Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Sci Rep ; 14(1): 5148, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429351

ABSTRACT

Colistin remains one of the last-resort therapies for combating infections caused by multidrug-resistant (MDR) Enterobacterales, despite its adverse nephro- and neuro-toxic effects. This study elucidates the mechanism of action of a non-antibiotic 4-anilinoquinazoline-based compound that synergistically enhances the effectiveness of colistin against Salmonella enterica. The quinazoline sensitizes Salmonella by deactivating intrinsic, mutational, and transferable resistance mechanisms that enable Salmonella to counteract the antibiotic impact colistin, together with an induced disruption to the electrochemical balance of the bacterial membrane. The attenuation of colistin resistance via the combined treatment approach also proves efficacious against E. coli, Klebsiella, and Acinetobacter strains. The dual therapy reduces the mortality of Galleria mellonella larvae undergoing a systemic Salmonella infection when compared to individual drug treatments. Overall, our findings unveil the potential of the quinazoline-colistin combined therapy as an innovative strategy against MDR bacteria.


Subject(s)
Moths , Salmonella Infections , Animals , Colistin/pharmacology , Colistin/therapeutic use , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Salmonella Infections/drug therapy , Microbial Sensitivity Tests
2.
Chem Biol Drug Des ; 103(1): e14381, 2024 01.
Article in English | MEDLINE | ID: mdl-37875387

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections continue to impose high morbidity threats to hospitalized patients worldwide, limiting therapeutic options to last-resort antibiotics like colistin. However, the dynamic genomic landscape of colistin-resistant K. pneumoniae (COLR-Kp) invoked ardent exploration of underlying molecular signatures for therapeutic propositions/designs. We unveiled the structural impact of the widespread and emerging PmrB mutations involved in colistin resistance (COLR) in K. pneumoniae. In the present study, clinical isolates of K. pneumoniae expressed variable susceptibilities to colistin (>0.5 µg/mL for resistant and ≤0.25 µg/mL for susceptible) despite mutations such as T157P, G207D and T246A. The protein sequences extracted from in-house sequenced genomes were used to model mutant PmrB proteins and analyze the underlying structural alterations. The mutations were contrasted based on molecular dynamics simulation trajectories, free-energy landscapes and structural flexibility profiles. The altered backbone flexibilities can be an essential factor for mutant selection by COLR K. pneumoniae and can provide clues to deal with emerging mutants. Furthermore, PmrB having high druggability confidence (>0.99), was explored as a potential target for 1396 virtually screened FDA-approved drug candidates. Among the top-10 compounds (scores >70), amphotericin B was found to be potential candidate with high affinity (Binding energy <-8 kcal/mol) and stable interactions (RMSF <0.7 Å) against PmrB druggable pockets, despite the mutations, which encourages future adjunct therapeutic research against COLR-Kp.


Subject(s)
Colistin , Klebsiella Infections , Humans , Colistin/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mutation , Mutant Proteins/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics
3.
Int J Antimicrob Agents ; 63(1): 107017, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37884228

ABSTRACT

OBJECTIVES: This study investigated the effect of tigecycline exposure on susceptibility of colistin-resistant Klebsiella pneumoniae isolates to colistin and explored the possibility of antibiotic combination at low concentrations to treat colistin-resistant K. pneumoniae isolates. METHODS: Twelve tigecycline-resistant (TIR) mutants were induced in vitro from wild-type, colistin-resistant, and tigecycline-susceptible K. pneumoniae isolates. Antibiotic susceptibility was determined using the broth microdilution method. The deduced amino acid alterations were identified for genes associated with colistin resistance, lipid A biosynthesis, and tigecycline resistance. Expression levels of genes were compared between wild-type stains and TIR mutants using quantitative real-time polymerase chain reaction (PCR). Lipid A modification was explored using MALDI-TOF mass spectrometry. Time-killing assay was performed to assess the efficiency of combination therapy using low concentrations of colistin and tigecycline. RESULTS: All TIR mutants except one were converted to be susceptible to colistin. These TIR mutants had mutations in the ramR gene and increased expression levels of ramA. Three genes associated with lipid A biosynthesis, lpxC, lpxL, and lpxO, were also overexpressed in TIR mutants, although no mutation was observed. Additional polysaccharides found in colistin-resistant, wild-type strains were modified in TIR mutants. Colistin-resistant K. pneumoniae strains were eliminated in vitro by combining tigecycline and colistin at 2 mg/L. In this study, we found that tigecycline exposure resulted in reduced resistance of colistin-resistant K. pneumoniae to colistin. Such an effect was mediated by regulation of lipid A modification involving ramA and lpx genes. CONCLUSION: Because of such reduced resistance, a combination of colistin and tigecycline in low concentrations could effectively eradicate colistin-resistant K. pneumoniae strains.


Subject(s)
Colistin , Klebsiella Infections , Humans , Tigecycline/pharmacology , Colistin/pharmacology , Klebsiella pneumoniae , Minocycline/pharmacology , Lipid A , Klebsiella Infections/drug therapy , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Bacterial Proteins/genetics
4.
Int J Antimicrob Agents ; 63(1): 107011, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37863340

ABSTRACT

OBJECTIVES: Alternation of the colistin resistance-regulating two-component regulatory system (crrAB) is a colistin-resistance mechanism in Klebsiella pneumoniae (K. pneumoniae), but its role in bacteria is not fully understood. METHODS: Twelve colistin-susceptible K. pneumoniae clinical isolates were included in this study: six crrAB-positive and six crrAB-negative. We deleted the crrAB genes from two crrAB-positive isolates and complemented them. We measured the growth yields by determining growth curves in lysogeny broth and minimal media with or without Fe2+. In vitro selection rates for colistin resistance were determined by exposure to colistin, and survival rates against high concentrations of colistin (20 mg/L) at the early stage of growth (20 min) were investigated. Virulence was determined using a serum bactericidal assay and Galleria mellonella larval infection. RESULTS: The presence of crrAB was not associated with colistin resistance and did not increase the in vitro selection rate of colistin resistance after exposure. The growth yield of crrAB-positive isolates was higher in lysogeny broth media and increased when Fe2+ was added to minimal media. The crrAB-positive isolates showed higher survival rates in the early stages of exposure to high colistin concentrations. Decreased serum resistance was identified in the crrAB-deleted mutants. More G. mellonella larvae survived when infected by crrAB-deleted mutants, and higher survival rates of bacteria were identified within the larvae infected with wild-type than crrAB-deletant isolates. CONCLUSION: Through rapid response to external signals, crrAB would provide advantages for K. pneumoniae survival by increasing the final growth yield and initial survival against colistin treatment. This may partly contribute to the bacterial virulence.


Subject(s)
Colistin , Klebsiella Infections , Animals , Colistin/pharmacology , Colistin/therapeutic use , Klebsiella pneumoniae , Virulence , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Larva , Microbial Sensitivity Tests , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology
5.
Rev Esp Quimioter ; 36 Suppl 1: 54-58, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37997873

ABSTRACT

Pseudomonas aeruginosa is a pathogen that has a high propensity to develop antibiotic resistance, and the emergence of multidrug-resistant strains is a major concern for global health. The mortality rate associated with infections caused by this microorganism is significant, especially those caused by multidrug-resistant strains. The antibiotics used to treat these infections include quinolones, aminoglycosides, colistin, and ß-lactams. However, novel combinations of ß-lactams-ß-lactamase inhibitors and cefiderocol offer advantages over other members of their family due to their better activity against certain resistance mechanisms. Selecting the appropriate empiric antibiotic treatment requires consideration of the patient's clinical entity, comorbidities, and risk factors for multidrug-resistant pathogen infections, and local epidemiological data. Optimizing antibiotic pharmacokinetics, controlling the source of infection, and appropriate collection of samples are crucial for successful treatment. In the future, the development of alternative treatments and strategies, such as antimicrobial peptides, new antibiotics, phage therapy, vaccines, and colonization control, holds great promise for the management of P. aeruginosa infections.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , beta-Lactams/pharmacology , beta-Lactamase Inhibitors/pharmacology , Pseudomonas Infections/drug therapy , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
6.
Microbiol Spectr ; 11(6): e0145923, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37800902

ABSTRACT

IMPORTANCE: Infections caused by multidrug-resistant Escherichia coli (MDR E. coli) have become a major global healthcare problem due to the lack of effective antibiotics today. The emergence of colistin-resistant E. coli strains makes the situation even worse. Therefore, new antimicrobial strategies are urgently needed to combat colistin-resistant E. coli. Combining traditional antibiotics with non-antibacterial drugs has proved to be an effective approach of combating MDR bacteria. This study investigated the combination of colistin and shikonin, a Chinese herbal medicine, against colistin-resistant E. coli. This combination showed good synergistic antibacterial both in vivo and in vitro experiments. Under the background of daily increasing colistin resistance in E. coli, this research points to an effective antimicrobial strategy of using colistin and shikonin in combination against colistin-resistant E. coli.


Subject(s)
Drugs, Chinese Herbal , Escherichia coli Infections , Escherichia coli Proteins , Humans , Colistin/pharmacology , Escherichia coli , Drugs, Chinese Herbal/pharmacology , Escherichia coli Proteins/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Microbial Sensitivity Tests
7.
Eur J Clin Microbiol Infect Dis ; 42(11): 1365-1372, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814067

ABSTRACT

INTRODUCTION: This study examines the role of mesenchymal stem cells (MSCs) in an experimental sepsis model developed with colistin-resistant Acinetobacter baumannii (CRAB). MATERIALS AND METHODS: BALB-c mice were divided into treatment groups (MSC, MSC + colistin (C)-fosfomycin (F), and C-F and control groups (positive and negative)). CRAB was administered to mice through intraperitoneal injection. Three hours later, C, F, and MSC were given intraperitoneally to the treatment groups. Colistin administration was repeated every 12 h, F administration was done every 4 h, and the second dose of MSC was administered after 48 h. Mice were sacrificed at 24 and 72 h. The bacterial load was determined as colony-forming units per gram (cfu/g). Histopathological examination was conducted on the left lung, liver, and both kidneys. IL-6 and C-reactive protein (CRP) levels in mouse sera were determined by enzyme-linked immunosorbent assay. RESULTS: Among the treatment groups, the C-F group had the lowest colony count in the lung (1.24 ± 1.66 cfu/g) and liver (1.03 ± 1.08 cfu/g). The highest bacterial clearance was observed at 72 h compared to 24 h in the MSC-treated groups (p = 0.008). The MSC + C-F group showed the lowest histopathological score in the liver and kidney (p = 0.009). In the negative control group, the IL-6 level at the 24th hour was the lowest (p < 0.001). Among the treatment groups, the CRP level was the lowest in the MSC + C-F group at 24 and 72 h. CONCLUSION: In a CRAB sepsis model, adding MSCs to a colistin-fosfomycin treatment may be beneficial in terms of reducing bacterial loads and preventing histopathological damage.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Fosfomycin , Mesenchymal Stem Cells , Sepsis , Animals , Mice , Colistin/pharmacology , Colistin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fosfomycin/therapeutic use , Carbapenems/therapeutic use , Interleukin-6 , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Sepsis/drug therapy , Sepsis/microbiology , Microbial Sensitivity Tests
8.
J Basic Microbiol ; 63(12): 1397-1411, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37821405

ABSTRACT

The progressive increase in infections caused by multidrug-resistant (MDR) Gram-negative bacteria and the emergence of resistance to last-resort antimicrobial drugs in recent years necessitate the development of new therapeutic strategies. This study was conducted to obtain nanostructured antimicrobials by conjugating colistin (COL) and meropenem (MEM) antibiotics with biosynthesized silver nanoparticles (bio-AgNPs) via the green synthesis method using Rosa damascena extract, and to investigate the antibacterial and antibiofilm activity of these nanostructures against Escherichia coli and Klebsiella pneumoniae strains. Ultraviolet-visible spectrophotometry, high-resolution-transmission electron microscopy, atomic force microscopy, X-ray diffraction, and Fourier transform-infrared spectroscopy analyses were performed to determine the physical and chemical properties of synthesized bio-AgNPs, COL@bio-AgNPs, MEM@bio-AgNPs, and COL&MEM@bio-AgNPs. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration of nanoparticles were determined on standard and MDR clinical strains. The antibiofilm efficacy and cytotoxic effect of nanoparticles were evaluated by the crystal violet dye method and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide dye method, respectively. The characterization analyses demonstrated that the synthesized nanoparticles had crystal structure and spherical morphology (5.6-30.2 nm in size). Antibiotic conjugated nanoparticles exhibited better antimicrobial activity and lower MIC values (0.125-4 µg/mL) on the tested strains compared to free antibiotics, and MIC values were decreased up to 1024-fold (p < 0.05). Antibiotic conjugated nanoparticles were found to be more effective in biofilm eradication than free antibiotics and bio-AgNPs and had a less inhibitory effect on peripheral blood mononuclear cell viability. The findings revealed that antibiotic-conjugated nanoparticles have the potential to be used as an effective antimicrobial drug against MDR E. coli and K. pneumoniae strains.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Meropenem/pharmacology , Colistin/pharmacology , Escherichia coli , Klebsiella pneumoniae , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Leukocytes, Mononuclear , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Biofilms , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared , Plant Extracts/chemistry
9.
mSphere ; 8(5): e0023423, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37747188

ABSTRACT

The emergence and rapid spread of multi-drug-resistant (MDR) bacteria pose a serious threat to global healthcare. Although the synergistic effect of rafoxanide and colistin was reported, little is known regarding the potential mechanism of this synergy, particularly against chromosomal-mediated colistin-resistant Klebsiella pneumoniae. In the present study, we elucidated the synergistic effect of rafoxanide and colistin against chromosomal-mediated colistin-resistant Klebsiella pneumoniae isolates from human (KP-9) and swine (KP-1) infections. Treatment with 1 mg/L rafoxanide overtly reversed the MIC max to 512-fold. Time-kill assays indicated that rafoxanide acted synergistically with colistin against the growth of KP-1 and KP-9. Mechanistically, we unexpectedly found that the combination destroys the inner-membrane integrity, and ATP synthesis was also quenched, albeit, not via F1F0-ATPase; thereby also inhibiting the activity of efflux pumps. Excessive production of reactive oxygen species (ROS) was also an underlying factor contributing to the bacterial-killing effect of the combination. Transcriptomic analysis unraveled overt heterogeneous expression as treated with both administrations compared with monotherapy. Functional analysis of these differentially expressed genes (DEGs) targeted to the plasma membrane and ATP-binding corroborated phenotypic screening results. These novel findings highlight the synergistic mechanism of rafoxanide in combination with colistin which effectively eradicates chromosomal-mediated colistin-resistant Klebsiella pneumoniae. IMPORTANCE The antimicrobial resistance of Klebsiella pneumoniae caused by the abuse of colistin has increased the difficulty of clinical treatment. A promising combination (i.e., rafoxanide+ colistin) has successfully rescued the antibacterial effect of colistin. However, we still failed to know the potential effect of this combination on chromosome-mediated Klebsiella pneumoniae. Through a series of in vitro experiments, as well as transcriptomic profiling, we confirmed that the MIC of colistin was reduced by rafoxanide by destroying the inner-membrane integrity, quenching ATP synthesis, inhibiting the activity of the efflux pump, and increasing the production of reactive oxygen species. In turn, the expression of relevant colistin resistance genes was down-regulated. Collectively, our study revealed rafoxanide as a promising colistin adjuvant against chromosome-mediated Klebsiella pneumoniae.


Subject(s)
Colistin , Rafoxanide , Humans , Animals , Swine , Colistin/pharmacology , Rafoxanide/pharmacology , Klebsiella pneumoniae , Reactive Oxygen Species , Chromosomes , Adenosine Triphosphate
10.
Adv Sci (Weinh) ; 10(29): e2302182, 2023 10.
Article in English | MEDLINE | ID: mdl-37552809

ABSTRACT

The emergence and prevalence of mobile colistin resistance gene mcr have dramatically compromised the clinical efficacy of colistin, a cyclopeptide antibiotic considered to be the last option for treating different-to-treat infections. The combination strategy provides a productive and cost-effective strategy to expand the lifespan of existing antibiotics. Structural-activity relationship analysis of polymyxins indicates that the fatty acyl chain plays an indispensable role in their antibacterial activity. Herein, it is revealed that three saturated fatty acids (SFAs), especially sodium caprate (SC), substantially potentiate the antibacterial activity of colistin against mcr-positive bacteria. The combination of SFAs and colistin effectively inhibits biofilm formation and eliminates matured biofilms, and is capable of preventing the emergence and spread of mobile colistin resistance. Mechanistically, the addition of SFAs reduces lipopolysaccharide (LPS) modification by simultaneously promoting LPS biosynthesis and inhibiting the activity of MCR enzyme, enhance bacterial membrane damage, and impair the proton motive force-dependent efflux pump, thereby boosting the action of colistin. In three animal models of infection by mcr-positive pathogens, SC combined with colistin exhibit an excellent therapeutic effect. These findings indicate the therapeutic potential of SFAs as novel antibiotic adjuvants for the treatment of infections caused by multidrug-resistant bacteria in combination with colistin.


Subject(s)
Colistin , Lipopolysaccharides , Animals , Colistin/pharmacology , Lipopolysaccharides/pharmacology , Fatty Acids , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology
11.
Sci Rep ; 13(1): 12198, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37500690

ABSTRACT

Bacteriophages (BP) are viruses that can infect bacteria. The present study evaluated the effect of BP on Salmonella infected broilers. A number of 150 day-old broilers were used in a completely randomized design with five treatments that included: (1) basal diet from day 0 to 28; (2) basal diet + 0.3 g/kg of colistin from day 0 to 28; (3) basal diet from day 1 to 13, and basal diet + 0.4 g/kg of colistin from day 14 to 28; (4) basal diet + 1 g/kg of BP from day 0 to 28; (5) basal diet + 1.5 g/kg of BP from day 0 to 28. On day 13, 15 chickens from each treatment were challenged by Salmonella Enteritidis (SE), while fifteen from each treatment were not; instead, they were kept in the same cage with the challenged chickens (exposed chickens). At 7 and 14 days post-challenge, the number of SE and coliform bacteria in the cecum and liver of colistin and BP-fed birds was lower than the control treatment. In exposed and challenged chickens, the height and surface area of villus were greater in the BP and colistin-supplemented groups. Serum concentrations of aspartate aminotransferase and alanine transaminase were greater, while serum albumin and triglycerides concentrations were lower in the control treatment. The liver of the challenged chickens had more pathological lesions than exposed birds. BP significantly decreased PPARγ gene expression in exposed chickens. In the challenged and exposed chickens, TLR4 gene expression was lower in BP and colistin-treated birds as compared to the control. In conclusion, adding BP to the diet from the day of age prevents the spread of Salmonella.


Subject(s)
Bacteriophages , Poultry Diseases , Salmonella Infections, Animal , Animals , Salmonella enteritidis , Chickens/microbiology , Colistin/pharmacology , Salmonella Infections, Animal/microbiology , Dietary Supplements , Diet/veterinary , Poultry Diseases/microbiology , Animal Feed/analysis
12.
Microbiol Spectr ; 11(4): e0138623, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37428073

ABSTRACT

Concerns about colistin-resistant bacteria in animal food-environmental-human ecosystems prompted the poultry sector to implement colistin restrictions and explore alternative trace metals/copper feed supplementation. The impact of these strategies on the selection and persistence of colistin-resistant Klebsiella pneumoniae in the whole poultry production chain needs clarification. We assessed colistin-resistant and copper-tolerant K. pneumoniae occurrence in chickens raised with inorganic and organic copper formulas from 1-day-old chicks to meat (7 farms from 2019 to 2020), after long-term colistin withdrawal (>2 years). Clonal diversity and K. pneumoniae adaptive features were characterized by cultural, molecular, and whole-genome-sequencing (WGS) approaches. Most chicken flocks (75%) carried K. pneumoniae at early and preslaughter stages, with a significant decrease (P < 0.05) in meat batches (17%) and sporadic water/feed contamination. High rates (>50%) of colistin-resistant/mcr-negative K. pneumoniae were observed among fecal samples, independently of feed. Most samples carried multidrug-resistant (90%) and copper-tolerant (81%; silA and pcoD positive and with a MICCuSO4 of ≥16 mM) isolates. WGS revealed accumulation of colistin resistance-associated mutations and F type multireplicon plasmids carrying antibiotic resistance and metal/copper tolerance genes. The K. pneumoniae population was polyclonal, with various lineages dispersed throughout poultry production. ST15-KL19, ST15-KL146, and ST392-KL27 and IncF plasmids were similar to those from global human clinical isolates, suggesting chicken production as a reservoir/source of clinically relevant K. pneumoniae lineages and genes with potential risk to humans through food and/or environmental exposure. Despite the limited mcr spread due to the long-term colistin ban, this action was ineffective in controlling colistin-resistant/mcr-negative K. pneumoniae, regardless of feed. This study provides crucial insights into the persistence of clinically relevant K. pneumoniae in the poultry production chain and highlights the need for continued surveillance and proactive food safety actions within a One Health perspective. IMPORTANCE The spread of bacteria resistant to last-resort antibiotics such as colistin throughout the food chain is a serious concern for public health. The poultry sector has responded by restricting colistin use and exploring alternative trace metals/copper feed supplements. However, it is unclear how and to which extent these changes impact the selection and persistence of clinically relevant Klebsiella pneumoniae throughout the poultry chain. We found a high occurrence of copper-tolerant and colistin-resistant/mcr-negative K. pneumoniae in chicken flocks, regardless of inorganic and organic copper formulas use and a long-term colistin ban. Despite the high K. pneumoniae isolate diversity, the occurrence of identical lineages and plasmids across samples and/or clinical isolates suggests poultry as a potential source of human K. pneumoniae exposure. This study highlights the need for continued surveillance and proactive farm-to-fork actions to mitigate the risks to public health, relevant for stakeholders involved in the food industry and policymakers tasked with regulating food safety.


Subject(s)
Colistin , Poultry , Animals , Humans , Colistin/pharmacology , Klebsiella pneumoniae , Farms , Copper/pharmacology , Chickens/microbiology , Ecosystem , Anti-Bacterial Agents/pharmacology , Plasmids , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
13.
Future Microbiol ; 18: 547-552, 2023 06.
Article in English | MEDLINE | ID: mdl-37314362

ABSTRACT

The management of severe neurologic infections due to multidrug-resistant (MDR) Klebsiella pneumoniae infection remains a challenge. Limited antibiotic treatment regimens make treatment of severe MDR K. pneumoniae infection more difficult. We describe a patient who developed severe meningitis and ventriculitis after craniotomy caused by MDR K. pneumoniae and was effectively treated with the administration of multichannel applications (intravenous, intrathecal and aerosol inhalation) of colistin sulfate. This case provides clinical evidence that the intrathecal, intravenous and aerosol inhalation of colistin sulfate by multichannel application can be a last resort in refractory intracranial infection by MDR K. pneumoniae.


Subject(s)
Colistin , Klebsiella Infections , Humans , Colistin/therapeutic use , Colistin/pharmacology , Klebsiella pneumoniae , Klebsiella Infections/drug therapy , Drug Resistance, Multiple, Bacterial , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
14.
Microbiol Spectr ; 11(4): e0053023, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37358428

ABSTRACT

With the increasing and inappropriate use of colistin, the emerging colistin-resistant isolates have been frequently reported during the last few decades. Therefore, new potential targets and adjuvants to reverse colistin resistance are urgently needed. Our previous study has confirmed a marked increase of colistin susceptibility (16-fold compared to the wild-type Salmonella strain) of cpxR overexpression strain JSΔacrBΔcpxR::kan/pcpxR (simplified as JSΔΔ/pR). To searching for potential new drug targets, the transcriptome and metabolome analysis were carried out in this study. We found that the more susceptible strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels. The virulence-related genes and colistin resistance-related genes (CRRGs) were significantly downregulated in JSΔΔ/pR. There were significant accumulation of citrate, α-ketoglutaric acid, and agmatine sulfate in JSΔΔ/pR, and exogenous supplement of them could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. Additionally, we also demonstrated that AcrB and CpxR could target the ATP and reactive oxygen species (ROS) generation, but not proton motive force (PMF) production pathway to potentiate antibacterial activity of colistin. Collectively, these findings have revealed several previously unknown mechanisms contributing to increased colistin susceptibility and identified potential targets and adjuvants for potentiating colistin treatment of Salmonella infections. IMPORTANCE Emergence of multidrug-resistant (MDR) Gram-negative (G-) bacteria have led to the reconsideration of colistin as the last-resort therapeutic option for health care-associated infections. Finding new drug targets and strategies against the spread of MDR G- bacteria are global challenges for the life sciences community and public health. In this paper, we demonstrated the more susceptibility strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels and revealed several previously unknown regulatory mechanisms of AcrB and CpxR on the colistin susceptibility. Importantly, we found that exogenous supplement of citrate, α-ketoglutaric acid, and agmatine sulfate could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. These results provide a theoretical basis for finding potential new drug targets and adjuvants.


Subject(s)
Agmatine , Colistin , Colistin/pharmacology , Salmonella typhimurium/genetics , Transcriptome , Agmatine/pharmacology , Ketoglutaric Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Metabolome , Microbial Sensitivity Tests
15.
Microbiol Spectr ; 11(4): e0033423, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37272820

ABSTRACT

Klebsiella pneumoniae, a pathogen of critical clinical concern, urgently demands effective therapeutic options owing to its drug resistance. Polymyxins are increasingly regarded as a last-line therapeutic option for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections. However, polymyxin resistance in K. pneumoniae is an emerging issue. Here, we report that gallium nitrate (GaNt), an antimicrobial candidate, exhibits a potentiating effect on colistin against MDR K. pneumoniae clinical isolates. To further confirm this, we investigated the efficacy of combined GaNt and colistin in vitro using spot dilution and rapid time-kill assays and growth curve inhibition tests and in vivo using a murine lung infection model. The results showed that GaNt significantly increased the antimicrobial activity of colistin, especially in the iron-limiting media. Mechanistic studies demonstrated that bacterial antioxidant activity was repressed by GaNt, as revealed by RNA sequencing (RNA-seq), leading to intracellular accumulation of reactive oxygen species (ROS) in K. pneumoniae, which was enhanced in the presence of colistin. Therefore, oxidative stress induced by GaNt and colistin augments the colistin-mediated killing of wild-type cells, which can be abolished by dimethyl sulfoxide (DMSO), an effective ROS scavenger. Collectively, our study indicates that GaNt has a notable impact on the antimicrobial activity of colistin against K. pneumoniae, revealing the potential of GaNt as a novel colistin adjuvant to improve the treatment outcomes of bacterial infections. IMPORTANCE This study aimed to determine the antimicrobial activity of GaNt combined with colistin against Klebsiella pneumoniae in vitro and in vivo. Our results suggest that by combining GaNt with colistin, antioxidant activity was suppressed and reactive oxygen species accumulation was induced in bacterial cells, enhancing antimicrobial activity against K. pneumoniae. We found that GaNt functioned as an antibiotic adjuvant when combined with colistin by inhibiting the growth of multidrug-resistant K. pneumoniae. Our study provides insight into the use of an adjuvant to boost the antibiotic potential of colistin for treating infections caused by multidrug-resistant K. pneumoniae.


Subject(s)
Anti-Infective Agents , Klebsiella Infections , Mice , Animals , Colistin/pharmacology , Klebsiella pneumoniae/genetics , Reactive Oxygen Species , Antioxidants/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Polymyxins/pharmacology , Polymyxins/therapeutic use , Microbial Sensitivity Tests , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Drug Resistance, Multiple, Bacterial
16.
J Biomed Sci ; 30(1): 37, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37287044

ABSTRACT

BACKGROUND: We investigated the presence of heteroresistance against both tigecycline and colistin in Acinetobacter baumannii and then evaluated the effectiveness of combined antibiotic treatment given the existence of discrete tigecycline- and colistin-resistant subpopulations. METHODS: We performed population analysis profiling (PAP) to evaluate the degree of composite heteroresistance in A. baumannii isolates, with the extent of this resistance quantified using subsequent antibiotic susceptibility testing. We then evaluated the amino acid sequence of PmrBAC and the relative mRNA expression levels of pmrB. Finally, we investigated the combined antibiotic efficacy of tigecycline and colistin in multiple-heteroresistant isolates using dual PAP and in vitro time-killing assays. RESULTS: All tigecycline-heteroresistant A. baumannii isolates, with the exception of one colistin-resistant isolate, were also heteroresistant to colistin. Evaluations of the colistin-resistant subpopulations revealed amino acid alterations in PmrA and PmrB and increased expression of pmrB. All tigecycline-resistant subpopulations were susceptible to colistin, and all colistin-resistant subpopulations were susceptible to tigecycline. Dual PAP analysis using tigecycline and colistin showed no heteroresistance, and in vitro time-killing assays revealed that a combination of these two antibiotics effectively eliminated the bacterial cells. CONCLUSION: Our results suggest that multiple heteroresistance to tigecycline and colistin is highly prevalent among A. baumannii clinical isolates and that these resistant subpopulations exist independently in single multiple heteroresistant isolates. Therefore, our findings may explain the success of combined antibiotic therapies in these infections.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Tigecycline/pharmacology , Tigecycline/therapeutic use , Acinetobacter baumannii/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Acinetobacter Infections/drug therapy
17.
Sci Adv ; 9(23): eadg4205, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37294761

ABSTRACT

In the face of the alarming rise in global antimicrobial resistance, only a handful of novel antibiotics have been developed in recent decades, necessitating innovations in therapeutic strategies to fill the void of antibiotic discovery. Here, we established a screening platform mimicking the host milieu to select antibiotic adjuvants and found three catechol-type flavonoids-7,8-dihydroxyflavone, myricetin, and luteolin-prominently potentiating the efficacy of colistin. Further mechanistic analysis demonstrated that these flavonoids are able to disrupt bacterial iron homeostasis through converting ferric iron to ferrous form. The excessive intracellular ferrous iron modulated the membrane charge of bacteria via interfering the two-component system pmrA/pmrB, thereby promoting the colistin binding and subsequent membrane damage. The potentiation of these flavonoids was further confirmed in an in vivo infection model. Collectively, the current study provided three flavonoids as colistin adjuvant to replenish our arsenals for combating bacterial infections and shed the light on the bacterial iron signaling as a promising target for antibacterial therapies.


Subject(s)
Bacterial Proteins , Colistin , Colistin/pharmacology , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteria/metabolism , Iron , Homeostasis
18.
Phytomedicine ; 117: 154886, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37269755

ABSTRACT

BACKGROUND: The emergence and wide spread of plasmid-mediated colistin resistance gene (mcr-1) and its mutants have immensely limited the efficacy of colistin in treating multidrug-resistant (MDR) Gram-negative bacterial infections. The development of synergistic combinations of antibiotics with a natural product that coped with the resistance of MDR bacteria was an economic strategy to restore antibiotics activity. Herein, we investigated gigantol, a bibenzyl phytocompound, for restoring in vitro and in vivo, the sensitivity of mcr-positive bacteria to colistin. METHODS: The synergistic activity of gigantol and colistin against multidrug-resistant Enterobacterales was studied via checkerboard assay and time-killing curve. Subsequently, the transcription and protein expression levels of mcr-1 gene were determined by RT-PCR and Western blots. The interaction of gigantol and MCR-1 was simulated via molecular docking and verified via site-directed mutagenesis of MCR-1. Hemolytic activity and cytotoxicity assay were used to evaluate the safety of gigantol. Finally, the in vivo synergistic effect was evaluated via two animal infection models. RESULTS: Gigantol restored the activity of colistin against mcr-positive bacteria E.coli B2 (MIC from 4 µg/ml to 0.25 µg/ml), Salmonella 15E343 (MIC from 8 µg/ml to 1 µg/ml), K. pneumoniae 19-2-1 (MIC from 32 µg/ml to 2 µg/ml) carrying mcr-1, mcr-3, mcr-8, respectively. Mechanistic studies revealed that gigantol down-regulated the expression of genes involved in LPS-modification, reduced the MCR-1 products and inhibited the activity of MCR-1 by binding to amino acid residues Tyr287 and Pro481 in its D-glucose-binding pocket. Safety evaluation showed that the addition of gigantol relieves the hemolysis caused by colistin. Compared with monotherapy, the combination of gigantol and colistin significantly improved the survival rate of Gallgallella mellonella larvae and mice infected by E.coli B2. Moreover, there was a considerable decrease in the bacterial load present in the viscera of mice. CONCLUSION: Our results confirmed that gigantol was a potential colistin adjuvant, and could be used to tackle multi-drug resistant Gram-negative pathogen infections combined with colistin.


Subject(s)
Bibenzyls , Escherichia coli Proteins , Animals , Mice , Colistin/pharmacology , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Bibenzyls/pharmacology , Escherichia coli , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/pharmacology , Plasmids
19.
Clin Infect Dis ; 76(Suppl 2): S179-S193, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37125467

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex (CRAB) is one of the top-priority pathogens for new antibiotic development. Unlike other antibiotic-resistant threats, none of the available therapies have been shown to consistently reduce mortality or improve patient outcomes in clinical trials. Antibiotic combination therapy is routinely used in clinical practice; however, the preferred combination has not been defined. This narrative review focuses on evidence-based solutions for the treatment of invasive CRAB infections. We dissect the promise and perils of traditional agents used in combination, such as colistin, sulbactam, and the tetracyclines, and offer clinical pearls based on our interpretation of the available data. Next, we investigate the merits of newly developed ß-lactam agents like cefiderocol and sulbactam-durlobactam, which have demonstrated contrasting results in recent randomized clinical trials. The review concludes with the authors' perspective on the evolving treatment landscape for CRAB infections, which is complicated by limited clinical data, imperfect treatment options, and a need for future clinical trials. We propose that effective treatment for CRAB infections requires a personalized approach that incorporates host factors, the site of infection, pharmacokinetic-pharmacodynamic principles, local molecular epidemiology of CRAB isolates, and careful interpretation of antibiotic susceptibility testing results. In most clinical scenarios, a dose-optimized, sulbactam-based regimen is recommended with the addition of at least one other in vitro active agent. Should sulbactam-durlobactam receive regulatory approval, recommendations will need to be re-evaluated with the most recent evidence.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Sulbactam/pharmacology , Sulbactam/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Colistin/pharmacology , Microbial Sensitivity Tests
20.
Phytomedicine ; 114: 154803, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37058946

ABSTRACT

BACKGROUND: The resistance of Gram-negative bacteria to polymyxin B, caused by the plasmid-mediated colistin resistance gene mcr-1, which encodes a phosphoethanolamine transferase (MCR-1), is a serious threat to global public health. Therefore, it is urgent to find new drugs that can effectively alleviate polymyxin B resistance. Through the screening of 78 natural compounds, we found that cajanin stilbene acid (CSA) can significantly restore the susceptibility of polymyxin B to mcr-1 positive Escherichia coli (E. coli). PURPOSE: In this study, we tried to evaluate the ability of CSA to restore the susceptibility of polymyxin B towards the E. coli, and explore the mechanism of sensitivity recovery. STUDY DESIGN AND METHODS: Checkerboard MICs, time-killing curves, scanning electron microscope, lethal and semi-lethal models of infection in mice were used to assess the ability of CSA to restore the susceptibility of polymyxyn to E. coli. The interaction between CSA and MCR-1 was evaluated using surface plasmon resonance (SPR), and molecular docking experiments. RESULTS: Here, we find that CSA, a potential direct inhibitor of MCR-1, effectively restores the sensitivity of E. coli to polymyxin B. CSA can restore the sensitivity of polymyxin B to drug-resistant E. coli, and the MIC value can be reduced to 1 µg/ml. The time killing curve and scanning electron microscopy results also showed that CSA can effectively restore polymyxin B sensitivity. In vivo experiments showed that the simultaneous use of CSA and polymyxin B can effectively reduce the infection of drug-resistant E. coli in mice. SPR and molecular docking experiments confirmed that CSA strongly bound to MCR-1. The 17-carbonyl oxygen and 12- and 18­hydroxyl oxygens of CSA were the key sites binding to MCR-1. CONCLUSION: CSA is able to significantly restore the sensitivity of polymyxin B to E. coli in vivo and in vitro. CSA inhibits the enzymatic activity of the MCR-1 protein by binding to key amino acids at the active center of the MCR-1 protein.


Subject(s)
Colistin , Escherichia coli Proteins , Animals , Mice , Colistin/pharmacology , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli , Molecular Docking Simulation , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/pharmacology , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL