 weeks. The Mini-Mental Sate Examination (MMSE) and Clock drawing test were performed to assess cognition at baseline and at the end of the intervention. Blood samples were collected and analyzed for lipid profile and glycated hemoglobin (HbA1 C) levels.∥Results:There were no significant difference in cognitive scores, lipid profile, and HbA1 C levels between VCO and control groups post-intervention. The MMSE scores, however, improved among APOE ɛ4 carriers who had VCO, compared to non-carriers (2.37, p = 0.021). APOE ɛ4 status did not influence the cognitive scores in the control group. The attrition rate was 30%.∥Conclusion:Overall, VCO did not improve cognition in individuals with mild-to-moderate AD following a 24-week intervention, compared to canola oil. However, it improved the MMSE scores in APOE ɛ4 carriers. Besides, VCO did not compromise lipid profile and HbA1 C levels and is thus safe to consume.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Apolipoproteins E/pharmacology , Coconut Oil/pharmacology , Cognition , Dietary Supplements , Glycated Hemoglobin , Rapeseed Oil/pharmacology , Sri Lanka , Aged
4.
Breastfeed Med ; 18(3): 226-232, 2023 03.
Article in English | MEDLINE | ID: mdl-36763614

ABSTRACT

Background: The aim of the study was to determine the effect of tea tree oil and coconut oil applied to the nipples during the early postpartum period on nipple crack formation. Methods: This randomized controlled experimental research included a total of 90 women in the research sample abiding by the research criteria, with 30 each in the intervention groups (coconut oil or tea tree oil application) and 30 in the control group. Women in the intervention groups applied coconut oil or tea tree oil to the nipples on the 3rd, 7th, and 10th days postpartum, whereas the control group did not have any intervention. Data in the research were collected with the Descriptive Information Form for Mothers, Early Postpartum Period Breast Problem Assessment Form, and Visual Analog Scale (VAS). Analysis of data used the chi-square test, Kruskal-Wallis test, and Friedman's test. Results: Mean age of women participating in the research was 28.23 ± 5.21 years. The differences between the groups applying coconut oil and tea tree oil on the 3rd, 7th, and 10th days postpartum and the control group were significant in terms of incidence of nipple cracks. In addition, the difference in mean VAS points for nipple pain in the groups using coconut oil and tea tree oil and the control group was found to be statistically significant (p < 0.05). Conclusions: According to the research findings, coconut oil and tea tree oil were determined to reduce nipple crack formation and nipple pain. It is recommended to increase the use of coconut oil and tea tree oil related to breast problems in nursing care during the postpartum period. Clinical Trials Registration Number: NCT05456438.


Subject(s)
Mastodynia , Tea Tree Oil , Adult , Female , Humans , Young Adult , Breast Feeding , Coconut Oil/pharmacology , Nipples , Postpartum Period , Tea Tree Oil/pharmacology
5.
J Nutr Biochem ; 114: 109272, 2023 04.
Article in English | MEDLINE | ID: mdl-36681309

ABSTRACT

This study was designed to evaluate the long-term effects of Fructose (20%) feeding in rats, simulating metabolic syndrome (MetS), and the effects of coconut oil (C.O.) supplementation when administered in a MetS context. MetS is a cluster of systemic conditions that represent an increased chance of developing cardiovascular diseases and type 2 diabetes in the future. C.O. has been the target of media speculation, and recent studies report inconsistent results. C.O. improved glucose homeostasis and reduced fat accumulation in Fructose-fed rats while decreasing the levels of triglycerides (TGs) in the liver. C.O. supplementation also increased TGs levels and fructosamine in serum during MetS, possibly due to white adipose tissue breakdown and high fructose feeding. Pro-inflammatory cytokines IL-1ß and TNF-α were also increased in rats treated with Fructose and C.O. Oxidative stress marker nitrotyrosine is increased in fructose-fed animals, and C.O. treatment did not prevent this damage. No significant changes were observed in lipoperoxidation marker 4-Hydroxynonenal; however, fructose feeding increased total conjugated dienes and caused conjugated dienes to switch their conformation from cis-trans to trans-trans, which was not prevented by C.O. treatment. Potential benefits of C.O. have been reported with inconsistent results, and indeed we observed some benefits of C.O. supplementation in aiding weight loss, fat accumulation, and improving glucose homeostasis. Nonetheless, we also demonstrated that long-term C.O. supplementation could present some problematic effects with higher risk for individuals suffering MetS, including increased TGs and fructosamine levels and conformational changes in dienes.


Subject(s)
Coconut Oil , Dietary Supplements , Metabolic Syndrome , Animals , Rats , Blood Glucose/metabolism , Coconut Oil/pharmacology , Coconut Oil/therapeutic use , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Fructosamine/metabolism , Fructosamine/pharmacology , Fructose/metabolism , Glucose/metabolism , Homeostasis , Liver/metabolism , Metabolic Syndrome/diet therapy , Metabolic Syndrome/metabolism , Oxidative Stress , Rats, Wistar , Inflammation/diet therapy , Inflammation/metabolism
6.
Lipids Health Dis ; 21(1): 83, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36045407

ABSTRACT

BACKGROUND: Despite having a 92% concentration of saturated fatty acid composition, leading to an apparently unfavorable lipid profile, body weight and glycemic effect, coconut oil is consumed worldwide. Thus, we conducted an updated systematic review and meta-analysis of randomized clinical trials (RCTs) to analyze the effect of coconut oil intake on different cardiometabolic outcomes. METHODS: We searched Medline, Embase, and LILACS for RCTs conducted prior to April 2022. We included RCTs that compared effects of coconut oil intake with other substances on anthropometric and metabolic profiles in adults published in all languages, and excluded non-randomized trials and short follow-up studies. Risk of bias was assessed with the RoB 2 tool and certainty of evidence with GRADE. Where possible, we performed meta-analyses using a random-effects model. RESULTS: We included seven studies in the meta-analysis (n = 515; 50% females, follow up from 4 weeks to 2 years). The amount of coconut oil consumed varied and is expressed differently among studies: 12 to 30 ml of coconut oil/day (n = 5), as part of the amount of SFAs or total daily consumed fat (n = 1), a variation of 6 to 54.4 g/day (n = 5), or as part of the total caloric energy intake (15 to 21%) (n = 6). Coconut oil intake did not significantly decrease body weight (MD -0.24 kg, 95% CI -0.83 kg to 0.34 kg), waist circumference (MD -0.64 cm, 95% CI -1.69 cm to 0.41 cm), and % body fat (-0.10%, 95% CI -0.56% to 0.36%), low-density lipoprotein cholesterol (LDL-C) (MD -1.67 mg/dL, 95% CI -6.93 to 3.59 mg/dL), and triglyceride (TG) levels (MD -0.24 mg/dL, 95% CI -5.52 to 5.04 mg/dL). However, coconut oil intake was associated with a small increase in high-density lipoprotein cholesterol (HDL-C) (MD 3.28 mg/dL, 95% CI 0.66 to 5.90 mg/dL). Overall risk of bias was high, and certainty of evidence was very-low. Study limitations include the heterogeneity of intervention methods, in addition to small samples and short follow-ups, which undermine the effects of dietary intervention in metabolic parameters. CONCLUSIONS: Coconut oil intake revealed no clinically relevant improvement in lipid profile and body composition compared to other oils/fats. Strategies to advise the public on the consumption of other oils, not coconut oil, due to proven cardiometabolic benefits should be implemented. REGISTRATION: PROSPERO CRD42018081461.


Subject(s)
Cardiovascular Diseases , Dietary Fats , Adult , Body Weight , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Cholesterol, HDL , Coconut Oil/pharmacology , Coconut Oil/therapeutic use , Dietary Fats/pharmacology , Female , Humans , Male , Plant Oils/pharmacology , Plant Oils/therapeutic use , Randomized Controlled Trials as Topic
7.
Niger J Physiol Sci ; 37(2): 225-233, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-38243570

ABSTRACT

The effect of virgin coconut oil (VCO) supplemented diet on sodium benzoate (SB) - induced neurotoxicity in male Wistar rats was investigated. Twenty (20) male Wistar rats weighing 160-180g were divided into four (4) groups: Control which received 1ml of normal saline, SB-treated; received 200 mg/kg b.w, SB + Low Dose VCO-treated (SB + 5% VCO mixed with 95g of rat chow), and SB + High Dose VCO-treated (SB+ 15% VCO mixed with 85g of rat chow). The brain was processed for NRF-2, NF-kB, and acetylcholine esterase (AchE) gene expression levels. Also, the blood sample was processed for assessment of superoxide dismutase (SOD), catalase (CAT), and IL1B levels. One-way ANOVA and Tukey post hoc tests were used to analyze data. SB-treated rats with no intervention showed anxiety-like behavior and impaired memory as depicted by a significant (p<0.0001) increase in anxiety index, increase in brain NF-KB, increase in serum IL1B and increase in AchE gene expression level, reduction in the recognition ratio, decreased spontaneous alternation performance, decreased CAT and SOD levels and decreased NRF-2 expression level when compared to other groups (especially control and SB + 5% VCO). VCO supplemented diet (both 5% and 15%) significantly (p<0.0001) increased the CAT and SOD levels, increased the NRF-2 gene expression level, and significantly (p <0.0001) decreased the IL1-B level. Moreover, 5% VCO significantly (p<0.0001) decreased the anxiety index, decreased AchE and NFkB gene expression levels, increased spontaneous alternation performance, and increased recognition ratio compared to 15% VCO. VCO shows a neuroprotective effect in attenuating cognitive impairment and anxiety-like behavior in SB-induced model by modulating oxidative stress and inflammatory pathways, and also enhancing cholinergic neurotransmission. Keywords: Virgin coconut oil; sodium benzoate; acetylcholinesterase; catalase; superoxide dismutase; oxidative stress.


Subject(s)
Cognitive Dysfunction , Neuroprotective Agents , Rats , Male , Animals , Coconut Oil/pharmacology , Coconut Oil/therapeutic use , Acetylcholinesterase/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Catalase/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Rats, Wistar , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Sodium Benzoate , NF-kappa B/metabolism , Diet , Superoxide Dismutase/metabolism , Cognitive Dysfunction/drug therapy , Signal Transduction
8.
J Oleo Sci ; 70(12): 1719-1729, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34759109

ABSTRACT

Oxidative stress occurs due to the imbalance amount of the free radicals and antioxidants in human body which often associated with numerous chronic diseases. The antioxidant properties of red palm-pressed mesocarp olein (PPMO) have not been widely studied. Therefore, antioxidant properties of PPMO relative to commercially available edible oils, namely red palm olein (RPO), palm olein (PO), extra virgin olive oil (OO) and extra virgin coconut oil (CNO) were studied. PPMO exhibited significant higher phytonutrients which more than 2-fold compared to the edible oils. Overall, antioxidant screening indicated that PPMO has significantly higher antioxidant activities than RPO, PO and CNO in term of DPPH, H2O2, NO scavenging and FIC; and significantly higher H2O2 and FIC than OO. The outcomes of this study reveal that PPMO is as good as commercially available edible oil, also a good source for food applications and dietary nutritional supplements. More importantly, the utilization of PPMO could mitigate oil palm waste problem and results in positive environmental impact.


Subject(s)
Antioxidants , Palm Oil/chemistry , Palm Oil/pharmacology , Coconut Oil/pharmacology , Dietary Supplements , Free Radical Scavengers , Olive Oil/pharmacology , Phytochemicals/analysis
9.
Nutrients ; 13(9)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34579104

ABSTRACT

(1) Background. Multiple sclerosis (MS) is characterised by the loss of muscle throughout the course of the disease, which in many cases is accompanied by obesity and related to inflammation. Nonetheless, consuming epigallocatechin gallate (EGCG) and ketone bodies (especially ß-hydroxybutyrate (ßHB)) produced after metabolising coconut oil, have exhibited anti-inflammatory effects and a decrease in body fat. In addition, butyrylcholinesterase (BuChE), seems to be related to the pathogenesis of the disease associated with inflammation, and serum concentrations have been related to lipid metabolism. Objective. The aim of the study was to determine the role of BuChE in the changes caused after treatment with EGCG and ketone bodies on the levels of body fat and inflammation state in MS patients. (2) Methods. A pilot study was conducted for 4 months with 51 MS patients who were randomly divided into an intervention group and a control group. The intervention group received 800 mg of EGCG and 60 mL of coconut oil, and the control group was prescribed a placebo. Fat percentage and concentrations of the butyrylcholinesterase enzyme (BuChE), paraoxonase 1 (PON1) activity, triglycerides, interleukin 6 (IL-6), albumin and ßHB in serum were measured. (3) Results. The intervention group exhibited significant decreases in IL-6 and fat percentage and significant increases in BuChE, ßHB, PON1, albumin and functional capacity (determined by the Expanded Disability Status Scale (EDSS)). On the other hand, the control group only exhibited a decrease in IL-6. After the intervention, BuChE was positively correlated with the activity of PON1, fat percentage and triglycerides in the intervention group, whereas these correlations were not observed in the control group (4). Conclusions. BuChE seems to have an important role in lipolytic activity and the inflammation state in MS patients, evidenced after administering EGCG and coconut oil as a ßHB source.


Subject(s)
Adipose Tissue/metabolism , Butyrylcholinesterase/metabolism , Catechin/analogs & derivatives , Coconut Oil/pharmacology , Multiple Sclerosis/metabolism , Weight Loss/drug effects , Adult , Antioxidants/pharmacology , Catechin/administration & dosage , Catechin/pharmacology , Coconut Oil/administration & dosage , Dietary Supplements , Female , Humans , Inflammation/drug therapy , Lipid Metabolism/drug effects , Male , Middle Aged , Obesity/drug therapy , Pilot Projects
10.
Nutrients ; 13(5)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064496

ABSTRACT

The health effects of saturated fat, particularly tropical oil, on cardiovascular disease are unclear. We investigated the effect of tropical oil (palm and coconut oils), lard, and other common vegetable oils (soybean and rice bran oils) that are widely used in tropical and Asian countries on lipid profiles. We performed an umbrella review of meta-analyses and systematic reviews. Electronic databases (Medline, Scopus, Embase, and Cochrane) were searched up to December 2018 without language restriction. We identified nine meta-analyses that investigated the effect of dietary oils on lipid levels. Replacement of polyunsaturated fatty-acid-rich oils (PUFAs) and monounsaturated FA-rich oils (MUFAs) with palm oil significantly increased low-density lipoprotein cholesterol (LDL-c), by 3.43 (0.44-6.41) mg/dL and 9.18 (6.90-11.45) mg/dL, respectively, and high-density lipoprotein cholesterol (HDL-c), by 1.89 (1.23-2.55) mg/dL and 0.94 (-0.07-1.97) mg/dL, respectively. Replacement of PUFAs with coconut oil significantly increased HDL-c and total cholesterol -by 2.27 (0.93-3.6) mg/dL and 5.88 (0.21-11.55) mg/dL, respectively-but not LDL-c. Substituting lard for MUFAs and PUFAs increased LDL-c-by 8.39 (2.83-13.95) mg/dL and 9.85 (6.06-13.65) mg/dL, respectively-but not HDL-c. Soybean oil substituted for other PUFAs had no effect on lipid levels, while rice bran oil substitution decreased LDL-c. Our findings show the deleterious effect of saturated fats from animal sources on lipid profiles. Replacement of unsaturated plant-derived fats with plant-derived saturated fats slightly increases LDL-c but also increases HDL-c, which in turn may exert a neutral effect on cardiovascular health.


Subject(s)
Cardiovascular Diseases/etiology , Coconut Oil/pharmacology , Dietary Fats, Unsaturated/pharmacology , Fatty Acids/pharmacology , Palm Oil/pharmacology , Animals , Asia , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Diet/adverse effects , Dietary Fats/pharmacology , Eating/physiology , Heart Disease Risk Factors , Humans , Meta-Analysis as Topic , Plant Oils/pharmacology , Rice Bran Oil/pharmacology , Soybean Oil/pharmacology , Systematic Reviews as Topic , Tropical Climate
11.
J Nutr Biochem ; 94: 108751, 2021 08.
Article in English | MEDLINE | ID: mdl-33915261

ABSTRACT

Diets rich in mono or polyunsaturated fats have been associated with a healthy phenotype, but there is controversial evidence about coconut oil (CO), which is rich in saturated medium-chain fatty acids. Therefore, the purpose of the present work was to study whether different types of oils rich in polyunsaturated (soybean oil, SO), monounsaturated (olive oil, OO), or saturated fatty acids (coconut oil, CO) can regulate the gut microbiota, insulin sensitivity, inflammation, mitochondrial function in wild type and PPARα KO mice. The group that received SO showed the highest microbial diversity, increase in Akkermansia muciniphila, high insulin sensitivity and low grade inflammation, The OO group showed similar insulin sensitivity and insulin signaling than SO, increase in Bifidobacterium, increase in fatty acid oxidation and low grade inflammation. The CO consumption led to the lowest bacterial diversity, a 9-fold increase in the LPS concentration leading to metabolic endotoxemia, hepatic steatosis, increased lipogenesis, highest LDL-cholesterol concentration and the lowest respiratory capacity and fatty acid oxidation in the mitochondria. The absence of PPARα decreased alpha diversity and increased LPS concentration particularly in the CO group, and increased insulin sensitivity in the groups fed SO or OO. These results indicate that consuming mono or polyunsaturated fatty acids produced health benefits at the recommended intake but a high concentration of oils (three times the recommended oil intake in rodents) significantly decreased the microbial alpha-diversity independent of the type of oil.


Subject(s)
Coconut Oil/pharmacology , Gastrointestinal Microbiome/drug effects , Non-alcoholic Fatty Liver Disease/prevention & control , Olive Oil/pharmacology , PPAR alpha/metabolism , Soybean Oil/pharmacology , Animals , Bacteria/classification , Bacteria/genetics , Cells, Cultured , Computational Biology , DNA, Bacterial/genetics , Feces/chemistry , Gene Expression Regulation/drug effects , Genotype , Glucose Intolerance , Hepatocytes/drug effects , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Oxygen Consumption/drug effects , PPAR alpha/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S , Random Allocation , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
12.
Fish Physiol Biochem ; 47(4): 869-880, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33770301

ABSTRACT

The trials of finding non-conventional and alternative aquafeed ingredients are increasing. In this sense, this study evaluated the influence of coconut oil on the growth, feed utilization, immune, and antioxidative responses of Nile tilapia. Five test diets were formulated by mixing coconut oil with the other ingredients at 0, 1, 2, 3, and 4% of the total ration and presented for tilapia for 60 successive days. The final weight, SGR, weight gain (WG), and feed intake were superior in fish delivered 2% of coconut oil (P < 0.05). Concurrently, fish that received 2% coconut oil had lower FCR and higher PER than fish of the control and 4% groups (P < 0.05). Higher lipase activity was observed in fish of 2% and 3% levels than the remaining groups (P < 0.05). Besides, the amylase and protease activities of fish in 1%, 2%, and 3% groups were higher than the 0% level (P < 0.05). The total blood cholesterol, RBCs, and PCV showed higher values in Nile tilapia fed 2% and 3% coconut oil (P < 0.05). The lysozyme and phagocytic activities were higher in fish fed 2% and 3% levels than the control (P < 0.05), while the phagocytic index in 2% and 3% levels was higher than 0% and 4% levels. Furthermore, SOD and CAT were higher in fish fed 1%, 2%, and 3% than fish fed 0% and 4% levels while GSH was higher in fish of 1%, 2%, and 3% than fish fed 0% level (P < 0.05). However, the MDA level was markedly lower in fish fed 25, 3%, and 4% coconut oil than the 0% level (P < 0.05). The intestine's histological structure in all groups appeared normal, forming of intestinal villi projecting from the intestinal wall. Also, the structure of the hepatopancreas had a normal architecture in all groups. To sum up, the inclusion of coconut oil at 2 to 3% is recommended as a replacer for fish oil in Nile tilapia diets.


Subject(s)
Cichlids , Coconut Oil/pharmacology , Dietary Supplements , Amylases/metabolism , Animals , Antioxidants , Aquaculture/methods , Cichlids/anatomy & histology , Cichlids/growth & development , Cichlids/immunology , Cichlids/metabolism , Hepatopancreas/anatomy & histology , Intestines/anatomy & histology , Intestines/enzymology , Lipase/metabolism , Liver/anatomy & histology , Peptide Hydrolases/metabolism , Phagosomes/drug effects , Phagosomes/physiology
14.
Trop Anim Health Prod ; 52(5): 2499-2504, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32377969

ABSTRACT

The current research study was designed to determine the inclusion of 2% dietary essential coconut oil with and without coccidiosis challenge on performance, carcass characteristics, and intestinal histomorphology in broilers. A total of 560 broiler chicks were divided into 4 groups and then subdivided into 5 replicates. Coconut oil was used at 2% in feed, whereas coccidiosis challenged was introduced using 30,000 oocysts. The other four groups were designated as G1 (without coconut oil and without oocysts), G2 (without coconut oil with oocysts), G3 (with coconut oil without oocysts), and G4 (with coconut oil and with oocysts). The results revealed that the overall feed consumption was significantly (P < 0.01) increased in G1 and G2 than G3 and G4 groups. Overall weight gain was significantly (P < 0.01) higher in G3 compared with all other groups. Significantly (P < 0.01) better feed conversion ratio was recorded at the finisher phase in G3 and G4 groups in comparison with G1 and G2. The villus length, width, and surface area were higher (P < 0.01) in G3 compared with G2. Based on the findings of the present study, it was concluded that the use of 2% coconut oil in broiler feed improved growth performance and villus histology during coccidial challenge.


Subject(s)
Chickens/growth & development , Coccidiosis/veterinary , Coconut Oil/pharmacology , Diet/veterinary , Dietary Supplements , Poultry Diseases/drug therapy , Animal Feed/analysis , Animals , Coccidiosis/drug therapy , Coccidiosis/pathology , Coconut Oil/administration & dosage , Intestines/drug effects , Oocysts/drug effects , Poultry Diseases/parasitology , Weight Gain
15.
PLoS One ; 15(4): e0232224, 2020.
Article in English | MEDLINE | ID: mdl-32343717

ABSTRACT

The Amazon region is rich in genetic resources such as oilseeds which have potentially important local commercial exploitation. Despite its high concentration of bioactive compounds, cacay (Caryodendron orinocense Karst.) oil is poorly investigated and explored. Thus, this study focuses on the physicochemical characterization (moisture, density, and saponification, iodine, and acidity values), fatty acid composition as determined by gas chromatograph mass spectrometry (GC/MS), total phenolic content (TPC), and antioxidant activity (DPPH and ABTS radical scavenging assay) of cacay oil, coconut oil and a coconut/cacay oil blend, also known as cacay butter. The antibacterial activity of cacay oil was additionally evaluated. Our study demonstrated that cacay oil presents a high amount of polyunsaturated fatty acid (PUFA) (58.3%) with an emphasis on linoleic acid and a lower acidity value (2.67 ± 0.01 cg I2/g) than butter and coconut oil, indicating a low concentration of free fatty acids. In contrast, cacay butter and coconut oil presented higher saturated fatty acid percentages (69.1% and 78.4%, respectively) and higher saponification values (242.78 and 252.22 mg KOH/g, respectively). The samples showed low moisture and relative density between 912 and 916 kg/m3. The hydrophilic fraction of cacay oil was highlighted in the quantification of TPC (326.27 ± 6.79 mg GAE/kg) and antioxidant capacity in vitro by DPPH radical scavenging assay (156.57 ± 2.25 µmol TE/g). Cacay oil inhibited the growth of Bacillus cereus (44.99 ± 7.68%), Enterococcus faecalis (27.76 ± 0.00%), and Staphylococcus aureus (11.81 ± 3.75%). At long last, this is the first study reporting the physicochemical characterization and bioactive properties of cacay butter. Coconut oil and cacay butter showed great oxidative stability potential due to higher contents of saturated fatty acids. Moreover, cacay oil presents as an alternative source of raw materials for cosmetic and biotechnology industries due to its high concentration of PUFA and for being a rich source of phenolic compounds.


Subject(s)
Coconut Oil/chemistry , Euphorbiaceae/chemistry , Plant Oils/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Chemical Phenomena , Coconut Oil/pharmacology , Fatty Acids/chemistry , Fatty Acids/pharmacology , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/pharmacology , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Microbial Sensitivity Tests , Phenols/chemistry , Phenols/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Oils/pharmacology
16.
Exp Parasitol ; 210: 107845, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32004533

ABSTRACT

Vegetable oils are frequently used as solvents for lipophilic materials; accordingly, the effects of their components should be considered in animal experiments. In this study, the effects of various vegetable oils on the course of Trypanosoma congolense infection were examined in mice. C57BL/6J mice were orally administered four kinds of oils (i.e., coconut oil, olive oil, high oleic safflower oil, and high linoleic safflower oil) with different fatty acid compositions and infected with T. congolense IL-3000. Oil-treated mice infected with T. congolense showed significantly higher survival rates and lower parasitemia than those of control mice. Notably, coconut oil, which mainly consists of saturated fatty acids, delayed the development of parasitemia at the early stage of infection. These results indicated that vegetable oil intake could affect T. congolense infection in mice. These findings have important practical implications; for example, they suggest the potential effectiveness of vegetable oils as a part of the regular animal diet for controlling tropical diseases and indicate that vegetable oils are not suitable solvents for studies of the efficacy of lipophilic agents against T. congolense.


Subject(s)
Plant Oils/administration & dosage , Trypanosoma congolense/drug effects , Trypanosomiasis, African/diet therapy , Animals , Body Weight/drug effects , Coconut Oil/administration & dosage , Coconut Oil/chemistry , Coconut Oil/pharmacology , Energy Intake/drug effects , Linoleic Acid/analysis , Male , Mice , Mice, Inbred C57BL , Oleic Acid/analysis , Olive Oil/administration & dosage , Olive Oil/chemistry , Olive Oil/pharmacology , Parasitemia/prevention & control , Plant Oils/classification , Plant Oils/pharmacology , Plant Oils/therapeutic use , Safflower Oil/administration & dosage , Safflower Oil/chemistry , Safflower Oil/pharmacology , Trypanosomiasis, African/prevention & control
17.
Eur J Nutr ; 59(6): 2481-2496, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31562532

ABSTRACT

PURPOSE: We hypothesize that different types of dietary fatty acids (FAs) affect gastrointestinal (GI) motility and visceromotor function and that this effect can be regulated by the fatty acid binding protein 4 (FABP4). METHODS: Mice were fed for 60 days with standard diet (STD), STD with 7% (by weight) coconut oil, rich in medium-chain FAs (MCFAs) (COCO), or with 7% evening primrose oil, rich in long-chain FAs (LCFAs) (EPO). In each group, half of the mice received FABP4 inhibitor, BMS309403 (1 mg/kg; i.p.) twice a week. Body weight (BW) and food intake were measured; well-established tests were performed to characterize the changes in GI motility and visceral pain. White adipose tissue and colonic samples were collected for cell culturing and molecular studies. RESULTS: COCO significantly increased GI transit, but not colonic motility. COCO and EPO delayed the onset of diarrhea, but none affected the effect of loperamide. EPO reduced BW and increased the visceromotor response (VMR) to colorectal distension (CRD). COCO and EPO reduced differentiation of preadipocytes. Treatment with BMS309403: (1) reversed the effects induced by COCO in physiological conditions and in mouse models of diarrhea; (2) prevented the effects of EPO on BW, VMR to CRD and castor oil-induced diarrhea; (3) affected proliferation of preadipocytes; (4) changed the expression of Fabp4 in colonic and adipocyte samples from COCO and EPO. CONCLUSION: Modifying dietary intake of MCFAs and LCFAs may be used to control GI motility or visceral pain and thus modulate the symptoms of functional GI disorders. The effect is dependent on the expression of FABP4.


Subject(s)
Dietary Fats/pharmacology , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/chemistry , Fatty Acids/pharmacology , Gastrointestinal Motility/drug effects , Visceral Pain/diet therapy , Animals , Coconut Oil/chemistry , Coconut Oil/pharmacology , Diarrhea/diet therapy , Diet Therapy , Fatty Acid-Binding Proteins/antagonists & inhibitors , Gastrointestinal Transit/drug effects , Linoleic Acids/chemistry , Linoleic Acids/pharmacology , Male , Mice , Mice, Inbred BALB C , Oenothera biennis , Plant Oils/chemistry , Plant Oils/pharmacology , gamma-Linolenic Acid/chemistry , gamma-Linolenic Acid/pharmacology
18.
Nutr Rev ; 78(3): 249-259, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31769848

ABSTRACT

CONTEXT: Coconut oil is rich in medium-chain fatty acids and has been claimed to have numerous health benefits. OBJECTIVE: This review aimed to examine the evidence surrounding coconut oil consumption and its impact on cardiovascular health. DATA SOURCES: A systematic literature search of the PubMed, Embase, the Cochrane Library, and CINAHL databases, up to May 2019, was performed. DATA EXTRACTION: Study characteristics including study design, population, intervention, comparator, outcome, and source of funding were summarized. DATA ANALYSIS: Meta-analyses included 12 studies to provide estimates of effects. Subgroup analyses were performed to account for any differences in the study-level characteristics. When compared with plant oils and animal oils, coconut oil was found to significantly increase high-density lipoprotein cholesterol (HDL-C) by 0.57 mg/dL (95%CI, 0.40-0.74 mg/dL; I2 = 6.7%) and 0.33 mg/dL (0.01-0.65 mg/dL; I2 = 0%), respectively. Coconut oil significantly raised low-density lipoprotein cholesterol (LDL-C) by 0.26 mg/dL (0.09-0.43 mg/dL; I2 = 59.7%) compared with plant oils and lowered LDL-C (-0.37 mg/dL; -0.69 to -0.05 mg/dL; I2 = 48.1%) compared with animal oils. No significant effects on triglyceride were observed. Better lipid profiles were demonstrated with the virgin form of coconut oil. CONCLUSION: Compared with animal oils, coconut oil demonstrated a better lipid profile n comparison with plant oils, coconut oil significantly increased HDL-C and LDL-C.


Subject(s)
Cholesterol, HDL/blood , Cholesterol, LDL/blood , Coconut Oil/pharmacology , Coconut Oil/metabolism , Humans , Plant Oils/pharmacology , Triglycerides/blood
19.
Int J Mol Sci ; 20(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847143

ABSTRACT

Dietary supplementation with omega-3 and omega-6 fatty acids offer cardioprotection against air pollution, but these protections have not been established in the brain. We tested whether diets rich in omega-3 or -6 fatty acids offered neuroprotective benefits, by measuring mitochondrial complex enzyme I, II and IV activities and oxidative stress measures in the frontal cortex, cerebellum, hypothalamus, and hippocampus of male rats that were fed either a normal diet, or a diet enriched with fish oil olive oil, or coconut oil followed by exposure to either filtered air or ozone (0.8 ppm) for 4 h/day for 2 days. Results show that mitochondrial complex I enzyme activity was significantly decreased in the cerebellum, hypothalamus and hippocampus by diets. Complex II enzyme activity was significantly lower in frontal cortex and cerebellum of rats maintained on all test diets. Complex IV enzyme activity was significantly lower in the frontal cortex, hypothalamus and hippocampus of animals maintained on fish oil. Ozone exposure decreased complex I and II activity in the cerebellum of rats maintained on the normal diet, an effect blocked by diet treatments. While diet and ozone have no apparent influence on endogenous reactive oxygen species production, they do affect antioxidant levels in the brain. Fish oil was the only diet that ozone exposure did not alter. Microglial morphology and GFAP immunoreactivity were assessed across diet groups; results indicated that fish oil consistently decreased reactive microglia in the hypothalamus and hippocampus. These results indicate that acute ozone exposure alters mitochondrial bioenergetics in brain and co-treatment with omega-6 and omega-3 fatty acids alleviate some adverse effects within the brain.


Subject(s)
Brain/metabolism , Coconut Oil/pharmacology , Energy Metabolism/drug effects , Fish Oils/pharmacology , Mitochondria/metabolism , Olive Oil/pharmacology , Animals , Electron Transport Chain Complex Proteins/metabolism , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Male , Microglia/metabolism , Rats , Rats, Inbred WKY
20.
Vet Dermatol ; 30(6): 553-e166, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31663228

ABSTRACT

BACKGROUND: There is a rapidly growing market for topical use of virgin coconut oil (VCO). Studies of topical use in dogs are lacking. HYPOTHESIS/OBJECTIVE: The objective of this study was to measure the release of lactate dehydrogenase (LDH, a plasma membrane disruption marker) and production of nitrite (Griess reaction, an oxidative stress marker) from a canine keratinocyte cell line after exposure to VCO as an initial toxicity screening to suggest future studies. METHODS AND MATERIALS: Canine progenitor epidermal keratinocytes (CPEKs) were plated onto permeable transwell membranes and cultured with undiluted organic VCO or control media. Following a 24 h incubation, an LDH assay and a Griess reaction were performed on the collected subnatants. RESULTS: Exposure of CPEKs to VCO significantly increased LDH release compared to controls, 62.29 ± 16.32% versus 8.88 ± 5.82% (P = 0.0056) and there was no significant difference in production of nitrite compared to controls, 2.47 ± 1.56 µmol/L versus 1.42 ± 0.95 µmol/L (P = 0.086). CONCLUSIONS AND CLINICAL IMPORTANCE: Based on this study VCO induced an increased disruption of plasma membrane integrity, as measured by LDH. However, VCO did not induce increased oxidative stress, as measured by nitrite production. Based on these preliminary data, further studies to assess the toxicity of VCO are needed.


Subject(s)
Cell Membrane/drug effects , Coconut Oil/pharmacology , Keratinocytes/drug effects , Oxidative Stress/drug effects , Plant Oils/pharmacology , Stem Cells/drug effects , Animals , Cell Line , Dogs
SELECTION OF CITATIONS
SEARCH DETAIL