Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1540-1548, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621937

ABSTRACT

This study aims to reveal the effects of maltodextrin(MD) on the water adsorption and thermodynamic properties of Codonopsis Radix(DS) spray-dried powder by determining the moisture and energy changes of the powder in the process of moisture absorption. The static weighing method was used to obtain the isothermal water adsorption data of the spray-dried powder in 6 saturated salt solutions(KAc, MgCl_2·6H_2O, K_2CO_3, NaBr, NaCl, and KCl) at 3 temperatures(25, 35, and 45 ℃). Six models were used for fitting of the water adsorption process, and the most suitable model was selected based on the model performance. Furthermore, the corresponding net equivalent adsorption heat and differential entropy were calculated, and the adsorption entropy change was integrated. The linear relationship between net equivalent adsorption heat and differential entropy was drawn based on the entropy-enthalpy complementarity theory. The results showed that the water adsorption properties of DS and DS-MD spray-dried powder followed the type Ⅲ isotherm and was well fitted by the GAB model. The monolayer water content M_0 decreased with the increase in temperature. At the same temperature, the M_0 of DS spray-dried powder decreased after the addition of MD. The net equivalent adsorption heat and differential entropy of DS and DS-MD spray-dried powder decreased with the increase in water content, which presented a linear relationship. The addition of MD decreased the water activity corresponding to the lowest integral adsorption entropy of the powder, and the system became more stable. The results indicated that the spray-dried powder became more stable after the addition of MD.


Subject(s)
Codonopsis , Polysaccharides , Water , Adsorption , Powders , Thermodynamics
2.
J Ethnopharmacol ; 327: 118016, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38462027

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Codonopsis pilosula (C. pilosula), also called "Dangshen" in Chinese, is derived from the roots of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. Modesta (Nannf.) L.D.Shen (C. pilosula var. modesta) or Codonopsis pilosula subsp. Tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), is a well-known traditional Chinese medicine. It has been regularly used for anti-aging, strengthening the spleen and tonifying the lungs, regulating blood sugar, lowering blood pressure, strengthening the body's immune system, etc. However, the mechanism, by which, C. pilosula exerts its therapeutic effects on brain aging remains unclear. AIM OF THE STUDY: This study aimed to investigate the underlying mechanisms of the protective effects of C. pilosula water extract (CPWE) on the hippocampal tissue of D-galactose-induced aging mice. MATERIALS AND METHODS: In this research, plant taxonomy has been confirmed in the "The Plant List" database (www.theplantlist.org). First, an aging mouse model was established through the intraperitoneal injections of D-galactose solution, and low-, medium-, and high-dose CPWE were administered to mice by gavage for 42 days. Then, the learning and memory abilities of the mice were examined using the Morris water maze tests and step-down test. Hematoxylin and eosin staining was performed to visualize histopathological damage in the hippocampus. A transmission electron microscope was used to observe the ultrastructure of hippocampal neurons. Immunohistochemical staining was performed to examine the expression of glial fibrillary acidic protein (GFAP), the marker protein of astrocyte activation, and autophagy-related proteins, including microtubule-associated protein light chain 3 (LC3) and sequestosome 1 (SQSTM1)/p62, in the hippocampal tissues of mice. Moreover, targeted metabolomic analysis was performed to assess the changes in polar metabolites and short-chain fatty acids in the hippocampus. RESULTS: First, CPWE alleviated cognitive impairment and ameliorated hippocampal tissue damage in aging mice. Furthermore, CPWE markedly alleviated mitochondrial damage, restored the number of autophagosomes, and activated autophagy in the hippocampal tissue of aging mice by increasing the expression of LC3 protein and reducing the expression of p62 protein. Meanwhile, the expression levels of the brain injury marker protein GFAP decreased. Moreover, quantitative targeted metabolomic analysis revealed that CPWE intervention reversed the abnormal levels of L-asparagine, L-glutamic acid, L-glutamine, serotonin hydrochloride, succinic acid, and acetic acid in the hippocampal tissue of aging mice. CPWE also significantly regulated pathways associated with D-glutamine and D-glutamate metabolism, nitrogen metabolism, arginine biosynthesis, alanine, aspartate, and glutamate metabolisms, and aminoacyl-tRNA biosynthesis. CONCLUSIONS: CPWE could improve cognitive and pathological conditions induced by D-galactose in aging mice by activating autophagy and regulating metabolism, thereby slowing down brain aging.


Subject(s)
Codonopsis , Mice , Animals , Codonopsis/chemistry , Galactose , Brain , Aging , Autophagy
3.
Chin J Nat Med ; 22(3): 249-264, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38553192

ABSTRACT

Inulin-type fructan CP-A, a predominant polysaccharide in Codonopsis pilosula, demonstrates regulatory effects on immune activity and anti-inflammation. The efficacy of CP-A in treating ulcerative colitis (UC) is, however, not well-established. This study employed an in vitro lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) and an in vivo dextran sulfate sodium (DSS)-induced colitis mouse model to explore CP-A's protective effects against experimental colitis and its underlying mechanisms. We monitored the clinical symptoms in mice using various parameters: body weight, disease activity index (DAI), colon length, spleen weight, and histopathological scores. Additionally, molecular markers were assessed through enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays. Results showed that CP-A significantly reduced reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukins (IL-6, IL-1ß, IL-18) in LPS-induced cells while increasing IL-4 and IL-10 levels and enhancing the expression of Claudin-1, ZO-1, and occludin proteins in NCM460 cells. Correspondingly, in vivo findings revealed that CP-A administration markedly improved DAI, reduced colon shortening, and decreased the production of myeloperoxidase (MPO), malondialdehyde (MDA), ROS, IL-1ß, IL-18, and NOD-like receptor protein 3 (NLRP3) inflammasome-associated genes/proteins in UC mice. CP-A treatment also elevated glutathione (GSH) and superoxide dismutase (SOD) levels, stimulated autophagy (LC3B, P62, Beclin-1, and ATG5), and reinforced Claudin-1 and ZO-1 expression, thereby aiding in intestinal epithelial barrier repair in colitis mice. Notably, the inhibition of autophagy via chloroquine (CQ) diminished CP-A's protective impact against colitis in vivo. These findings elucidate that CP-A's therapeutic effect on experimental colitis possibly involves mitigating intestinal inflammation through autophagy-mediated NLRP3 inflammasome inactivation. Consequently, inulin-type fructan CP-A emerges as a promising drug candidate for UC treatment.


Subject(s)
Codonopsis , Colitis, Ulcerative , Colitis , Mice , Animals , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inulin/metabolism , Inulin/pharmacology , Inulin/therapeutic use , Interleukin-18 , Codonopsis/metabolism , NLR Proteins/metabolism , Fructans/metabolism , Fructans/pharmacology , Fructans/therapeutic use , Reactive Oxygen Species/metabolism , Lipopolysaccharides/pharmacology , Claudin-1/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Autophagy , Dextran Sulfate , Mice, Inbred C57BL , Disease Models, Animal , Colon/metabolism , Colon/pathology
4.
Phytomedicine ; 128: 155338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520835

ABSTRACT

BACKGROUND: Liver cancer, one of the most common types of cancer worldwide, accounts for millions of cases annually. With its multi-target and wide-ranging therapeutic effects, traditional Chinese medicine has emerged as a potential approach for treating various tumors. Codonopsis pilosula, a traditional herb, is known for its anti-inflammatory and antioxidant properties. In this study, we investigated the potential molecular mechanisms of Codonopsis pilosula in regulating the inhibition of CDK1 and the modulation of PDK1/ß-catenin, which are involved in hepatocellular carcinoma growth and metastasis. STUDY DESIGN/METHODS: Firstly, we screened the active chemical constituents of Codonopsis pilosula and identified their respective target proteins using the Herb database. Then, we applied the GeneCards database and transcriptome sequencing analysis to screen for critical genes associated with the occurrence and development of liver cancer. The intersection of the target proteins and disease-related genes was used to determine the potential targets of Codonopsis pilosula in hepatocellular carcinoma. Protein-protein interaction analysis and GO/KEGG analysis were subsequently performed to uncover the pathways through which Codonopsis pilosula acts on liver cancer. The Huh-7 cell line, exhibiting the highest sensitivity to Codonopsis pilosula polysaccharide solution (CPP) intervention, was chosen for subsequent studies. Cell viability was evaluated using the CCK-8 assay, colony formation assay was conducted to determine cell proliferation capacity, flow cytometry was used to analyze cell cycle, TUNEL staining was performed to assess cell apoptosis, scratch assay was carried out to evaluate cell migration ability, the expression of EMT-related proteins was detected and analyzed, and cell sphere formation assay was conducted to investigate cell stemness. Finally, a liver cancer animal model was established, and different doses of CPP were administered via gavage the next day. The expression levels of CDK1, PDK1, and ß-catenin in mouse liver tissues were detected and analyzed, immunohistochemistry staining was performed to assess the expression of tumor cell proliferation-related proteins Ki67 and PCNA in mouse xenografts, and TUNEL staining was carried out to evaluate cell apoptosis in mouse liver tissues. After intervention with CDK1 expression, the expression levels of CDK1, PDK1, and ß-catenin proteins and mRNA in each group of cells were detected using Western blot and RT-qPCR. RESULTS: Through network pharmacology analysis, transcriptome sequencing, and bioinformatics analysis, 35 target genes through which Codonopsis pilosula acts on liver cancer were identified. Among them, CDK1, with the highest degree in the PPI network, was considered an essential target protein for Codonopsis pilosula in treating liver cancer. In vitro cell experiments revealed that CPP could inhibit the expression of CDK1/PDK1/ß-catenin signaling axis factors, suppress cell proliferation, decrease cell migration ability, influence the EMT process, and reduce cell stemness by inhibiting CDK1 and affecting the PDK1/ß-catenin signaling axis. Similarly, in vivo experiments demonstrated that CPP could regulate the CDK1/PDK1/ß-catenin signaling axis, inhibit tumor growth, and induce cell apoptosis. CONCLUSION: Codonopsis pilosula may inhibit hepatocellular carcinoma growth by suppressing CDK1 and affecting the PDK1/ß-catenin signaling axis, limiting cell EMT and reducing cell stemness. These findings provide insights into the potential therapeutic role of Codonopsis pilosula in liver cancer.


Subject(s)
CDC2 Protein Kinase , Carcinoma, Hepatocellular , Codonopsis , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Animals , Humans , Codonopsis/chemistry , Cell Line, Tumor , CDC2 Protein Kinase/metabolism , Mice , Cell Proliferation/drug effects , beta Catenin/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Nude , Mice, Inbred BALB C , Male , Cell Movement/drug effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Xenograft Model Antitumor Assays , Drugs, Chinese Herbal/pharmacology
5.
Int J Biol Macromol ; 265(Pt 2): 130988, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518942

ABSTRACT

Codonopsis pilosula is a famous edible and medicinal plants, in which polysaccharides are recognized as one of the important active ingredients. A neutral polysaccharide (CPP-1) was purified from C. pilosula. The structure was characterized by HPSEC-MALLS-RID, UV, FT-IR, GC-MS, methylation analysis, and NMR. The results showed that CPP-1 was a homogeneous pure polysaccharide, mainly containing fructose and glucose, and a small amount of arabinose. Methylation analysis showed that CPP-1 composed of →1)-Fruf-(2→, Fruf-(1→ and Glcp-(1→ residues. Combined the NMR results the structure of CPP-1 was confirmed as α-D-Glcp-(1 â†’ [2)-ß-D-Fruf-(1 â†’ 2)-ß-D-Fruf-(1]26 â†’ 2)-ß-D-Fruf with the molecular weight of 4.890 × 103 Da. The model of AML12 hepatocyte fat damage was established in vitro. The results showed that CPP-1 could increase the activity of SOD and CAT antioxidant enzymes and reduce the content of MDA, thus protecting cells from oxidative damage. Subsequently, the liver protective effect of CPP-1 was studied in the mouse model of nonalcoholic fatty liver disease (NAFLD) induced by the high-fat diet. The results showed that CPP-1 significantly reduced the body weight, liver index, and body fat index of NAFLD mice, and significantly improved liver function. Therefore, CPP-1 should be a potential candidate for the treatment of NAFLD.


Subject(s)
Codonopsis , Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Codonopsis/chemistry , Spectroscopy, Fourier Transform Infrared , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Antioxidants/pharmacology
6.
Int J Biol Macromol ; 259(Pt 1): 129114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181915

ABSTRACT

This study aims to investigate the ameliorative effect of Codonopsis lanceolata polysaccharide (PCL) on mice with hypogalatia induced by a high-fat diet (HFD) and the potential underlying mechanism. We found that oral administration of PCL demonstrated significant benefits in countering the negative effects of HFD, including weight gain, hepatic steatosis, mesenteric adipocyte hypertrophy, and abnormal glucose/lipid metabolism. In addition, PCL improved mammary gland development and enhanced lactogenesis performance. Histologically, PCL ameliorated the retardation of ductal growth, reduced mammary fat pad thickness, improved the incomplete linear encapsulation of luminal epithelium and myoepithelium, and increased the proliferation of mammary epithelial cells. Flow cytometry analysis showed that PCL mitigated the detrimental effects of HFD on mammary gland development by promoting the proliferation and differentiation of mammary epithelial cells. Mechanistic studies revealed that PCL upregulated the levels of prolactin (PRL) and its receptor (PRLR) in the mammary gland, activated JAK2/STAT5 signaling pathway, and increased the expression of p63, ERBB4, and NRG1. Overall, PCL can ameliorate HFD-induced hypogalactia by activating PRLR-mediated JAK2/STAT5 signaling. Our findings offer a methodological and theoretical foundation for investigating the functional constituents of traditional Chinese medicine in the treatment of hypogalactia.


Subject(s)
Codonopsis , Lactation Disorders , Humans , Female , Mice , Animals , Prolactin/metabolism , Prolactin/pharmacology , Receptors, Prolactin/metabolism , Codonopsis/metabolism , STAT5 Transcription Factor/metabolism , Diet, High-Fat/adverse effects , Signal Transduction , Postpartum Period , Polysaccharides/pharmacology
7.
J Ethnopharmacol ; 323: 117585, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38159825

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Some species of Codonopsis (local name in Shanxi: Ludang) have long demonstrated high medicinal and economic value. Radix Codonopsis, the dried root of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. modesta (Nannf.) L.D.Shen (C. pilosula var. modesta), or Codonopsis pilosula subsp. tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), was recorded as a traditional Chinese medicine back in the Qing Dynasty in Ben Cao Cong Xin. Radix Codonopsis, a valuable medicinal herb certified by the Chinese National Geographic Indication, is known for invigorating the spleen, nourishing the lungs, promoting blood circulation, and generating fluid properties. Given that chronic cerebral ischemia (CCI) is often associated with the symptoms of qi and blood deficiencies and fluid depletion, we explored the potential of Codonopsis decoction in the treatment of CCI. STUDY AIMS: We investigated the effects of Codonopsis decoction on cerebral blood flow (CBF) and cognitive function in rats with bilateral carotid artery occlusion after surgery; explored whether Codonopsis decoction alleviates pathological injuries in brain tissue of rats after 2-VO surgery; and assessed the impact of Codonopsis decoction on the expression of chemokines, hypoxia-inducible factors, and inflammatory mediators in rats after 2-VO surgery. MATERIALS AND METHODS: We used a 2-VO rat model to simulate CCI. We used a laser speckle imaging (LSI) system to observe changes in CBF before and after surgery. The goal was to examine variations in CBF at different time points after 2-VO surgery. For 4 weeks, the rats were orally administered Codonopsis decoction at doses of 2.7, 5.4, and 10.8 g/kg/day, or Ginaton at a dose of 43.2 mg/kg/day. To assess the effect of Codonopsis on cerebral hypoperfusion symptoms in rats, we conducted the Morris water maze (MWM), Barnes maze (BM), and forelimb grip strength tests. Additionally, pathological experiments including hematoxylin and eosin, Nissl, and Luxol fast blue staining were conducted. Furthermore, we used western blotting to detect changes in the levels of proteins such as the chemotactic factor CKLF1 and hypoxia-inducible actor 1-alpha (HIF-1α). RESULTS: One week after 2-VO surgery, cerebral arterial blood supply in the rats rapidly reduced to approximately 43.39% ± 3.53% of the preoperative level. Cerebral cortex perfusion reached its nadir within 24 h of surgery, gradually recovering and stabilizing by the fourth week after surgery. An integration of the results from the BM, MWM, and grip strength tests, which assessed cognitive function and forelimb strength in rats after 2-VO surgery, unequivocally revealed that Codonopsis treatment significantly reduced the latency period and increased the number of platform crossings in the MWM test. Ginaton exhibited a comparable effect. Moreover, both Codonopsis and Ginaton decreased the number of errors and the time required to locate the target hole in the BM test. Histopathological staining revealed that Codonopsis and Ginaton could ameliorate pathological damage in rats after CCI and reduce the release of factors such as CKLF1 and HIF-1α. CONCLUSION: Codonopsis decoction exerted its protective effects on CCI rats possibly by modulating the levels of chemokines, hypoxia-inducible factors, and neuroinflammatory mediators.


Subject(s)
Brain Ischemia , Codonopsis , Rats , Animals , Brain Ischemia/drug therapy , Cognition , Cerebrovascular Circulation , Chemokines , Hypoxia
8.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5779-5789, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114173

ABSTRACT

This study aims to mine the transcription factors that affect the genuineness of Codonopsis pilosula in Shanxi based on the transcriptome data of C. pilosula samples collected from Shanxi and Gansu, and then analyze the gene expression patterns, which will provide a theoretical basis for the molecular assisted breeding of C. pilosula. Gene ontology(GO) functional annotation, conserved motif prediction, and gene expression pattern analysis were performed for the differential transcription factors predicted based on the transcriptome data of C. pilosula from different habitats. A total of 61 differentially expressed genes(DEGs) were screened out from the transcriptome data. Most of the DEGs belonged to AP2/ERF-ERF family, with the conserved motif of [2X]-[LG]-[3X]-T-[3X]-[AARAYDRAA]-[3X]-[RG]-[2X]-A-[2X]-[NFP]. Forty-three of the DEGs showed significantly higher gene expression in C. pilosula samples from Shanxi than in the samples from Gansu, including 11 genes in the AP2/ERF-ERF family, 5 genes in the NAC fa-mily, 1 gene in the bHLH family, and 2 genes in the RWP-RK family, while 18 transcription factors showed higher expression levels in the samples from Gansu. GO annotation predicted that most of the DEGs were enriched in GO terms related to transcriptional binding activity(103), metabolic process(26), and stress response(23). The expression of transcription factor genes, CpNAC92, CpNAC100, CpbHLH128, and CpRAP2-7 was higher in the samples from Shanxi and in the roots of C. pilosula. CpNAC92, CpbHLH128, and CpRAP2-7 responded to the low temperature, temperature difference, and iron stresses, while CpNAC100 only responded to low temperature and iron stresses. The screening and expression analysis of the specific transcription factors CpNAC92, CpNAC100, CpbHLH128, and CpRAP2-7 in C. pilosula in Shanxi laid a theoretical foundation for further research on the mechanism of genuineness formation of C. pilosula.


Subject(s)
Codonopsis , Codonopsis/genetics , Codonopsis/chemistry , Transcription Factors/genetics , Gene Expression Profiling , Transcriptome , Iron
9.
Huan Jing Ke Xue ; 44(11): 6387-6398, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973120

ABSTRACT

Effects of continuous cropping on rhizosphere soil physical and chemical properties, soil microbial activity, and community characteristics of Codonopsis pilosula were investigated. The C. pilosula plot(CK) fallow for five years and C. pilosula fields with different years of continuous cropping were studied using Illumina high-throughput sequencing technology combined with soil physical and chemical properties analysis. The response of rhizosphere soil physical and chemical properties, microbial activities, and microbial community characteristics to continuous cropping years of C. pilosula were investigated. The results were as follows:the contents of organic carbon, total phosphorus, total nitrogen, and salt in rhizosphere soil of C. pilosula increased with the extension of continuous cropping years. However, soil pH value decreased with the extension of continuous cropping years. Compared with that in the CK treatment, rhizosphere soil organic carbon content of C. pilosula in continuous cropping for one, two, three, and four years increased by 11.1%, 80.5%, 74.9%, and 78.2%, respectively. Total phosphorus content increased by 11.8%, 52.9%, 66.7%, and 78.4%, and total nitrogen content increased by 31.3%, 68.8%, 52.1%, and 56.3%, respectively. Soil salt content increased significantly under continuous cropping of three and four years, and soil conductivity increased by 54.2% and 84.7% compared with that in the CK treatment, respectively. The C/N ratio of microbial biomass in rhizosphere soil exhibited an increasing trend with the extension of continuous cropping years. Soil respiration entropy and microbial entropy showed a decreasing trend. With the increase in continuous cropping years, the diversity and abundance of bacteria in soil decreased, whereas the diversity and abundance of fungi increased. In addition, with the increase in continuous cropping years, the antagonistic effect between bacterial communities was enhanced, whereas the synergistic effect between fungal communities was mainly observed. Correlation analysis showed that soil total phosphorus, available potassium, carbon to nitrogen ratio of microbial biomass, soil respiration entropy, microbial biomass carbon, and electrical conductivity were the main factors affecting the changes in soil bacterial community characteristics. Soil total nitrogen, available potassium, available phosphorus, and soil respiration entropy were the main factors affecting the changes in fungal community characteristics. In conclusion, continuous cropping significantly changed the physical and chemical properties of soil and microbial activity and affected the abundance and diversity of bacteria and fungi in soil. This changed the interaction between microorganisms, which disrupted the stability of microbial communities in the soil.


Subject(s)
Codonopsis , Soil , Soil/chemistry , Carbon , Rhizosphere , Soil Microbiology , Fungi , Bacteria/genetics , Nitrogen , Phosphorus , Potassium
10.
Nutrients ; 15(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686823

ABSTRACT

Recent studies showed that Codonopsis lanceolata (CL) has antihypertensive effects. However, to date, no study has examined the effects of CL on vascular tone under a high extracellular K+ concentration ([K+]o). Thus, the present study examined the effect of an extract of Codonopsis lanceolata (ECL) on the vascular tension of rat carotid arteries exposed to high [K+]o. We used myography to investigate the effect of an ECL on the vascular tension of rat carotid arteries exposed to high [K+]o and the underlying mechanism of action. In arteries with intact endothelia, the ECL (250 µg/mL) had no effect on vascular tension in arteries exposed to normal or high [K+]o. In contrast, the ECL significantly increased vasorelaxation in endothelium-impaired arteries exposed to a physiologically normal or high [K+]o compared with control arteries exposed to the same [K+]o conditions in the absence of ECL. This vasorelaxing action was unaffected by a broad-spectrum K+ channel blocker and an ATP-sensitive K+ channel blocker. The ECL significantly inhibited the vasoconstriction induced by Ca2+ influx through voltage-dependent Ca2+ channels (VDCCs) but not Ca2+ influx induced via receptor-operated Ca2+ channels or the release of Ca2+ from the sarcoplasmic reticulum in the vascular smooth muscle. In summary, our study reveals that the ECL acts through VDCCs in vascular smooth muscle to promote the recovery of vasorelaxation even in arteries exposed to high [K+]o in the context of endothelial dysfunction and provides further evidence of the vascular-protective effects of ECL.


Subject(s)
Ascomycota , Codonopsis , Animals , Rats , Vasodilation , Muscle, Smooth, Vascular , Calcium Channels , Carotid Arteries , Plant Extracts/pharmacology
11.
Sci Total Environ ; 902: 166014, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37541498

ABSTRACT

Waste plant resource provides a new sustainable feedstock for the biolubricant, and purification of the effective components in biomass oil is vital to improve the performance of biolubricant. In this work, the crude extract of the aerial part of Codonopsis pilosula was divided into four different parts by petroleum ether, ethyl acetate, n-butanol and water, respectively. Their thermal stability, lubricating performances and mechanisms have been systematically investigated. In the four extracts, the petroleum ether extract displays the best thermal stability and lubricating performance over the entire test conditions, and other three extracts are confronted with lubrication failure at high loads and elevated temperatures. Triterpenoid saponin, typical for n-butanol extract exhibit the best lubricity at room temperature, followed by the fatty acid derivatives as phosphatidylcholine; flavonoid, and sugar exhibit poor lubricity. At high temperature, only the petroleum ether extract retains the good lubricity.


Subject(s)
Codonopsis , Lubrication , 1-Butanol , Plant Extracts
12.
Chin J Nat Med ; 21(6): 411-422, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37407172

ABSTRACT

Alkaloids are a class of naturally occurring bioactive compounds that are widely distributed in various food sources and Traditional Chinese Medicine. This study aimed to investigate the therapeutic effects and underlying mechanisms of alkaloid extract from Codonopsis Radix (ACR) in ameliorating hepatic lipid accumulation in a mouse model of non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD). The results revealed that ACR treatment effectively mitigated the abnormal weight gain and hepatic injury associated with HFD. Furthermore, ACR ameliorated the dysregulated lipid metabolism in NAFLD mice, as evidenced by reductions in serum triglyceride, total cholesterol, and low-density lipoprotein levels, accompanied by a concomitant increase in the high-density lipoprotein level. ACR treatment also demonstrated a profound anti-oxidative effect, effectively alleviating HFD-induced oxidative stress and promoting ATP production. These effects were achieved through the up-regulation of the activities of mitochondrial electron transfer chain complexes I, II, IV, and V, in addition to the activation of the AMPK/PGC-1α pathway, suggesting that ACR exhibits therapeutic potential in alleviating the HFD-induced dysregulation of mitochondrial energy metabolism. Moreover, ACR administration mitigated HFD-induced endoplasmic reticulum (ER) stress and suppressed the overexpression of ubiquitin-specific protease 14 (USP14) in NAFLD mice. In summary, the present study provides compelling evidence supporting the hepatoprotective role of ACR in alleviating lipid deposition in NAFLD by improving energy metabolism and reducing oxidative stress and ER stress. These findings warrant further investigation and merit the development of ACR as a potential therapeutic agent for NAFLD.


Subject(s)
Alkaloids , Antineoplastic Agents , Codonopsis , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Liver , Lipid Metabolism , Antineoplastic Agents/pharmacology , Alkaloids/pharmacology , Endoplasmic Reticulum Stress , Energy Metabolism , Lipids , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
13.
Food Funct ; 14(17): 7897-7911, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37491882

ABSTRACT

One of the top ten tonic herbs, Dangshen is frequently found in Chinese functional foods. With the inclusion of Dangshen in the list of food and medicine substances in 2020, the Dangshen Huangjiu (DHJ) emerged. In the Bencao, it is written that Huangjiu can "open up the curved veins and thicken the stomach and intestines". Furthermore, increasing investigations have verified the protective effect of Dangshen on the gastric mucosa. Therefore, we propose the hypothesis that the stomach mucosa might be protected by the DHJ. To demonstrate that the effect of solids in Dangshen Huangjiu (DHJG) on damaged human gastric mucosal epithelial cells (GES-1) was reversed, the study used ethanol to induce injury to GES-1 and then used protein immunoblotting (western blotting) to determine the expression levels of p-Akt, p-NF-κB-p65, and NF-κB-p65 proteins in the cells. 0.04 mol L-1 MNNG (5 mL kg-1 body weight) mixed with eating disorders(2 d satiety, l d starvation, 3 d cycle) was used to further establish a chronic non-atrophic gastritis (CNAG) model in Wistar rats, at the same time, the experimental rats were given DHJ and DHJG gavage. Cellular assays confirmed that DHJG (25-100 µg mL-1) dose-dependently increased the viability of ethanol-injured GES-1 and lowered p-Akt and p-NF-κB-p65/NF-κB-p65 protein expression. Animal experiments revealed that 10 mL kg-1 and 20 mL kg-1 DHJ had no significant effect on the basic activity and gastric tissues and related biochemical indices of healthy rats; DHJ (10 mL kg-1, 20 mL kg-1) and DHJG (2.8 g kg-1, 11.4 g kg-1) resulted in some improvement in weight loss and significant improvement in gastric mucosal pathology in CNAG rats with damage. Particularly, DHJ and DHJG significantly decreased the expression of p-Akt, p-NF-κB-p65/NF-κB-p65 and Bcl-2/Bax proteins and Akt, IKKß, IκBα and NF-κB mRNA in the gastric tissues of CNAG rats. These results showed that DHJG ameliorates ethanol-induced GES-1 cell injury; both DHJ and DHJG alleviate CNAG, and the mechanisms by which they do so may be related to DHJ and DHJG increasing the antioxidant capacity (elevating SOD, decreasing MDA), attenuating inflammatory responses (decreasing IL-1ß, IL-6, and TNF-α), reversing apoptosis (reducing the Bcl-2/Bax ratio) and down-regulating gastric tissue p-Akt and p-NF-κB-p65/NF-κB-p65 protein expression as well as Akt, IKKß, IκBα and NF-κB mRNA expression. This study indicates that the interventional effects of DHJ and DHJG in CNAG may act through the Akt/NF-κB signaling pathway.


Subject(s)
Codonopsis , Drugs, Chinese Herbal , Gastritis , Gastritis/drug therapy , Humans , Codonopsis/chemistry , Inflammation/drug therapy , NF-kappa B/metabolism , Signal Transduction/drug effects , Animals , Rats , Rats, Wistar , Cell Line , Ethanol , Cell Survival/drug effects , Apoptosis
14.
Molecules ; 28(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446787

ABSTRACT

In China, Codonopsis Radix (CR) is frequently consumed both as food and medicine. Here, a comprehensive strategy based on fingerprinting and chemometric approaches was created to explore the influence of origins, storage time and kneading processing on the quality of CR. Firstly, high-performance liquid chromatography with diode array detection was used to obtain the fingerprints of 35 batches of CR from six different origins and 33 batches of CR from varying storage times or kneading procedures. Secondly, chemometric methods including similarity analysis (SA), principal component analysis (PCA), hierarchical clustering analysis (HCA), and two-way orthogonal partial least square with discriminant analysis (O2PLS-DA) were used to evaluate the differences of chemical components in CR so as to identify its source and reflect its quality. Moreover, 13 and 16 major compounds were identified as marker compounds for the discrimination of CR from different origins, storage time and kneading processing, respectively. Furthermore, the relative content of the marker components and the exact content of Lobetyolin were measured, indicating that the contents of these components vary significantly between various CR samples. Meanwhile, the chemical components of CR were identified using Mass spectrometry. According to the findings of our investigation, the quality of CR from Gansu was the best, followed by Shanxi and then Sichuan. The quality of CR from Chongqing and Guizhou was poor. At the same time, the quality of CR was the best when it was kneaded and stored for 0 years, indicating that the traditional kneading process of CR is of great significance. Conclusively, HPLC fingerprint in conjunction with chemical pattern recognition and component content determination can be employed to differentiate the raw materials of different CR samples. Additionally, it is also a reliable, comprehensive and prospective method for quality control and evaluation of CR.


Subject(s)
Codonopsis , Drugs, Chinese Herbal , Chemometrics , Cluster Analysis , Discriminant Analysis , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Principal Component Analysis
15.
Article in English | MEDLINE | ID: mdl-37329779

ABSTRACT

In this study, a high-throughput method for analyzing 300 pesticide residues in Radix Codonopsis and Angelica sinensis was established by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) using iron tetroxide loaded graphitized carbon black magnetic nanomaterial (GCB/Fe3O4) as the purification material. It was optimized that saturated salt water and 1 % acetate acetonitrile were used as the extraction solution, then the supernatant was purified with 2 g anhydrous CaCl2 and 300 mg GCB/Fe3O4. As a result, 300 pesticides in Radix Codonopsis and 260 in Angelica sinensis achieved satisfactory results. The limits of quantification of 91 % and 84 % of the pesticides in Radix Codonopsis and Angelica sinensis reached 10 µg/kg, respectively. The matrix-matched standard curves ranging from 10 to 200 µg/kg were established with correlation coefficients (R) above 0.99. The pesticides meeting SANTE/12682/2021 accounted for 91.3 %, 98.3 %, 100.0 % and 83.8 %, 97.3, 100.0 % of the total pesticides added in Radix Codonopsis and Angelica sinensis respectively, which were spiked at 10, 20,100 µg/kg. The technique was applied to screen 20 batches of Radix Codonopsis and Angelica sinensis. Five pesticides were detected, three of which were prohibited according to the Chinese Pharmacopoeia (2020 Edition). The experimental results showed that GCB/Fe3O4 coupled with anhydrous CaCl2 exhibited good adsorption performance and could be used for sample pretreatment of various pesticide residues in Radix Codonopsis and Angelica sinensis. Compared with the reported methods for determining pesticides in traditional Chinese medicine (TCM), the proposed method has the advantage of less time-consuming in the clean-up procedure. Furthermore, as a case study on root TCM, this approach may serve as a reference for other TCM.


Subject(s)
Angelica sinensis , Codonopsis , Pesticide Residues , Pesticides , Pesticide Residues/analysis , Angelica sinensis/chemistry , Soot/analysis , Tandem Mass Spectrometry/methods , Crystallization , Calcium Chloride/analysis , Pesticides/analysis , Magnetic Phenomena
16.
J Food Sci ; 88(7): 3119-3133, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37282747

ABSTRACT

In this study, the composition of amino acids, nutritional characteristics, degree of hydrolysis (DH), antioxidant properties, and antibacterial activity of proteins and hydrolysates of bellflower (Campanula latifolia), Persian willow (Salix aegyptiaca), and bitter orange (Citrus aurantium L.) were investigated under the influence of different proteases (Alcalase: Al, trypsin: Tr, pancreatin: Pa, and pepsin: Pe). Evaluation of the structural features of the proteins showed amide regions (amide A, B, I-III) and secondary structures. Hydrophobic amino acids (∼38%), antioxidants (∼21%), and essential types (∼46%) form a significant part of the structure of flower pollen. The digestibility and nutritional quality (PER) of the hydrolyzed samples (CP: 1.67; CA: 1.89, and PW: 1.93) were more than the original protein. Among proteins and peptides, the highest degree of hydrolysis (34.6%: Al-PWH), inhibition of free radicals DPPH (84.2%: Al-CPH), ABTS (95.2%: Pa-CPH), OH (86.7%: Tr-CAH), NO (57.8%: Al-CPH), reducing power (1.31: Pa-CPH), total antioxidant activity (1.46: Pa-CPH), and chelation of iron ions (80%: Al-CPH and Al-CAH) and copper (50.3%: Pa-CAH) were affected by protein type, enzyme type, and amino acid composition. Also, the highest inhibition of the growth of Escherichia coli (25 mm) and Bacillus cereus (24 mm) were related to CP and PW hydrolysates, respectively. The results of this research showed that hydrolyzed flower pollens can be used as a rich source of essential amino acids as well as natural antioxidants and antibacterial in food and dietary products. PRACTICAL APPLICATION: Enzymatic hydrolysis of Campanula latifolia, Persian willow, and Citrus aurantium pollen proteins was performed. The hydrolyzed ones had high nutritional quality and digestibility (essential amino acids and PER index). Antioxidant properties and chelation of metal ions of peptides were affected by the type of protein and enzyme. The hydrolysates showed inhibitory activity against the growth of Esherichia coli and Bacillus cereus.


Subject(s)
Codonopsis , Salix , Antioxidants/chemistry , Salix/metabolism , Codonopsis/metabolism , Peptides/pharmacology , Proteins , Hydrolysis , Amino Acids/metabolism , Trypsin , Amino Acids, Essential , Amides , Pollen , Protein Hydrolysates/chemistry
17.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2020-2040, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282892

ABSTRACT

Codonopsis Radix is a traditional tonic medicine commonly used in China, which has the effects of strengthening the spleen and tonifying the lung, as well as nourishing blood and engendering liquid. The chemical constituents of Codonopsis species are mainly polyacetylenes, alkaloids, phenylpropanoids, lignans, terpenoids and saponins, flavonoids, steroids, organic acids, saccharides, and so on. Modern pharmacological studies showed that Codonopsis Radix also has a variety of pharmacological effects such as enhancing body immunity, protecting gastrointestinal mucosa and resisting ulcers, promoting hematopoietic function, regulating blood sugar, and delaying aging. In this paper, the chemical constituents of Codonopsis species and the pharmacological effects of Codonopsis Radix were summarized, and on this basis, the quality markers of Codonopsis Radix were analyzed. It was predicted that lobetyolin, tangshenoside I, codonopyrrolidium A, and the oligosaccharides were the possible Q-markers of Codonopsis Radix. This paper will provide scientific references for the quality evaluation and profound research and the development of Codonopsis Radix.


Subject(s)
Alkaloids , Codonopsis , Drugs, Chinese Herbal , Medicine, Traditional , Plant Roots
18.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2725-2731, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37282932

ABSTRACT

To solve the serious problem of stem and leaf shading in the middle and late stage of traditional flat planting of Codonopsis pilosula, this study analyzed the effects of different stereoscopic traction heights on the photosynthetic characteristics and growth of C. pilosula and explored the optimal traction height to improve the yield and quality of C. pilosula. The experiment designed three stereo-scopic traction heights [H1(60 cm), H2(90 cm), and H3(120 cm)] with natural growth without traction as the control(CK). The results showed that the increase in stereoscopic traction heights broadened the growth space of stems and leaves of C. pilosula, enhanced the ventilation effect, significantly increased the average daily net photosynthetic rate of C. pilosula, promoted the absorption of intercellular CO_2, decreased the transpiration rate, and reduced the evaporation of water. Moreover, it effectively avoided the problem of weakened photosynthesis, maintained the carbon balance of individual plants, and promoted the growth and development of the C. pilosula roots. In terms of the seed yield of C. pilosula, it was ranked as H2>H1>H3>CK. To be specific, H1 increased by 213.41% compared with CK, H2 increased by 282.43% compared with CK, and H3 increased by 133.95% compared with CK. The yield and quality of C. pilosula were the highest in the H3 treatment group, with the fresh yield of 6 858.33 kg·hm~(-2), 50.59% higher than CK, dry yield of 2 398.33 kg·hm~(-2), 76.54% higher than CK, and lobetyolin content of 0.56 mg·g~(-1), 45.22% higher than CK. Therefore, the stereoscopic traction height has a great influence on the photosynthetic characteristics, yield, and quality of C. pilosula. Particularly, the yield and quality of C. pilosula can be optimized and improved in the traction height treatment of H3(120 cm). This planting method is worth popularizing and applying in the cultivated management of C. pilosula.


Subject(s)
Codonopsis , Traction , Photosynthesis , Plant Leaves , Plant Roots
19.
Phytochem Anal ; 34(5): 491-506, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37316180

ABSTRACT

INTRODUCTION: Chromatography and spectroscopy are nowadays well-validated techniques allowing to isolate and purify different class of natural products from the genus Codonopsis. Several categories of phytochemicals with drug like properties have been selectively extracted, isolated, characterised by this methodology. OBJECTIVES: The present review aims to provide up-to-date and comprehensive information on the chromatography, phytochemistry and pharmacology of natural products of Codonopsis with an emphasis on the search for natural products having various biological activities and the semi-synthetic derivatives of bioactive ones and to highlight current gaps in knowledge. MATERIALS AND METHODS: A literature search was performed in the SciFinder Scholar, PubMed, Medline, and Scopus databases. RESULTS: During the period covered in this review, several classes of compounds have been reported from genus Codonopsis. Codonopsis pilosula and Codonopsis lanceolata are the most popular in the genus especially as per phytochemical and bioactive studies. Phytochemical investigation demonstrates that Codonopsis species contain mainly xanthones, flavonoids, alkaloids, polyacetylenes, phenylpropanoids, triterpenoids and polysaccharides, which contribute to numerous bioactivities. The major bioactive compounds isolated were used for semi-synthetic modification to increase the chance to discover lead compound. CONCLUSIONS: It can be concluded that genus Codonopsis has been used as traditional medicines and food materials around the world over years due to chemical constituents with diverse structural types, exhibiting extensive pharmacological activities in immune system, blood system, cardiovascular system, central nervous system, digestive system, and so forth, with almost no obvious toxicity and side effect. Therefore, Codonopsis can be used as a promising ethnopharmacological plant source.


Subject(s)
Biological Products , Codonopsis , Biological Products/pharmacology , Ethnopharmacology/methods , Medicine, Traditional , Plant Extracts/chemistry , Phytochemicals/analysis
20.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Article in English | MEDLINE | ID: mdl-37365694

ABSTRACT

The roots of the medicinal plant Codonopsis pilosula (Franch.) Nannf (C. pilosula) possess most medicinal supplements. In current research on C. pilosula root endophytes were isolated, identified, and evaluated for their antimicrobial activity against human pathogens such as Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Salmonella typhi, and Pseudomonas aeruginosa and the fungi Candida albicans and Aspergillus niger. Endophytes C.P-8 and C.P-20 exhibited very significant antimicrobial activity, the secondary metabolite of C.P-8 registered at retention time 24.075 by HPLC analysis. Significant minimum inhibitory concentration (MIC) of C.P-8 was exhibited at 250 µg/ml against S. aureus and 500 µg/ml against B. subtilis. Qualitative, quantitative analyses, and partial purification of enzymes and purity was analysed by molecular weight determined by SDS‒PAGE of enzymes produced by C.P-20, amylase-64 kDa, protease-64 kDa, chitinase-30 kDa, and cellulase-54 kDa. Optimum pH and temperature of the partially purified enzymes, was carried out. The partially purified enzymes from C.P-20 displayed maximum activity at pH 6-7 and temperatures of 40°C-45°C. Moreover, the above endophytes will be useful tools for producing active enzymes and active bioantimicrobial agents against human pathogens.


Subject(s)
Anti-Infective Agents , Codonopsis , Humans , Codonopsis/chemistry , Codonopsis/metabolism , Endophytes , Staphylococcus aureus , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL